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Abstract  

A critical assessment criterion for road condition assessment is the amount and severity of 

cracking.  Cracking causes a loss of structural capacity (i.e. strength and stiffness) and if severe 

can cause water infiltration into the subbase and subgrade, potentially leading to more serious 

structural failure. The onset of cracking therefore accelerates the processes of deterioration of 

the road. To date the accurate and reliable automated detection of road surface cracking is still 

problematic.  

Ground Penetrating Radar (GPR) has the potential to detect cracks in materials as they cause 

changes in electromagnetic reflection. This paper proposes a method of automatic detection of 

road surface cracks using GPR and establishes the limits of its potential regarding the 

detectable crack size.  

Tests were conducted on asphalt pavement samples in a controlled laboratory environment. 

Significant changes in diffracted signal levels were observed in the GPR image when the image 

was analysed using a Singular Value Decomposition (SVD) algorithm for clutter reduction and 

a median filter to reduce noise. Moreover, a manifestly enhanced performance was achieved 

using a novel post-processing technique, which enabled the detection of cracks larger than 1.3 

mm in width. The detected cracks were detectable irrespectively of the simulated physical 

conditions suggesting that the developed methodology is robust for use in practice. The 

experimental results indicate that the GPR system can be applied to automatically detect road 

cracking reliably in practice.      
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1 Introduction   

Assessing the condition of the road network is vital for ensuring its continued functionality. In 

the UK it has been reported that one in five local roads could fail in the next five years, while 

local roads are only resurfaced every 78 years on average (Asphalt Industry Alliance, 2018). 

Cracking and fretting (i.e. the loss of aggregate material from the road surface) are the 

predominant failure modes of local roads in the UK. However, automated means of detecting 

these two modes have had mixed success (Oliveira and Correia, 2009; Zou et al., 2012; Oliveira 

and Correia, 2013). This is due to a number of factors including the difficulty of distinguishing 

cracking and fretting from the inherent road texture, the variety of road surface types within 

the road network and the variable weather and lighting conditions experienced in the UK 

(Zhang et al., 2017; Brilakis and Radopoulou, 2018; Pan et al., 2018). Consequently, the most 

common and most reliable method for the assessment of these failure modes on local roads is 

still by visual inspection, with its inherent subjectivity. A promising, but as yet untried, 

alternative is the application of geophysical methods such as ground penetrating radar (GPR), 

which has the potential additional benefit of being able to measure crack depth and also identify 

subsurface cracks. Traditional approaches only measure surface cracks. Geophysical methods 

have not been routinely utilised largely because the evidence base underpinning their efficacy 

and value for road condition assessment has to date not been sufficiently strong. GPR has been 

used in a wide range of other applications, for example the inspection of geological structures 

(Benedetto and Pajewski, 2015), surveying of critical transport infrastructure (Tosti et al., 

2018), and the detection and assessment of buried utilities (Cataldo et al., 2014). Commercial 

GPR applications have also included determining the thickness of Hot Mix Asphalt (HMA) 

and Portland Cement Concrete (PCC) and the underlying layers (Al-Qadi and Lahouar, 2005), 

and therefore are recognised as having value in the road industry.  

GPR is based on the classic radar principle that involves transmission of an electromagnetic 

wave through the material under investigation and measurement of the Time-of-Flight (ToF) 

of the reflected wave (Metje et al., 2007). The advantages of GPR are commonly cited as the 

cost efficiency relative to and the possible speed of survey, and sufficient accuracy and 

resolution for many applications. However, there are very few studies on the feasibility of using 

GPR for crack detection, albeit the literature suggests that GPR with a high carrier frequency 

and scan resolution can fulfil the requirement for non-destructive road assessment (Birtwisle 

and Utsi, 2008; Utsi et al., 2008; Diamanti et al., 2010).  This application is explored hereafter. 



Some early studies showed that although GPR can prove successful for road surface crack 

detection, there are some challenges. For example, Ahmad et al. (2012) present the 

opportunities and limitations of using GPR as a crack detection tool. The temperature at which 

to utilise GPR must be above freezing to allow a sufficiently high degree of contrast in the 

dielectric values between the surface and cracks. This limitation was observed by Ahmad et al. 

(2012) during a field trial; however, the reason for this was not explained. This might be 

attributed to the crack being filled with water and hence freezing temperatures creating ice 

blocks with closer dielectric values to the asphalt compared with air. Also, the materials used 

in road construction influence the possibility for void detection within the road structure; for 

instance, GPR does not function well in wet clays since the GPR signals are readily absorbed 

by water, i.e. signal attenuation is relatively large (Rogers et al., 2012). Ahmad et al. (2011) 

reported GPR measurements of asphalt specimens with uniform, i.e. saw-cut, cracks. However, 

these results were unsatisfactory from a commercial perspective in terms of the GPR image 

resolution and Signal-to-Noise Ratio (SNR). A more robust study by Diamanti et al. (2010) 

used a multiple-channel ground-coupled system for high speed road scanning. The Finite-

Difference Time-Domain (FDTD) method was used to provide numerical solution for the use 

of the GPR in a ‘forward-looking’ approach. However, the approach was only tested on a single 

dataset and no further analysis of the FDTD data was carried out. In an alternative approach, 

the diffraction of the waveform has been used for road surface assessment with an oblique 

antenna configuration (Pennock and Jenks, 2014). This approach measured the power from 

each reflection angle, but it proved difficult to extract the precise location of a crack. Moreover, 

the crack detection work reported above did not exploit fully the potential of post-processing 

of the GPR image.  

This paper verifies the performance of a novel automated crack detection method using a GPR 

system and Singular Value Decomposition (SVD) image post-processing technique to assess 

the detectability of pre-defined cracks in asphalt pavement slabs and assesses the effectiveness 

of the method in terms of the minimal detectable crack size.  

Seven asphalt pavement specimens with a variety of different crack widths and shapes are 

screened to fully test the potential of the proposed crack detection method. The performance 

of the developed post-processing algorithm under different environmental and physical 

conditions was investigated, where the surface of the cracks was covered by 1) paper sheets 2) 

a thin layer of bitumen and filled with 3) fine sand and 4) water. This paper is structured as 

follows: Section 2 reviews the literature on the application of GPR for detecting asphalt 



pavement cracks. Section 3 presents the adopted methodology, while Section 4 outlines the use 

of Singular Value Decomposition (SVD) for clutter reduction on GPR images and automatic 

data extraction. Section 5 presents the results and analysis, followed by discussions on the 

potential application to practice in Section 6, and conclusions are drawn in Section 7.  

2 Literature Review   

Automatic interpretation of GPR images has become more prevalent in recent years, but mainly 

aimed at detecting buried assets, especially pipes where the focus is on the identification of the 

hyperbola indicating the presence of a pipe. In contrast, GPR is not regularly used for crack 

detection in asphalt in the first place and any automatic data processing is still being developed.   

2.1 GPR for Road Crack Detection 

The Transport Research Laboratory (TRL) trialled GPR for crack detection (Forest and Utsi, 

2004) on road pavements with a minimum of 100 mm thick asphalt surfacing. The results, 

verified by coring, showed that the utilised GPR system, with antennas ranging in frequency 

from 700 MHz to 2.5 GHz, was capable of measuring crack depths between 50 mm to 160 mm. 

The study also revealed that, to achieve accurate results, the survey (i.e. antenna orientation) 

should be conducted perpendicular to the crack, with a minimum sampling interval of 10 mm. 

It was concluded that variations in crack size (crack depth less than 50mm) and heterogeneity 

of pavement layers (e.g. a large stone in the granular layer) can lead to a false interpretation.  

Birtwisle and Utsi (2008) and Utsi et al. (2008) reported the findings of two field trials using 

a multi-channel GPR for the assessment of an airport runaway, which consisted of a composite 

pavement (i.e. an asphalt layer overlying a concrete base).  Subsurface vertical crack detection 

was validated by visual inspections and coring. The utilised method consisted of two crack 

detection heads with 1 GHz antennas, and was shown to be able to identify subsurface cracks 

and to measure their depth and extent. However, the majority of the identified cracks were 

visible surface cracks and the efficacy in identifying those that did not manifest at the surface 

was unknown. It should be noted also that in this study the location of the subsurface cracks 

was predictable prior to conducting the survey since they were found to be in close proximity 

to joints in the concrete slabs, crack formation in this case being a well-known phenomenon. 

Furthermore, the low speed of operation (1.3 km/day), due to the small sampling intervals (10 

mm and 20 mm for joint and crack detection respectively) being used in an attempt to achieve 

higher accuracy, was a drawback of the employed method in practice.   



Colagrande et al. (2011) investigated which GPR parameters, including power curves, 

absorption angle and absorption coefficients (obtained by setting the propagation velocity to 

10 cm/ns), should be considered when attempting to detect the main cause(s) of deterioration 

of a flexible asphalt road pavement. The study collected GPR data from 40 deteriorated and 

newly constructed roads using 1600 MHz and 600 MHz antennas. Colagrande et al. (2011) 

concluded that similar absorption angles for damaged and undamaged roads show fatigue or 

thermal shrinkage as the likely cause of degradation. Dissimilarities in absorption angles, 

however, showed that traffic load is probably responsible for the degradation by causing 

uneven subgrade settlements.  

Simonin et al. (2014), also described in Simonin et al. (2012), reported the findings of an 

experiment utilising two 3D GPR systems for detecting artificial defects in a pavement 

structure. Unlike traditional radar systems with one antenna, one of the 3D systems comprised 

eight ground-coupled antennas, each of which were operated with a frequency of 

approximately 1,000 MHz, while the other system consisted of 11 transmitters and 11 receivers 

operating at around 1,500 MHz frequency. Several different defects were simulated in a 

pavement structure consisting of two bituminous layers (an 80 mm thick base layer and a 60 

mm thick wearing course) overlying a granular subbase. The simulated defects were placed 

between the bituminous layers with the following dimensions; 0.5 m × 2.0 m, 0.5 m × 0.5 m, 3.0 

m × 1.0 m and 1.5 m × 2.0 m. Geotextile samples and sand (properties and thicknesses not 

provided) were used for simulating the defects. The results demonstrated the ability of the 3D 

system to capture the depth and width of defects. Tong et al. (2017) utilised GPR to identify 

concealed cracks in pavement and generated a 3D model of them using the convolutional neural 

network (CNN) method, with a reported zero percent identification error on 6482 tested GPR 

images. However, it should be noted that the size of the concealed cracks was not reported, 

while an average error of 5 mm was reported (showing that the crack sizes should be much 

larger than 5 mm). CNN is an image processing technique, which has been used for detecting 

pavement cracks from 2D and 3D images generated by various techniques, for example Zhang 

et al. (2016) applied it on photographic colour images and achieved around 87% accuracy, but 

did not apply it on real time images. Tong et al. (2018) used CNN to process 312 GPR images 

from road subgrade layers to detect defects, but the dimensions of the defects were not reported. 

The findings showed that it was more reliable, over 90% accuracy, than two other image 

processing techniques, namely Sobel edge detection and K-value clustering. However, the 



comparison between the three aforementioned techniques was only conducted qualitatively 

using three images.  

 

2.2 GPR application in automated road condition assessment 

Recent developments in robotics and computation have enhanced automated GPR road 

condition assessment, in both conducting the survey and data processing. There are numerous 

papers on automatic detection and assessment of buried utilities using the GPR technology, for 

example Maas and Schmalzl (2013); Qiao et al. (2015); Yuan et al. (2018); Jazayeri et al. 

(2019); Cai et al. (2020); Yuan and Cai (2020), the subject of the current paper is however the 

application of automated GPR technology for road condition assessment. For instance, a 

robotic system employing image processing and GPR technologies was developed by Li et al. 

(2016) for automated pothole detection, which was able to detect over 50 different potholes 

with 88% accuracy.  

Hugenschmidt and Fürholz (2012) described an automated acquisition system mounted on a 

trailer, consisting of a GPS receiver, a data acquisition system and a GPR system (the frequency 

used was not given). The developed system was tested solely on a bridge and no technical data, 

other than the physical components, was reported.  

When utilising GPR for testing over an entire road network, the amount of data can cause 

significant operational problems, adding to the complexity of data acquisition, analysis and 

interpretation. Varela-González et al. (2014) developed a semi-automatic processing and 

visualisation tool to reduce the time required to analyse GPR data for road pavement thickness 

measurements. The processing time using three different hardware configurations for various 

lengths of road network, between 100 m and 20 km, was reported to be less than 30 seconds. 

More recently, Sukhobok et al. (2019) used an artificial neural network technique to 

automatically evaluate pavement thickness using GPR technology. The developed algorithm 

was trained and tested using the data gathered on a 60 km stretch of motorway. The results on 

detecting different layers of the pavement, but not their thicknesses, were compared with those 

detected manually showing no complete agreement between the two. However, the paper 

lacked an appropriate analysis of the results making it hard to judge the success of the 

developed algorithm. Pupatenko et al. (2019) also utilised a neural network technique to 

automatically identify pavement layers and boundaries using GPR images. A relatively low 

frequency antenna, 450 MHz, was utilised in the study. The predicted boundaries by the 



developed algorithm was only compared qualitatively. Automated detection of pavement 

layers using GPR was also investigated by Lahouar and Al-Qadi (2008), who utilised a 

developed post-processing algorithm consisting of a threshold detector. The algorithm was 

tested using the 1 GHz air-coupled GPR antenna on a section of a road and achieved a 2.5 % 

average thickness error. Zhili et al. (2016) also utilised an automated GPR image processing 

technique to measure asphalt layer thickness, which was tested on ten GPR images. The results 

were compared with manual detection results and achieved an accuracy of up to 3.14 mm in 

thickness estimation, but the study failed to validate the results with any coring from the road. 

Some of the other studies which investigated the application of automated GPR technique for 

asphalt and/or pavement thickness measurements include Maser and Scullion (1992); Olhoeft 

and Smith (2000); Zhou et al. (2010); Oliveira et al. (2014); Liu et al. (2016); Wang et al. 

(2020).  

A threshold approach was adopted by Uus et al. (2016) to process GPR data to detect 

significant deviations in a pavement’s subsurface structure and properties. A demonstration 

was conducted using an 800 MHz antenna, but the results of the study were not validated as no 

information on the identified subsurface defects was available.  

Dossi et al. (2015b) and Dossi et al. (2015a) reported on an automated GPR algorithm based 

on a signal phase assessment which was tested on an airport runway to detect the transition 

between a concrete and an asphalt layer. The study failed to demonstrate a clear application of 

the developed algorithm for the road condition assessment. Todkar et al. (2017) utilised a 

supervised machine learning technique named support vector machines for detecting pavement 

de-bonding. The result showed that the ratio between number of correctly detected de-bonding 

(true positive) over the total of true positive and non-detected de-bonding (false negative) was 

around 93% which is an interesting result. Furthermore, the authors tested the developed 

method during a field trial, reported in Todkar et al. (2018), to detect artificial defects, i.e. de-

bonding modelled by inserting layers of sand, tack-free based material and geotextile into 

asphalt. The results of the developed support vector machines technique for de-bonding 

detection, reported in Todkar et al. (2017), were compared with three different signal 

processing methods, namely: Amplitude Ratio Test, Semi-Supervised Clustering Algorithm, 

and Random Forests technique. The study concluded that both the support vector machines and 

Random Forests techniques provided the best results, based on the Dice score performance 

index, described in Todkar et al. (2017).Lu et al. (2002) evaluated the suitability of GPR 

technology for automatically detecting pavement cracks and measuring their depths, through 



reviewing the literature and conducting laboratory and field experiments. They concluded that 

the approach was not an appropriate method because of 1) the unavailability of quantitative 

data on measured reflected waves by commercially available GPR units, 2) the reliance on 

expert judgment and interpretation, and also 3) the cost. They concluded therefore that there 

was a need to develop a new signal processing system that would enable GPR to be used as 

part of an automated unit.  

Previous research on post-processing for GPR images includes that from Paglieroni and Beer 

(2014), which contains a complicated analysis of 3D data, and Pennock and Jenks (2014), 

which uses the diffraction information but is insensitive to deep cracking. Various filtering 

methods and processes utilised in GPR processing are described by Utsi (2017), including 

background removal, which has been utilised in this study through SVD. SVD has been utilised 

widely in GPR post-processing, for example by Cagnoli and Ulrych (2001); Kim et al. (2007); 

Guo and Hesthaven (2019), however, it is not normally effective in an 

inhomogeneous environment such as the ground when used by its own, as stated by Smitha 

and Singh (2019).  Narayanan et al. (2017) successfully utilised 2D median filtering and PSNR 

thresholding methods in radar holography for detecting concealed objects, with security 

applications. Soldovieri et al. (2006) reported utilisation of a horizontal filtering method 

combined with an inverse scattering approach for GPR images to remove background noises 

in an attempt to automatically locate rebar in concrete, but a fully automated process was not 

achieved. 

This paper aims to overcome the aforementioned drawbacks of GPR in road surface crack 

detection, as concluded by Lu et al. (2002), by developing an automated GPR signal processing 

approach. The algorithm complexity is controlled while ensuring that the system is able to 

detect cracking of various depths is proposed. 

3 Method 

3.1 Asphalt Slabs 

To examine the feasibility of GPR to detect surface cracking in pavements, seven asphalt slabs 

were cast. The asphalt slabs had overall dimensions of 500 mm × 500 mm × 110 mm (depth), 

the latter dimension being the minimum recommended thickness for the surface layer of a road 

pavement, e.g. Kent County Council (2000). Cracks ranging in width from 1 mm to 32 mm 

were created in the slabs using an actuator to apply a load of up to 70 kN (Figure 1). All cracks 



penetrated the surface and the crack depth was 110 mm throughout. An example of the resulting 

cracked asphalt pavement is shown in Figure 2.  

 

Figure 1: Crack simulation process using an actuator 

 

 

Figure 2: One of the tested asphalt slabs 

3.2 GPR Measurements 

A GroundVue 3 GPR system, manufactured by Utsi Electronics (2018), with a 2 GHz antenna 

was deployed to collect the surface data from the asphalt slabs. A 4 GHz antenna, also 

0.5 m 



manufactured by Utsi Electronics (2018), was also tested, but the 2 GHz antenna provided a 

better resolution. The system consists of two parts: a Radio Frequency (RF) head that includes 

one transmitter and one receiver, and a controller. The RF head transmits microwave pulses 

through the ground and collects the reflected signals. The raw data is then passed to the 

controller via an external cable. The controller initialises the RF head and transfers the data to 

a laptop via Wi-Fi (or cable). It also contains an odometer to measure the travelling distance of 

the system, which is based on an encoder wheel. 

All the GPR system parameters used are presented in Table 1. The sweep time defines the 

travel time between the transmitter-target and target-receiver and is related to the achievable 

resolution in the GPR image; it was set at the highest rate of 10 ns. The scan frequency 

determines the rate of data collection, which defines the maximum velocity. The relative 

permittivity (Er) is a measurement of the target’s ability to hold charge and relates to the type 

of road material (Baker et al., 2007). It should be noted that the contrast between asphalt and 

air is the key parameter in crack detection assuming the gaps are air-filled, while water-filled 

gaps generate a better defined reflection with a higher amplitude compared to air-filled cracks 

(Solla et al., 2014). In this study, Er for the asphalt pavement was set at 6 in accordance with 

the findings of Paje et al. (2008). A GPR B-scan was produced for each test, though it was 

noted that it was hard to visibly identify the cracks from the B-scans and thus it was concluded 

that post-processing was needed to analyse the data, and this was done in each case. 

Table 1: GPR system parameters 

Antenna 
Frequency 

2.2 GHz 

Sweep Time 10 ns 
Samples per Line1 256 
Scan Frequency 200 Hz 
Triggering Wheel 
Relative 
Permittivity 

6 

1Number of points per sweep 

During the tests, the GPR unit was moved along the centre line of the lined slabs (the dashed 

line in Figure 3) at walking speed. This meant that crack detection was only attempted in the 

transverse direction to the travel of the GPR unit. 



 

Figure 3: GPR unit traversing the cracked asphalt specimens 

It is well known that one of the main challenges for a GPR system is the strong reflection from 

clutter (Temlioglu and Erer, 2016), and for surface crack detection the target signal may be 

completely obscured by the clutter (Van Der Merwe and Gupta, 2000; Kabourek et al., 2012). 

Thus, clutter reduction must be applied to GPR images for any crack detection scheme. In this 

study, a clutter reduction method based on the popular Singular Value Decomposition (SVD) 

technique was used, in which the eigenvalues for background clutter were removed and then 

extracted to reveal the crack signal. The process was followed with a median filter to remove 

the random noise and further improve the Peak-Signal-to-Noise Ratio (PSNR). PSNR is the 

ratio of maximum possible power of a signal and the power of corrupting noise that disturbs 

the fidelity of its representation (Ledesma-Carrillo et al., 2016).  

To investigate the performance of the utilised GPR system under various conditions which 

simulate reality, the following different environmental and physical conditions were simulated 

during the trial.  

- The surface of the cracks were covered by paper sheets to simulate cracks covered with 

leaves. 

- The surface of the cracks were filled with a thin layer of bitumen, to evaluate the 

system’s ability to detect voids or cracks which do not penetrate to the surface.  



- The cracks were filled with fine sand to represent cracks filled with debris and dirt. 

- Numerical modelling was utilised to model cracks filled with water as it was not possible 

to retain the water inside the cracks during the GPR measurements. Running water was 

also tried, but the data was too noisy to be utilised for post processing.  

4 Road Crack Detection 

One of the main challenges in GPR imaging is the strong returns from the road surface, which 

tend to obscure stationary targets and render crack detection and classification difficult. A GPR 

image (A) can be considered as a sum from three signal sources (Equation 1): 

A = C + B + n                                                          (1) 

where C contains the signal from the cracks, B contains the signal from the road surface 

(background clutter) and n is the undesired signal from other sources, such as radar error and 

system error. Therefore, it is vital to resolve the signal of interest (C) from the measured GPR 

data (A). Thus, a novel signal processing method is proposed, which has not been used before, 

despite its potential benefits. Figure 4 shows an overview of the processing steps adopted here. 

 

Figure 4: Proposed signal processing methodology for the automatic crack detection 

4.1 Background Subtraction by SVD 

SVD is a powerful tool for dealing with clutter that might otherwise obscure the crack detection 

signals and has been used widely for different applications (Moonen and De Moor, 1995). Its 

main goal is to factorise a matrix into the product of three matrices, and is used for visualising 

data by minimising variables, and detecting data patterns (Wall et al., 2003). By evaluating the 

eigenvalues, SVD can separate the signal that identifies cracking from background signals. 

Assuming the GPR image can be represented by a rectangular matrix Aij with dimensions of 

m × n, where i is the travel distance index and j is the depth index and, for the GPR images 

obtained in this study, n is usually larger than m, the SVD of A can be given using Equation 2. 

𝐀 = 𝐔𝐒𝑽∗                                                              (2) 

GPR Image
Singular Value 
Decomposition 

(SVD)
2D Median 

Filter
PSNR Based 

Crack 
Extraction



where U is an m × m unitary matrix, S is an m × n rectangular diagonal matrix with positive 

real numbers on the diagonal, and V is an n × n unitary matrix. Matrix S = diag(s1, s2, … ,sr)  

with s1, s2, … ,sr ³ 0. U and V are the left-singular and right-singular matrixes of A, 

respectively. The columns of U and V are the eigenvectors of AA* and A*A, respectively, 

where A* is the conjugate transpose of matrix A. Since AA* and A*A are both symmetric and 

square, consequently 

𝐔𝐔∗ = 𝐔∗𝐔 = 𝐈-                                                      (3) 

and 

𝐕𝐕∗ = 𝐕∗𝐕 = 𝐈/                                                      (4) 

Where Im and In are identity matrices with size m and n respectively. 

Matrix S is an m × n matrix, and if n ³ m, S can be divided into two sub-matrices as (D, 0), 

where D is an m × m diagonal matrix and 0 is an m × (n – m) matrix of zeros. The diagonal 

values Si in D are known as the singular values, or the square roots of the eigenvalues AA* and 

A*A. Then matrices A, U, S and V comply with Equation 5: 

𝐀𝐀∗𝒖1 = 𝜎1𝐮𝐢
𝐀∗𝐀𝐯𝐢 = 𝜎1𝐯𝐢

					𝑖 ≤ 𝑚                                                     (5) 

where ui and vi are vectors of matrixes U and V, respectively and si is the i member of the 

diagonal matrix S. 

The GPR image can then be given by Equation 6.  

𝐀 = 𝜎1𝒖𝒊𝒗1∗<
1=>                                                          (6) 

which is equivalent to Equation 7.  

𝐀 = 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒎                                                   (7) 

where ɑi are matrices with same size as A, and are known as the modes of A. This expansion 

of a matrix, as a series of sub-matrices, is one of the key features of the SVD technique 

(Abujarad et al., 2005). In this paper, clutter reduction is achieved by identifying the key 

eigenvalue of SVD that relate to the background signal B.  

An example of the original GPR image and its sorted eigenvalues is presented in Figures 5 (a) 

and (b), which show that the first ~50 eigenvalues are dominant in terms of amplitude, whereas 

the remaining eigenvalues are much lower. More specifically, the first 10 eigenvalues take 

91.67% of total energy, meaning that the original GPR image can be represented using only 10 



eigenvalues with 8.33% loss in energy. Nevertheless, these 10 eigenvalues include the signals 

from the road surface, cracks and noise.  

 

Figure 5: GPR measurement (a) original image, (b) sorted eigenvalues (c) clutter signal and (d) 

crack signal 

The basic idea, therefore, is to split A into the modes according to Equation 7 so that the clutter 

signal is contained in the first k eigenvalues and the crack signal is in the remaining n - k 

eigenvalues. Thus, the next task is to find the best value of k for optimal partition in terms of 

PSNR, which is calculated using Equation 8, developed by Brunzell (1999): 

PSNR = HIJKLMJ	JNJKMO	PQ	RKLRS	T1MNLU
HIJKLMJ	JNJKMO	PQ	RUVWWJK	T1MNLU

− 1                               (8) 

It is assumed that the clutter signal and the noise are independent and that the average energy 

of the clutter and noise is constant (Brunzell, 1999), whereas the energy of the target signal 



includes the crack signal, clutter signal and noise. Thus, the term “-1” is used to suppress the 

background signal from the crack signal.  

The best performance PSNR values for the entire data set were used to determine the optimised 

k-value, i.e. an average value of 2 was found. Examples for different k values are shown in 

Table 2 under PSNR(1). This shows that the highest PSNR value is at k = 2, reaching 417.6, 

and the PSNR then dramatically decays to 2.2 at k = 4 and remains approximately stable for 

the remaining k values. Therefore, it is reasonable to conclude that the first eigenvalue (also 

with the largest amplitude) represents the main component of the clutter signal. Thus, the 

cleaned GPR image Â can be then expressed by Equation 9. 

𝐀 = 𝜎1𝐮𝐢𝐯𝐢∗<
1=Z = 𝐚1<

1=Z                                              (9) 

The processed GPR images for k = 2 are shown in Figure 5 (c) for the clutter signal and in 

Figure 5 (d) for the crack signal. As can be seen, the clutter signal shows strong background 

information and constant shapes throughout its depth. In comparison, the crack signal shows a 

clear trajectory of the reflection whereas the strong clutter in Figure 5 (a) has been successfully 

removed.  

Table 2: Signal-to Noise-Ratios (SNR) of Crack and Clutter signal. 

SNR(1) is without filter and SNR(2) is with filter 

K 1 2 3 4 5 10 25 50 

PSNR(1) 11.1 417.6 31.9 2.2 3.5 0.5 2.6 3.0 

PSNR(2) 11.2 440.0 25.0 1.2 2.3 0.3 0.3 0.8 

 

4.2 Noise Reduction by 2D Median Filter 

Despite the ability of the SVD process to extract the crack signal from the background clutter, 

it was observed that the signals still contained some random noise and spikes due to a 

systematic error. Thus, a further filtering process to improve the SNR was necessary. In this 

study, the median filter method with a size of 3 was adopted due to its simplicity of structure 

and powerful ability to remove the undesired noise (Yamaguchi et al., 2008). It replaces the 

volume with the median of neighbouring pixels.  



The PSNR(2) in Table 2 gives the PSNR after it was processed by a median filter, which shows 

that the PSNR increases to 440.0 at k = 2, thereby showing an improvement compared with 

PSNR(1). This improves the second eigenvalue of S as the dominant component for the crack 

signal, which, as argued above, is the value that should be applied for road crack detection. The 

median filter has only a slightly better PSNR performance at k = 1, with an improvement of 

0.1. This confirms the observation that the PSNR of the crack signal in the original GPR image 

is not good enough for the purpose of crack detection. In addition, all PSNRs are decreased for 

all values of k > 3. This is because the dominant component of the crack signal has been filtered 

out, and all the other components only hold small portions of the crack signal. As a result, the 

median filter also enhances the noise in the GPR image, and hence the SNR values of k > 3 are 

lower than their values before applying the median filter.  

Arising from the application of these two procedures, the following points need to be 

considered prior to utilisation of GPR images for crack detection: 

• The surface of the explored area contributes most to the reflection energy recorded in a 

GPR image. This constitutes the first SVD eigenvalue. 

• The next eigenvalue of the image represents the reflection from cracks in the road. 

• All the remaining eigenvalues, in an ideal case, embody the unimportant ‘noises’, for 

example the multiple reflections from other targets and weaker reflections from smaller 

objects. 

However, the aforementioned assumptions are primarily valid in an ideal environment, while 

the road surface is not truly planar in reality. In addition, it is not only the first eigenvalue that 

is influenced by the background clutter, but the clutter influences a finite number of 

eigenvalues. This also applies to the crack detection, which is characterised by several 

eigenvalues and not only the second.  

4.3 Automatic Extraction 

Another important focus of this study was the automation process for crack identification. 

Considering the significant difference between cracked and non-cracked areas shown in Figure 

5, it is reasonable to propose that an automatic crack identification process could be achieved 

using this difference, and in particular, the PSNR values determined from a GPR image. From 

observations made over a number of GPR images, it is found that non-cracked areas have very 

low PSNR values, whereas cracked areas have far higher PSNR values. Based on this 



assumption, a sliding window has been applied to scan the GPR image pixel by pixel in the 

horizontal direction. The output is a vector that contains a number of PSNR values R = [r1, r2, 

… rn]. Applying a threshold (T) to the PSNR values (R), a decision vector D can be calculated 

using Equation 10. 

𝑟1 ≥ 𝑇
𝑟1 < 𝑇

𝑑1 = 1
𝑑1 = 0                                                       (10) 

where 𝑑1 is an element of D.  

A threshold was chosen using a ‘rule of thumb’ observation of the obtained GPR image, which 

is 30 PSNR in this case. The final stage is to filter out the components in vector D that are short 

in duration, since some noise could also give rise to high PSNR values and filtering this out 

improves the overall accuracy of detection. [An example from the experimental results is 

shown in the next section.]  

5 Experimental Results 

In this section, the experimental results of crack detection using GPR measurements are 

presented. All seven asphalt slabs were placed in a straight line to form a total of 14 cracks/gaps 

(8 cracks in asphalt pavement slabs and 6 cracks represented by gaps between slabs). The 

relative location and width of these cracks are shown in Table 3. The GroundVue 3 GPR system 

was moved at walking pace across the cracks on a trolley. The GPR measurements collected 

during this test were simultaneously transferred to a laptop for further processing.  

5.1 Effectiveness of the Post-Processing 

The original GPR image is shown in Figure 6(a) with all cracks highlighted by squares and 

numbers. Very strong background clutter is evident in the GPR image, especially close to the 

surface (between 0.1 and 0.2 metres), and some random noise is displayed at various depths 

along the image. As discussed previously, this is because the energy of the clutter is much 

higher than that from the cracks and this constitutes the major element in a GPR image. As a 

result, most of the crack trajectories are obscured, or buried within the image, and are difficult 

to observe. Only cracks 8 and 13 are very clearly discernible, as both of them are wider than 

30 mm (see Table 3). Although they are discernible, it is relatively hard to identify cracks 1, 4 

and 5, which are between 10 mm and 20 mm wide, from the image. This degree of resolution 

for the crack detection is too coarse for an effective and reliable real-world application, e.g. 

UK Pavement Management System (UKPMS, 2009 [P 15]) requires detecting cracks larger 

than 2 mm.  



 

Figure 6: GPR measurement on all cracks (a) original image and processed images of cracks (b) 

uncovered (c) covered with paper (d) covered with thin layer of asphalt (e) filled with sand. 

Cracks are coded by numbers and highlighted by squares 

For this reason, post-processing based on the SVD method to remove the background clutter 

and the application of a median filter to improve the SNR of crack signals, as described in 

Section 4, was carried out. The processed GPR images for various physical and environmental 

condition are shown in Figures 6(b-e), which show there is a significant improvement in 

identification of the crack trajectories when compared to Figure 6(a). More specifically, the 



background clutter has now been successfully removed in Figures 6(b-e) and the large cracks 

(such as 1, 4, 5, 8, and 13) can be clearly distinguished from the background. The medium 

cracks – 6, 11 and 12, which are between 5 mm and 10 mm – can now also be observed with 

minimal ambiguity, and even crack 9 (a small crack that is only 3.4 mm wide) shows a 

discernible trajectory in the image. In contrast, it appears that the small cracks 2, 7 and 10 

cannot be seen even with the proposed post-processing if one focusses on the portion of the 

image that appears in the red boxes. This would suggest that the limitation of detection 

resolution for the current system and signal processing exists at a crack width of approximately 

5 mm. This leads to the detection performance of each crack by visual inspection from both 

the raw image and processed image recorded in Table 3, and leads to the conclusion that using 

a higher sweep time to enable a better resolution of the GPR image or a multiple channel GPR 

system to operate at different frequencies might lead to an improvement in this performance.  

However, taking a broader look at the processed image in Figure 6(b) suggests that the nested 

hyperbolas that lie below the red boxes provide a further indication of the potential presence 

of cracks. Using this indicator, the cracks at points 2 and 10, when combined with the 

disturbance seen in the red boxes, might also suggest cracks in the asphalt.  This phenomenon 

is also worthy of further investigation.  

Table 3: Experimental results showing whether a crack is easily discernible (Good), difficult to 

discern (Hard) or not discernible (No)  

Crack Location (cm) Width (mm) Raw Image Processed Image 

1 24.0 14.4 Hard Good 

2 59.0 1.1 No No 

3 88.5 4.5 No Hard 

4 110.0 16.5 Hard Good 

5 136.5 10.1 Hard Good 

6 161.0 8.6 No Hard 

7 192.0 1.3 No No 

8 210.0 31.3 Good Good 

9 239.0 3.4 No Good 



10 258.0 4.2 No No 

11 265.0 5.7 No Hard 

12 294.0 7.0 No Good 

13 317.0 34.2 Good Good 

14 371.0 4.7 No Hard 

 

5.2 Automatic Detection Results 

The corresponding automatic detection results, based on the data in Figure 6, are shown in 

Figure 7, from which it can be seen that cracks 5, 8 and 9 have relatively high PSNR peaks that 

can be easily identified. In contrast, cracks 2, 6, 7 and 11 have relatively low PSNR values that 

can hardly be detected. Furthermore, it can be observed from Figure 7 (b) that after the 

background reduction using the SVD technique, the PSNR value has decreased for the small 

cracks, possibly due to the part of the crack energy at k = 1 being removed by the SVD process 

disproportionately adversely affecting the detection of small cracks.  



 

Figure 7: Automatic Crack Detection performance (a) PSNR value and (b) the binary detection 

results, where 1 and 0 represent positive and negative detection, respectively  

There are also some detection errors near crack 14 as shown in Figure 7 (b), with two small 

peaks creating ‘false positives’. This is because the asphalt between cracks 13 and 14 was not 

smooth, inducing several spikes in the PSNR value. This indicates that the roughness effects 

from the road surface play an important role in the GPR measurements, and discrete patches 

of surface roughness are themselves, of course, potential indicators of asphalt pavement 

degradation.  Assuming that the purpose of road structure condition assessment surveys is to 

identify areas of potential degradation for either further detailed investigation or treatment, 

such an anomaly ceases to be a ‘false positive’ but a positive indicator of potential degradation 

is needed. 

The developed post-processing technique was applied to the data collected under simulated 

environmental and physical conditions, described in Section 2.2, to assess the impact of 

different conditions which might occur in reality. The results are presented in Table 4.  



Covering cracks with paper reduced the PSNR values (reduced energy of the crack signal) by 

an average of 55% for eight out of the 14 cracks, while for Crack 13 the value was nine times 

larger after being covered by paper. The increased value might be attributed to the variable 

survey conditions, including changes in vertical distance between the antenna and the crack 

during the survey when there is a minor change in survey route, the speed of survey and the 

ambient temperature affecting the speed of the electromagnetic signal and the permittivity. For 

the surface covered with asphalt, there was a reduction in PSNR values for 10 cracks. However, 

for the cracks filled with sand the data was not showing any specific trend, and it was equally 

divided between increased and decreased PSNR values.  

The simulation of environmental and physical conditions did not show any specific trends in 

general and it is not possible to draw any specific conclusion. Although there were differences 

in PSNR as a result of the different physical conditions simulating reality, it should be noted 

that all PSNR values were above the threshold value and as such, those cracks which were 

correctly identified were identifiable independent of the environmental and physical of the 

cracks. This is suggesting that the developed methodology is robust and would work in 

practice. 

Table 4: Experimental results showing PSNR values for crack detection for different 

environmental and physical conditions 

C
ra

ck
 PSNR 

Uncovered Covered with paper Covered with thin 
layer of asphalt 

Filled with sand 

1 253.2 64.5 66.5 332.2 

2 0.4 0.3 -0.8 10.5 

3 429.7 28.5 18.7 189.1 

4 364.6 231.7 12.5 49.7 

5 544.9 412.5 75 1114.3 

6 54.3 27.8 10.5 89.3 

7 20.9 9.9 1.3 -0.3 

8 194 222.4 733.7 118.3 

9 388.3 397.5 664 27.8 

10 45.7 51.6 16.6 60.8 

11 27.3 7.8 0.08 0.7 

12 10.5 88.8 22.3 112.1 



13 86.9 137 143.2 348.1 

14 20.8 43.7 12.6 10.4 

 

5.3 Modelling Results 

ReflexW software was utilised to determine what the B-scan for a crack of different sizes, filled 

with air and water, would theoretically look like, using the following parameters: 

• Relative permittivity – 6 for asphalt, 1 for air, 81 for water 

• Frequency – 2 GHz 

• Sampling – Every 2 mm 

• Depth – 0.2 metres (approximately 4 ns, assuming a velocity of 0.1 m/ns) 

• Noise – Exponential fluctuations with average inhomogeneities of 0.01 metres in both 

X and Z directions, and a variance of +/- relative permittivity of 2 

All the cracks involved in the laboratory tests, listed in Table 3, were simulated. The results of 

this modelling are presented in Figure 8, which confirms the experimental findings that only 

cracks larger than 5 mm are detectable with confidence using the utilised GPR system. 

Furthermore, the modelling shows that the water-filled cracks are more accentuated than the 

air-filled cracks, as expected considering the huge contrast in relative permittivity, i.e. 81 for 

water compared to 1 for air. However, there is a relatively small change in responses from any 

cracks less than 4 mm in width. It seems that the utilised 2 GHz antenna can identify cracks 

larger than 4 mm in width with the presence of water; however, cracks larger than 5 mm in 

width are identifiable for both air and water. 

 



 

Figure 8: ReflexW software modelling results along the profile for cracks filled with air and 

water, identifiable cracks are highlighted 

 

6 Potential Application to Practice 

It is evident that, combining visual scrutiny of the processed GPR image and the automatic 

crack detection plots, only two cracks remained undetectable (these being cracks of 1.3 mm 

and 1.1 mm width), and one of these was shown to exhibit nested hyperbolas towards the base 

of the processed GPR image which might provide a weak indicator of cracking and worthy of 

Air-filled 

 
 

 
 

Water-filled 

 

 

Distance (m) 

Distance (m) 

Crack            1                                       2                          3                               4                          5                           6                            7               8 

Crack 8                            9                10                         11           12                    13                                                        14            

Crack              1                                     2                              3                      4                         5                          6                                7               8               

Distance (m) 

Crack   8                           9                  10                    11            12                     13                                                        14            



marking as a ‘watch’ if no immediate detailed surveying is planned, or a point for further 

detailed investigation if it is. Despite improving most ‘crack signals’ using the adopted post-

processing methods, it was also observed that the energy of signals related to small cracks 

appeared to be reduced after this process. Future work should therefore include further 

investigation of the background reduction technique such that it enhances (relative to other 

contributions to the GPR signal) rather than diminishes the energy of small cracks. For 

instance, a more robust approach can be achieved by considering the PSNR data as a time 

series, which can be processed with algorithms such as the peak detection or change point 

detection techniques (Aminikhanghahi et al., 2018). The study reported in here focussed on 

small scale samples, with a high degree of control on the size of the cracks and also the 

repeatability. Future work should expand the demonstration of the system to different types of 

cracks and to test the developed algorithm on a larger data set and in collaboration with 

practitioners to evaluate the influence of the survey methodology which is currently used in 

practice. 

Nevertheless, the findings provide encouragement for the application of GPR, alongside other 

survey techniques, e.g. laser scanning, infrared thermography (Plati et al., 2014; Li et al., 2018; 

Li et al., 2019), on a robotic cart that could be deployed overnight on cordoned of lengths of 

road as part of a minimally-disruptive programme of routine surveying. The results, when post-

processed and examined by the surveyor, and combined with local knowledge (those 

responsible for road maintenance often have an understanding of where potential problems 

might occur, perhaps backed up by reports from the public), would therefore be of value in 

informing subsequent maintenance decisions: no further action before the next routine survey, 

further detailed surveying or planned maintenance activity to repair the surface. Taking this 

argument further, the further detailed surveying and/or maintenance activity could itself be 

conducted using drones or surface mounted robots at times when disruption to traffic is 

minimal (e.g. overnight) (Richardson et al., 2017; Self-Repairing Cities, 2019). 

7 Conclusions 

This paper presents an experimental study of the use of a GPR system for road crack detection. 

In contrast to previous studies (Ahmad et al., 2011; Ahmad et al., 2012; Pennock and Jenks, 

2014), the results have shown that using a commercial GPR system combined with novel 

processing techniques, cracks in asphalt pavements can be detected with confidence, and 

considerably better resolution in terms of the crack width. Experiments were carried out using 



a GroundVue 3 GPR system with a 2 GHz antenna on seven asphalt slabs containing 14 cracks 

and simulated cracks, giving a total length of around 3.5 m. A Singular Value Decomposition 

method was applied to the resulting data to remove the strong background clutter in the GPR 

image, followed by a median filter to remove the random noise. The experimental results 

indicate that the first eigenvalue of a GPR image relates to the background clutter, while the 

second eigenvalue can be used as the ‘crack signal’, i.e. can be used to identify vertical cracking 

in the asphalt pavement.  

The paper demonstrates that the processed GPR image enables far better visual crack detection 

irrespective of the simulated conditions (cracks filled with sand to simulate debris and dust, 

cracks covered with paper to simulate leaves on the road and cracks covered with a layer of 

asphalt to simulate those cracks which have not penetrated to the surface) than is possible from 

using the raw GPR image. It also demonstrates that the automatic detection method provides 

significant additional clarity. Together they therefore have shown a considerable enhancement 

in the confidence in the use of GPR for this application, contrary to previous experience. In the 

3.5 m long experimental section, only one ‘false positive’ reading, attributed to the effect of 

surface roughness, was obtained and this in itself points to road surface degradation worthy of 

future investigation. Combining visual scrutiny of the processed GPR image and the automatic 

crack detection plots, only two narrow cracks (of 1.1-1.3 mm in width) remained completely 

undetectable, and one of these exhibited nested hyperbolas on the processed GPR image 

providing a weak indicator of cracking. The detected cracks were shown to be detectable 

irrespective of the physical conditions simulated, suggesting that the developed methodology 

is robust for use in practice. The findings provide encouragement to those seeking to apply 

GPR, alongside other survey techniques, for example those being researched for use on a 

robotic cart that could be deployed for minimally-disruptive overnight surveying. Combining 

the results with local knowledge would help to inform subsequent maintenance decisions and 

maintenance operations, which might themselves be effected using robotic means. 

It was noted that although the post-processing methods improved most ‘crack signals’, the 

energy of signals related to small cracks appeared to be reduced. Further work to mitigate or 

reverse this effect is therefore warranted.  

8 Data Availability 

Some or all data, models, or code that support the findings of this study are available from the 

corresponding author upon reasonable request. 
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