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 A novel Coronavirus infection (COVID-19) leading to pneumonia and 
severe acute respiratory distress syndrome (ARDS) was first reported in 
Wuhan, Hubei Province, China in December 2019 and has subsequently 
spread to almost all other countries in the world. On 11th March 2020, the 
WHO declared the COVID-19 outbreak a global pandemic. As of 16th of May 
2020, there are 4,425,485 confirmed cases with 302,059 deaths worldwide1 
Patients with severe illness may develop dyspnoea and hypoxaemia within 
one week of onset of symptoms, which may quickly progress to ARDS or end-
organ failure.2 In the order of 20% of infected patients are admitted to hospital 
and of these, approximately 25% will die.3 Only supportive treatments are 
available such as oxygen via a face mask or mechanical ventilation as 
required. Thus there is an urgent and unmet clinical need in these patients for 
specific therapies that prevent or treat the pathophysiology of the disease. 
 The sudden deterioration seen during the illness course in patients with 
COVID-19 has been attributed to inappropriate immune activation, mediated 
through excessive macrophage activation and release of cytokines, including 
interleukin (IL)-6.4 This is similar to that seen with the Cytokine Release 
Syndrome (CRS) of Chimeric Antigen Receptor-T cell (CAR-T) therapy.4 
Indeed, the anti-IL-6 monoclonal antibody tocilizumab is used to treat CRS in 
CAR-T therapy and is being trialed in patients with COVID-19.5,6 The very high 
ferritin levels seen in the most severely affected patients is indicative of 
macrophage activation and is at similar levels to those seen in conditions 
driven by overactive macrophages such as Haemophagocytic 
Lymphohistiocytosis (HLH).7  
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 Abnormal coagulation parameters have been observed in patients with 
COVID-19 (thrombocytopenia, raised D-dimer and prolonged prothrombin 
time [PT]) 8 and these are reported to predict a poor prognosis.9 Multiple 
studies in the last few weeks have shown increases in microvascular 
thrombosis post-mortem in patients who have died from COVID-19.10,11 
Moreover, recent reports have noted increased thromboembolic events12,13 
and there is some evidence of improved outcomes with prophylactic- and 
therapeutic-doses of low molecular weight heparin (LMWH). The evidence of 
benefit of both of these treatments is stronger in those patients admitted to 
intensive care14 or in those with more severe coagulopathy.9 
 It is not known exactly what triggers the coagulopathy in patients with 
COVID-19 but it does not seem to resemble the pathophysiology of 
disseminated intravascular coagulation (DIC) where there is widespread 
activation of platelets and procoagulant proteins initially causing microvascular 
thrombosis followed by consumption of these elements and resultant bleeding. 
In COVID-19 bleeding is not as prominent a feature as the thrombosis in the 
microvasculature of the lungs and other organs.15 
 It is well known that inflammatory states increase the risk of thrombosis 
and it is increasingly apparent that platelets form a vital link between the 
immune system and coagulation. Immunothrombosis is the process by which 
platelets contribute to the function of the innate immune system by forming 
thrombi in vessels which catch pathogens. Thromboinflammation is the 
pathological formation of thrombi in response to inflammatory stimuli. It is 
suspected to play a critical role in the development of DIC as well as in arterial 
and venous thrombosis.16 Two recent papers have speculated that 
thromboinflammation resulting from pathological immune activation by 
monocytes and other immune cells could be the mechanism by which COVID-
19 related hypercoagulability occurs15,17 but none have proposed specific, 
targetable pathways involved in this process in COVID-19. 
 In a mouse model of thromboinflammation triggered by attenuated 
salmonella infection, our group has shown that tissue macrophages showing 
up-regulation of podoplanin in response to inflammatory challenge activate the 
platelet tyrosine kinase-linked receptor CLEC-2 which leads to hepatic 
thrombus formation.18 In this model, depletion of macrophages, or genetic 
deletion of podoplanin or CLEC-2 blocks thrombus formation. Platelet CLEC-2 
is also a pre-requisite for thrombus formation in a venous thrombosis mouse 
model.19 In these mice, podoplanin is upregulated in the subendothelium on 
stromal cells surrounding the thrombus. Despite this strong evidence for 
CLEC-2’s role in mouse thromboinflammation, no studies exist showing 
similar findings in humans. In previously unpublished work however, we have 
also found increased expression of podoplanin in the venous valves adjacent 
to a femoral vein thrombus in a patient who died with deep vein thrombosis 
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(DVT) but not in the unaffected valves of the same vein or the equivalent 
valves in the contralateral leg (see Figure 1). 
  In addition to their role in driving inflammatory thrombosis platelets are 
key regulators of the innate immune response in both sterile and infectious 
conditions.20 The platelet-macrophage interaction has been well described21 
and remains especially relevant to the pathogenesis of the CRS observed in 
COVID-19 and this is perhaps unsurprising with recent evidence highlighting a 
clear role for platelets triggering inflammasome activation22 and then 
proinflammatory cytokine production that characterises the CRS.23 
 We speculate that blockade of CLEC-2 might prevent immune-mediated 
activation of platelets and thus block thromboinflammation during COVID-19. 
Inhibitors of non-receptor signalling kinases downstream of CLEC-2 are 
effective in completely blocking platelet CLEC-2 function. The Src kinase 
inhibitor dasatinib and Syk kinase inhibitors R406 (the active metabolite of 
fostamatinib) and PRT-06018 have been shown to block CLEC-2 mediated 
platelet aggregation.24-26 Recently we and the Siess group have shown that 
targeting the kinase Btk is very effective at blocking downstream PLCγ2 
phosphorylation, all forms of platelet CLEC-2 function and thrombus formation 
under flow at drug concentrations that leave other platelet receptor signalling 
pathways intact.27-29 Btk is a non-receptor signalling kinase downstream of 
CLEC-2 in platelets and the B-cell receptor as well as at low levels in myeloid 
and erythroid cells.30-32 It was first discovered as the causative mutated protein 
in the congenital immunodeficiency X-linked agammaglobulinaemia (XLA).33 
Btk inhibitors are currently licensed for the treatment of B-cell malignancies 
but are also being trialed for the treatment of autoimmune disease. They are 
broadly separated into two types; those that bind covalently to Cysteine-481 in 
the ATP binding site in the kinase domain and thus prevent kinase activity and 
those that reversibly associate to the Src Homology (SH) 3 domain when Btk 
is in its inactive conformation and prevent change to the active conformation.34

 Both ibrutinib and dasatinib have completed randomised clinical trials 
(RCTs) in B-cell malignancies and chronic myeloid leukaemia/prostate cancer 
respectively. There is evidence from post-hoc analysis of these trials that both 
ibrutinib and dasatinib significantly reduce venous thrombosis (see Table 1) 
and that ibrutinib also reduces arterial thrombosis.35 There may be an added 
benefit to using Btk inhibitors rather than anticoagulants to reduce thrombosis 
in COVID-19; namely the lack of bleeding side effects. We and other groups 
have shown that CLEC-2 has only a minimal role in the classical haemostatic 
function of platelets36,37 and thus CLEC-2 inhibition itself is unlikely to cause 
bleeding. It is important to note that patients who lack Btk have no 
demonstrable CLEC-2 mediated platelet function and do not bleed 
excessively.27,30 Increased bleeding and atrial fibrillation are the main clinically 
significant side effects associated with the first generation Btk inhibitor 
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ibrutinib, and to a lesser extent the second generation drug acalabrutinib. 
They have been shown by us and other groups to be mediated by off-target 
effects on other kinases due to the high drug doses used in patients with 
haematological malignancy.28,38,39 Chen et al. showed that patients with 
chronic lymphocytic leukaemia could have their ibrutinib doses reduced from 
480 mg to 140 mg once daily and still achieve a trough Btk occupancy of 
97%.40 Indeed the highly Btk selective fenebrutinib reduced joint inflammation 
in rheumatoid arthritis without any reported bleeding side effects41 and there is 
so little bleeding associated with the novel Btk inhibitor Rilzabrutinib that it is 
currently in phase II trials for immune thrombocytopenia (ITP).42 Other 
potential effects could be mediated through Btk’s known role in PI3K/Akt and 
NF-κB signalling in dendritic cells and macrophages. The effects of Btk 
inhibitors on platelet PI3K/Akt or NF-κB have not been directly studied. The 
most frequently experienced adverse events in studies of the latest-generation 
and more targeted Btk inhibitors are self-limiting gastrointestinal side effects 
and headaches.41,43 Given the severity of COVID-19 we feel that these side 
effects would be well tolerated for the (likely) short duration of treatment 
required.  
 In addition to the potential antithrombotic benefit of Btk inhibition in 
COVID-19, a direct reduction in pathologic inflammation may be observed. 
Inhibition of Btk has been shown to reduce myeloid cell cytokine release, and 
subsequent ischaemic injury in a mouse brain ischaemia/reperfusion injury 
model.44 Btk inhibitors are also being trialled as an adjunct to CAR-T treatment 
and have been shown to lower cytokine release in CRS in mouse CAR-T45 as 
well as reduce CRS severity and CRS associated cytokines in patients 
undergoing CAR-T treatment.46 Specifically in COVID-19, there is a small 
case series showing unexpectedly mild disease in patients with B-cell 
malignancy treated with ibrutinib.47 
 To conclude, anticoagulants such as LMWH and immunosuppressants 
such as tocilizumab may have a role separately in the treatment of the 
thrombosis and inflammation associated with COVID-19, but Btk inhibitors 
may well perform both of these roles simultaneously; not only are Btk 
inhibitors likely to reduce the microvascular and venous thrombosis in COVID-
19 by blocking platelet CLEC-2, but they may also diminish pathological 
excessive inflammation by blocking cytokine release. Moreover, unlike 
anticoagulants, they may well reduce thrombosis without an associated 
increase in bleeding. They may even be able to be given alongside 
anticoagulants and IL-6 inhibitors in order to further reduce thrombosis and 
inflammation. The evaluation of Btk inhibitors in COVID-19 is certainly worthy 
of consideration in prospective clinical trials. 
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Figure legend and table 
 
Figure.1: Podoplanin is upregulated on venous valve surrounding 
thrombus in human veins in vivo. 
Femoral vein from a patient with DVT identified at post mortem was sectioned, 
fixed and stained with the anti-human podoplanin (hPDPN) antibody NZ-1 at a 
dilution of 1:200. (A) Femoral vein valve from unaffected leg with no 
surrounding DVT stained with hPDPN (red) and 4,6- diamidino-2-phenylindole 
(DAPI, blue). Arrows show locations of lymphatic vessels in the vein wall. (B). 
Femoral vein valve from the affected leg with no surrounding DVT stained with 
hPDPN. (C) Femoral vein valve from the affected leg with surrounding DVT 
stained with hPDPN. Arrows show infiltrating cells staining positive for human 
podoplanin. Vein Lumen (L), Vein Wall (W), Venous Valve (Va).  



12 

 
Table 1: Ibrutinib and Dasatinib RCTs with VTEs expressed as drug exposure in person years. 
www.clinicaltrials.gov was searched using the terms “ibrutinib OR PCI-32675 OR imbruvica” and “dasatinib OR BMS-
354825 OR sprycel” on the 20/9/2018 and results were then filtered to only include RCTs with results. Four ibrutinib and 
two dasatinib RCTs were identified. Results on www.clinicaltrials.gov were scrutinised to identify adverse events and 
severe adverse events and the number of venous thromboembolic (VTE) episodes were recorded. The relevant 
publications for each trial were used to identify median treatment duration so that drug treatment could be standardised 
and expressed as exposure in person years. aStatistical analysis performed using a Mid-P exact test. bStatistical analysis 
performed using a Mid-P exact test with stratification by trial.54  

Trial Number Reference Ibrutinib 
Exposure 
(person 
years) 

VTEs in 
ibrutinib 
group 

Control 
treatment 

Control 
treatment 
exposure 
(person 
years) 

VTEs in 
control 
group 

VTE rate ratio (95% CI) P-value 

NCT01578707 Montillo et al.48 715 0 Ofatumumab 132.3 2 0 0.024a 

NCT01722487 Barr et al.49 323 0 Chlorambucil 209.5 0   

NCT01646021 Dreyling et al.50 180.7 1 Temsirolimus 72.9 2 0.202 0.224a 

NCT01973387 Huang et al.51 144.9 0 Rituximab 37.8 0   

Total  1363.6 1  452.5 4 0.071 (0.003-0.584) 0.012b 
Trial Number Reference Dasatinib 

Exposure 
(person 
years) 

VTEs in 
dasatinib 
group 

Control 
treatment 

Control 
treatment 
exposure 
(person 
years) 

VTEs in 
control 
group 

VTE rate ratio (95% CI) P-value 

NCT0048124 Cortes et al.52 1295 2 Imatinib 1300 1 2.008 0.623a 

NCT0074449 Araujo et al.53 850.9 8 Placebo 703 28 0.236 <0.001a 
Total  2145.9 10  2003 29 0.289 (0.134-0.582) <0.001b 

http://www.clinicaltrials.gov/

