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&Molecular Electronics

Single-Molecule Conductance Studies of Organometallic
Complexes Bearing 3-Thienyl Contacting Groups

Sçren Bock,[a] Oday A. Al-Owaedi,[b, c] Samantha G. Eaves,[a, d] David C. Milan,[e]

Mario Lemmer,[f] Brian W. Skelton,[a, g] Henrry M. Osorio,[h, i, j] Richard J. Nichols,[e]

Simon J. Higgins,[e] Pilar Cea,[h, i] Nicholas J. Long,[f] Tim Albrecht,[f] Santiago Mart&n,*[h, k]

Colin J. Lambert,*[b] and Paul J. Low*[a]

Abstract: The compounds and complexes 1,4-C6H4(C/C-

cyclo-3-C4H3S)2 (2), trans-[Pt(C/C-cyclo-3-C4H3S)2(PEt3)2] (3),

trans-[Ru(C/C-cyclo-3-C4H3S)2(dppe)2] (4 ; dppe = 1,2-bis(di-
phenylphosphino)ethane) and trans-[Ru(C/C-cyclo-3-
C4H3S)2{P(OEt)3}4] (5) featuring the 3-thienyl moiety as a sur-
face contacting group for gold electrodes have been pre-

pared, crystallographically characterised in the case of 3–5
and studied in metal jmolecule jmetal junctions by using

both scanning tunnelling microscope break-junction (STM-
BJ) and STM-I(s) methods (measuring the tunnelling current
(I) as a function of distance (s)). The compounds exhibit simi-

lar conductance profiles, with a low conductance feature

being more readily identified by STM-I(s) methods, and

a higher feature by the STM-BJ method. The lower conduc-
tance feature was further characterised by analysis using an

unsupervised, automated multi-parameter vector classifica-
tion (MPVC) of the conductance traces. The combination of

similarly structured HOMOs and non-resonant tunnelling
mechanism accounts for the remarkably similar conductance

values across the chemically distinct members of the family

2–5.

Introduction

The development of a range of complementary and relatively
facile methods for the measurement of the electrical properties

of single molecules has seen a renaissance in the field of mo-
lecular electronics.[1–4] The continued progress of the area from
fundamental science towards technology now rests on

a number of key issues,[5] among which are the reliable con-
tacting of molecules within a junction,[6, 7] the reduction in elec-

tronic variation between individual junctions[1, 8–12] and the opti-
misation of the transport properties of these junctions.[13–16] To

these ends, considerable effort is being made to explore the
effects of the electrode–molecule contact groups and structure
of the contact,[17–20] the potential applications of non-metallic
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electrodes to create an “all-carbon” molecular electronic device
platform,[21] as well as the backbone structure of the molecular

component on the electrical properties of the junction.[22–24]

Although the majority of single-molecule and thin-film junc-

tions studied to date have been based on organic molecules,
such as alkanes,[25, 26] oligo(arylene)ethynylenes[27–29] and poly-
ynes,[30–33] metal complexes have also been recognised as po-
tential components in a future molecular electronics technolo-
gy.[34–38] Metal complexes offer a range of potential advantages
over structurally and electronically simpler organic molecules,
including redox activity and a wider range of readily accessible
and systematically variable spin-states and magnetic proper-
ties,[39–42] diversity of molecular structure and potential

for modular construction through in situ or “on surface” coor-
dination chemistry,[43–46] better alignment of the frontier molec-

ular orbitals with the Fermi level of the (usually metallic) junc-

tion electrodes,[8, 47–50] as well as high thermoelectric efficien-
cy.[51]

In some earlier studies of organometallic complexes in mo-
lecular electronics, the complex trans-[Pt(C/CC6H4SAc)2(PPh3)2]

was assembled within a mechanically controlled break-junction
(MCBJ) based molecular junction. From the resulting I/V

curves, collected over a bias range of :5 V, a resistance of 5–

50 GW (i.e. , G = 0.2–0.02 nS; 20–2 V 10@6 G0) was estimated at
the extremes of the bias range, some three orders of magni-

tude less conductive than similarly contacted organic oligoaryl-
ene systems.[52] This “insulating” behaviour, even under such

a high applied bias, was ascribed to the largely s-type Pt@
C(sp) bonds in the C/C@Pt@C/C backbone, although it is clear

that at this bias voltage, the conductance mechanism is likely

to be field emission rather than tunnelling.[53] In contrast,
a later study with a family of complexes of type trans-[Pt(C/
CC6H4SAc)2(L)2] (L = PCy3, PPh3, P(OEt)3) in crossed-wire junc-
tions at more modest bias (up to 1 V) revealed a two- to three-

fold higher conductance than 1,4-(4-AcSC6H4C/C)2C6H4, which
was ascribed to the shorter sulfur–sulfur distance in the metal
complexes.[54]

In seeking to enhance the wire-like response, significant at-
tention was turned to ruthenium bis(alkynyl) complexes, which
are generally thought to offer more significant d–p orbital
mixing in the occupied frontier molecular orbitals.[9, 34, 50, 55–57]

The thioacetate complex trans-[Ru(C/CC6H4SAc-4)2(dppm)2]
(dppm = 1,1-bis(diphenylphosphino)methane) has been assem-

bled into monolayers and studied within a scanning tunnelling
microscope break junction (STM-BJ), with a comparison made
to the oligo(phenyleneethynylene) (OPE) compound 1,4-(4-
AcSC6H4C/C)2C6H4 as a benchmark. Extrapolation to single-mol-
ecule conductances gave values of 19:7 nS (ca. 2.5 V 10@4 G0)

for the ruthenium complex and 3.6:2.0 nS (ca. 4.6 V 10@5 G0)
for the OPE. The higher conductance has been attributed to

both the shorter molecular length and the extensive Ru(d)@C/
C(p) mixing in the metal complex.[56] These concepts have
been extended to other examples of organometallic wires

based on group 8 metal centres and the trans-bis(alkynyl)
motif, with topics of interest including the exploration of sur-

face contacting groups,[9, 50] the inclusion of multiple metal cen-
tres along the molecular back-bone[35, 47, 57] and electronic func-

tion beyond that of a simple wire, such as charge storage and
gated transistor-like response.[41, 58]

One particular advantage of organometallic complexes
within the field of molecular electronics lies in the ability to

systematically alter the molecular structures of these systems
with a fair degree of synthetic ease, which permits a modular

approach to molecular designs and a systematic search for
structure–property relationships. In seeking to further explore

the electrical properties of oligophenyleneethynylene (OPE),

and trans-bis(alkynyl) complexes of platinum and ruthenium,
we have turned to such a systematic study here. Here, the 3-

thienyl moiety,[59–61] which is readily introduced into both or-
ganic and organometallic structures, is used as a contacting

group for the ready attachment of organic, ruthenium and
platinum-based organometallic complexes within Au jmole-

cule jAu junctions and electrical characterisation by using both

the I(s)[62] (measuring the tunnelling current (I) as a function of
distance (s)) and STM-BJ[63] methods. The conductance results

are interpreted with the aid of DFT level calculations and junc-
tion simulations.

Results and Discussion

Synthesis and characterisation

The parent alkyne 3-ethynyl thiophene (HC/C-cyclo-3-C4H3S, 1)
was obtained from the Sonogashira cross-coupling of 3-bro-

mothiophene with trimethylsilylacetylene and subsequent de-
protection.[59] Further cross-coupling of 1 with 1,4-diiodoben-

zene gave 1,4-C6H4(C/C-cyclo-3-C4H3S)2 (2 ; Scheme 1).[59] The

metal complex trans-[Pt(C/C-cyclo-3-C4H3S)2(PEt3)2] (3) was pre-
pared from the CuI-catalysed reaction of 1 and [PtCl2(PEt3)2] in

NEt3,[64] whilst trans-[Ru(C/C-cyclo-3-C4H3S)2(dppe)2] (4 ; dppe =

1,2-bis(diphenylphosphino)ethane) was obtained from the

one-pot reaction of [RuCl(dppe)2]OTf with 1, in the presence of
either KOtBu or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and
TlBF4.[65] Complexes of the general form trans-[Ru(C/
CR)2{P(OEt3)3}4] have been prepared in moderate yield from re-
action of trans-[RuCl2{P(OEt)3}4] with an excess of LiC/CR.[66]

The complex trans-[Ru(C/C-cyclo-3-C4H3S)2{P(OEt)3}4] (5) was
obtained here simply by allowing the reaction of trans-
[RuCl2{P(OEt)3}4][67] with 1, KPF6 and NHiPr2 in ethanol to pro-
ceed for 12 days at room temperature, with isolation of the de-

sired compound being achieved by precipitation from metha-
nol. The long reaction time was compensated by the simple re-
action conditions and work-up, compatibility with alkynes sub-
stituted with sensitive functional groups and improved yields.
The compounds were each characterised by the usual array of
1H, 13C{1H} and, in the case of 2–5, 31P{1H} NMR spectroscopies,
mass spectrometry and elemental analysis.

Molecular structures

Single crystals of 3, 4 and 5 suitable for X-ray diffraction were
obtained by recrystallisation by slow diffusion of hexanes (3, 4)

or EtOH (5) into CH2Cl2 solutions of the complexes. Plots of the
molecules showing the atom labelling schemes are given in
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Figures 1, Figures 2 and Figures 3 and the important bond
lengths and angles are summarised in the relevant figure cap-

tions.
In the crystal, 3 is situated on a crystallographic inversion

centre. The platinum atom shows the expected square-planar
geometry with trans-disposed alkynyl and phosphine ligands.

The Pt(1)@P(1) (2.3022(5) a), Pt(1)@C(1) (2.007(2) a) and C(1)@
C(2) (1.185(3) a) are all within the usual range of values for
complexes of this type,[68] and display little variation of signifi-

cance with the electronic character of the alkynyl substituent.
In the crystal, the P(1)-Pt(1)-C(21)-C(22) torsion angle (136.68,

@43.48) prevents any significant extended conjugation through
the molecule.

The general structural features of trans-[Ru(C/CR)2(dppe)2]

complexes have been summarised recently,[65] and compound

4 offers some points worthy of brief comment. The structure is

composed of two independent molecules, both of which are
situated on crystallographic inversion centres and which differ

in the orientation of the thiophene group. The dihedral angles
between the thiophene plane and the plane containing the Ru

and C(n1) atoms and the midpoints of the two ligand P atoms
are 3.48 for molecule 1, and 96.3 and 77.88 for the two compo-

Scheme 1. The preparation of compounds 2–5.

Figure 1. A plot of a molecule of trans-[Pt(C/C-cyclo-3-C4H3S)2(PEt3)2] (3) (el-
lipsoids drawn at the 50 % probability level) showing the atom labelling
scheme. Bond lengths [a]: Pt(1)@P(1) 2.3022(5); Pt(1)@C(1) 2.007(2) ; C(1)@C(2)
1.185(3) ; C(2)@C(21) 1.452(3) ; C(21)@C(22) 1.373(3) ; C(22)@S(23) 1.705(3) ;
S(23)@C(24) 1.682(3) ; C(24)@C(25) 1.393(3) ; C(21)@C(25) 1.428(3). Bond angles
[8]: P(1)-Pt(1)-C(1) 88.32(6), 91.68(6) ; Pt(1)-C(1)-C(2) 177.83(19); C(1)-C(2)-C(21)
177.3(2).

Figure 2. A plot of one molecule of trans-[Ru(C/C-cyclo-3-C4H3S)2(dppe)2] (4)
(ellipsoids drawn at the 50 % probability level) showing the atom labelling
scheme. Bond lengths (molecule 1, a): Ru(1)@P(1) 2.3539(5); Ru(1)@P(2)
2.3602(5); Ru(1)@C(11) 2.0611(19); C(11)@C(12) 1.218(3) ; C(12)@C(13) 1.433(3) ;
C(13)@C(14) 1.373(3) ; C(14)@S(15) 1.709(3) ; S(15)@C(16) 1.709(3) ; C(16)@C(17)
1.364(3) ; C(13)@C(17) 1.448(3). Bond angles (molecule 1, 8): P(1)-Ru(1)-P(2)
82.90(2), 97.10(2) ; P(1)-Ru(1)-C(11) 94.38(5), 85.62; P(2)-Ru(1)-C(11) 97.28(5),
82.72(5) ; Ru(1)-C(11)-C(12) 176.2(2); C(11)-C(12)-C(13) 176.1(2). Bond lengths
(molecule 2, a): Ru(2)@P(3) 2.3464(4); Ru(2)@P(4) 2.3586(4) ; Ru(2)@C(21)
2.0626(18); C(21)@C(22) 1.217(3) ; C(22)@C(23) 1.431(3); C(23)@C(24)
1.389(10); C(24)@S(25) 1.715(10); S(25)@C(26) 1.673(8) ; C(26)@C(27) 1.352(12);
C(23)@C(27) 1.411(10). Bond angles (molecule 2, 8): P(3)-Ru(2)-P(4) 97.86(2),
82.14(2) ; P(3)-Ru(2)-C(21) 96.61(5), 83.39(5); P(4)-Ru(1)-C(21) 84.93(5),
95.07(5) ; Ru(2)-C(21)-C(22) 177.3(2) ; C(21)-C(22)-C(23) 176.0(2).
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nents of the disordered thiophene of molecule 2. Therefore, at

least in the crystal, molecules 1 and 2 of 4 are rare examples of

such bis(arylacetylide) complexes trans-[Ru(C/CR)2(dppe)2] in
which the aromatic rings sit close to the “privileged” orienta-

tions that allow maximum d–p conjugation along the molecu-
lar backbone, and the first in which both conformational iso-

mers are observed for the same chemical compound. The com-
parable bond lengths within the two molecules are essentially

indistinguishable, with the possible exception of the most pre-

cisely determined Ru@P bond lengths, which appear to be
marginally shorter in molecule 2.

Although the mixed ligand vinylidene–acetylide complex
[Ru(C/CPh){C=C(Me)Ph}{P(OEt)3}4][CF3SO3] has been structurally

characterised,[66] compound 5 appears to be the first structural-
ly characterised bis(acetylide) derivative of Ru(C/CR)2{P(OR)3}4.
In the crystal, the tetrakis(triethylphosphite) derivative 5 is situ-

ated on a crystallographic (4 axis so that there is only one
unique phosphite group. The dihedral angle between the two
thiophene groups (which are disordered about the crystallo-
graphic twofold axis) is therefore 908. The Ru@P (2.3149(3) a)

and Ru@C(1) (2.0592(15) a) distances in 5 are shorter than in
the mixed vinylidene–acetylide derivative (Ru@P 2.341(3)–

2.350(2) a; Ru@C 2.114(8) a) reflecting the increased electron

density at Ru in 5 and increased Ru@P and Ru@C back bond-
ing. Although back-bonding plays only a modest role in the

bonding of metal–alkynyl complexes,[69] the notion is also sup-
ported by the trends in C/C bond lengths in 5 (1.221(2) a) and

the cation [Ru(C/CPh){C=C(Me)Ph}{P(OEt)3}4]+ (1.209(11) a).
Overall, with the clear exception of the phosphine and phos-

phite ligands, there are few if any substantive differences in

the structures of 4 and 5.

Single-molecule conductance: STM-BJ and I(s)

Single-molecule conductance measurements were carried out
by using substrates with a low surface coverage of the mole-

cules of interest on gold substrates. Low surface coverage was
chosen to minimise the formation of multi-molecule junctions

and promote formation of single-molecule events. Adsorption
of 2–5 at low surface coverage was achieved by immersion of

a gold-on-glass substrate in CHCl3 solutions of the analyte
(1 mm) for about 80 s. After adsorption, the samples were

washed in ethanol and then blown dry in a stream of nitrogen.
All in situ I(s) and STM-BJ measurements were conducted in
mesitylene, a non-polar solvent commonly used in STM-based

single-molecule electrical measurements because of its high
boiling point and relatively low vapour pressure. For a given

set-point current and bias voltage, typically 6000–7000 events
were observed in both the STM-BJ and I(s) experiments.

Taking compound 2 as a representative example, without
any data selection, it is rather difficult to assign a conductance

value to the data (Figure 4). Possible reasons for this include

a low junction formation probability and short plateau fea-
tures. The one-dimensional (1D) conductance histogram of the

whole data set shows only a faint shoulder, that is, a conduc-
tance peak partially obscured by the exponential background

(Figure 4, left). Matching the peak, a faint plateau feature can

be seen in the 2D conductance histogram (Figure 4, right), but
there is a need for data selection for this system to increase

signal-to-noise ratio of the data.
Data selection can be made manually, by using a rational cri-

terion, for example by selecting traces with a current plateau
that exceeds 0.1 nm in length, and disregarding those without.

However, as manual data selection can never be fully objective,

it is of interest to compare the results against an automated
data selection approach. Here, the unsupervised, automated

multi-parameter vector classification (MPVC) has been adopted
to verify the conclusions reached from the manually sorted

data.[70] By way of example, the data for molecule 2 are ana-
lysed in more detail in the following paragraphs, which com-

pare the results of manual and automated data selection

methods.
For the MPVC, an exponentially decaying current–distance

trace was created as a reference vector, R (I0 = 30 nA, b=

0.5 a@1). Three vector properties (classifiers) were then calculat-

ed for each I(s) trace with respect to the reference:

Figure 3. A plot of a molecule (ellipsoids drawn at the 30 % probability level)
of trans-[Ru(C/C-cyclo-3-C4H3S)2{P(OEt)3}4] (5) showing the atom labelling
scheme. Bond lengths [a]: P(1)@Ru(1) 2.3149(3) ; Ru(1)@C(1) 2.0592(15); C(1)@
C(2) 1.221(2) ; C(2)@C(21) 1.421(2) ; C(21)@C(22) 1.36(2) ; C(22)@S(23) 1.599(12) ;
S(23)@C(24) 1.741(7) ; C(24)@C(25) 1.480(11) ; C(25)@C(21) 1.45(2). Bond angles
[8]: P(1)-Ru(1)-P(1) 90.338(2), 171.19(2); P(1)-Ru(1)-C(1) 94.40(1), 85.60(1) ;
Ru(1)-C(1)-C(2) 180; C(1)-C(2)-C(21) 180.

Figure 4. All data 1D (left) and log 2D (right) conductance histograms com-
posed from I(s) data from 2. Note the 2D histogram is plotted against units
of 10@4 G0.
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1) DX : the length of the distance vector, Y, between reference
and I(s) trace;

2) q : the angle, between R and @Y;
3) hr : the reduced Hamming distance, with hr being the

number of component changes to transform the reduced
distance vector, Y, into the reduced reference vector, R. In

this context, “reduced” means that every vector element is
divided by its absolute value, so that the resulting vector

consists only of 1, 0 and @1.

The whole data set, consisting of 3838 I(s) traces is thus

transformed into 3838 vectors in three-dimensional space (see
cylinder plots in the Supporting Information). Here, similar

traces, for example, traces with plateaus, are in close proximity
to each other. Plain exponential and plateau-containing traces

are expected to form distinct clusters in this representation
and fuzzy c-means clustering (FCM) was then used to assign
the cluster membership.[71, 72] Note that the total number of

clusters k was selected to be two in this case, to account for
plain exponential decays and molecular events, but can be

chosen to be a higher number if any cluster consists of sub-
clusters (e.g. , to account for a variety of different junction geo-

metries).

During FCM, 217 (5.65 %) I(s) traces were assigned to clus-
ter 1, containing predominantly exponential decays with pla-

teaus (“molecular events”, Figure 5). Cluster 2 contains the re-
maining, predominantly plain exponential traces (3621,

94.35 %; Figure 6). By manual data selection 459 (11.96 %)
traces were selected as plateau-containing (Figure 7).

The results of the unsupervised algorithm approach show
excellent agreement with the data selected on the basis of the
0.1 nm plateau length criterion described above in terms of
conductances, but with understandable differences in terms of
number of selected traces. With respect to the latter, some 81

(37.3 %) of the plateau traces in cluster 1 were also marked as
plateau-containing during the hand-sorting process. Also,
17.6 % of the manually selected traces were found by the clus-
tering algorithm. The traces found both by MPVC and hand se-
lection are predominantly long plateaus around the most

probable conductance value. In addition, 135 traces were in-
cluded by the MPVC algorithm but not by hand sorting. These

traces contained plateaus at various conductance values or un-
conventional features, meaning deviations from the plain ex-

ponential decay other than plateaus. These can possibly origi-
nate from different molecular processes during junction forma-

tion (or rupture) or noise features. In contrast, some 377 traces
were only marked as plateau-containing during hand selection

and not by MPVC. Mostly, those were traces with very short

plateau features, or longer plateaus in exponential traces with
large decay coefficients. Such features can arise from changes

in the molecular junction geometry during the tip retraction
process.

After MPVC analysis, cluster 1 exhibits a conductance peak
around 0.41 V 10@4 G0 (Figure 5). Hand sorting gives a most

probable conductance of 0.42 V 10@4 G0 (Figure 7). This indi-
cates that although there are differences in the curve selection
between hand sorting and automated sorting, the most proba-

ble conductance of both data selection methods shows excel-
lent agreement.

While the non-contact I(s) technique favours low conduc-
tance groups,[1] the STM-BJ method generally leads to a greater

propensity of higher conductance values. These differences

can be explained in terms of the way in which the junctions
are formed in both methods. In the I(s) method, the (typically

gold) STM tip is brought into close proximity of the surface to
encourage molecular junction formation, but without any ini-

tial contact between the STM tip and substrate. In contrast, in
the STM-BJ technique, the STM tip is fused (or crashed) into

Figure 5. 1D (left) and log 2D (right) conductance histograms of cluster 1,
containing predominantly I(s) traces from 2 with plateaus as found by
MPVC. These are assigned to “molecular events” (see main text).

Figure 6. 1D (left) and log 2D (right) conductance histograms of cluster 2,
containing predominantly plain exponential traces from 2 without plateaus
as found by MPVC. These are assigned to I(s) traces without molecular junc-
tion formation.

Figure 7. 1D (left) and log 2D (right) conductance histograms generated by
manual selection of data from 2. Note that the 2D histogram is plotted
against units of 10@4 G0.
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the substrate and withdrawn to give a metallic filament be-
tween the tip and the substrate. Molecular junctions form im-

mediately after the Au–Au point contact breaks.[1] The rough
or fractal nature of these cleaved gold contact junctions often

leads to a variety of conductance features in STM-BJ-based
metal jmolecule jmetal junctions formed from common an-

choring groups such as thiol,[1, 73] carboxylic acid[74] or pyri-
dine[75] where in each case more than one single molecule con-
ductance value has been reported, and attributed to differing

contact morphologies between the contacting groups and the
gold electrode(s).

Data recorded by using the STM-BJ technique for compound
2 at Utip = 0.6 V are summarized in Figure 8. As shown, the con-

ductance profile from these STM-BJ data for 2 shows only one
conductance group (labelled H, for high conductance group).

Its most probable conductance ((2.83:0.65) V 10@4 G0, Table 1)

is in good agreement with that reported by van der Zant et al.
by using the mechanically controlled break-junction (MCBJ)

technique (4 V 10@4 G0).[59]

As shown in Figure 8 and Table 1, distinct conductance

groups were also obtained for the metal complexes 3–5 by
using the I(s) (L group, for low conductance group) and the

STM-BJ (H group) method. Interestingly, the compounds 2–5
conductance values differ by a factor of about two for the L
group, whereas this factor is lower for the H group (Table 1).

This demonstrates that the central moiety [C6H4 vs. [Pt(PEt3)2]
vs. [Ru(dppe)2] vs. [Ru{P(OEt)3}4]) does not exert a great influ-

ence on the conductance of these organometallic complexes
within these 3-thienyl contacted Au jmolecule jAu junctions.

Quantum chemical modelling

In the quest to better understand the conductance behaviour,
the electronic properties of the molecules and electrical behav-

iour of the junctions have been investigated by using DFT-
based methods. Initial studies of the electronic structures of 2–

5 were carried out at the B3LYP level of theory[76] with the
LANL2DZ basis set used for metal atoms (Ru, Pt)[77] and the 6-
31G**[78] basis set for all other atoms to explore the influence

of the central fragment (C6H4 (2), [Pt(PEt3)2] (3), [Ru(dppe)2] (4),
[Ru{P(OEt)3}4] (5)) on the distribution and composition of the

frontier molecular orbitals. Plots of the HOMOs are given in
Figure 9, and plots of the LUMOs are given in the Supporting

Information.

The organic compound 2 again provides a convenient point
to commence discussion and a basis for comparison of the

metal complexes 3–5. Unsurprisingly, the lowest energy struc-
ture features a co-planar arrangement of the thienyl and 1,4-

phenylene rings, with the frontier orbitals distributed almost
evenly across the molecular backbone, making a linear, p-type

conjugated pathway between the two sulfur atoms. For the
platinum complex 3, the lowest energy identified minimum

Figure 8. Conductance histograms built by adding all conductance traces
(ca. 550) that showed discernible plateaus (with a current plateau that ex-
ceeds 0.1 nm in length) as those displayed in the inset of the figures by
using either the STM-BJ (left side) or the I(s) method (right side). H = high
conductance group. L = low conductance group. a) Compound 2, b) com-
pound 3, c) compound 4, and d) compound 5. Conductance data are refer-
enced to the conductance quantum G0 = 2e2 h@1 = 77.5 mS. Utip = 0.6 V.

Table 1. Single-molecule conductance data for compounds 2–5.

Low conductance (L)[a] [G0] High conductance (H)[b] [G0] Break-off distance [nm] Calculated
(crystallographic) S···S distance [nm]

2 (0.42:0.10) V 10@4 (2.83:0.65) V 10@4 1.70:0.28 1.60
3 (0.77:0.14) V 10@4 (2.70:0.66) V 10@4 1.85:0.24 1.43 (1.42)
4 (1.03:0.28) V 10@4 (3.18:1.04) V 10@4 1.90:0.24 1.45 (1.44)
5 (0.98:0.14) V 10@4 (3.12:0.58) V 10@4 1.90:0.24 1.45 (1.43)

[a] I(s) method. [b] STM-BJ method.
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featured the thienyl moieties lying perpendicular to the square

plane defining the coordination geometry at the metal centre
(perp-3). However, a second minimum, barely 0.8 kcal mol@1

higher in energy, in which the thienyl moieties lie in the same

plane as the metal coordination sphere (planar-3) was also
identified. Again, the HOMOs of these complexes are p-type

and delocalized over the molecular backbone, and feature
a small but important metal contribution (perp-3, 10 % Pt;

planar-3, 19 % Pt). The LUMOs are more metal in character
(perp-3, 42 %; planar-3, 28 %) and rather delocalized in the case

of planar-3.

The ruthenium complexes 4 and 5 offer HOMOs that are
similarly structured to those described for 2 and offer only

marginally more metal character than planar-3 (4, 33 % Ru; 5,
24 % Ru). The LUMO of 4 is largely of metal/dppe character, in

the case of the phosphite analogue 5 the LUMO is thienyl–p*
in character, with the unoccupied metal orbital lying slightly

(ca. 0.04 eV) higher in energy.

To provide further insight into the experimentally observed
trends, and to better evaluate the properties and behaviour of

these molecular junctions, calculations using a combination of
DFT (the SIESTA code)[79] and a non-equilibrium Green’s func-

tion formalism were also carried out. For the transport calcula-
tions, eight layers of (111)-oriented bulk gold with each layer

consisting of 6 V 6 atoms and a layer spacing of 0.235 nm were
used to create the molecular junctions as shown in Figure 6,
and described in detail elsewhere.[80] These layers were then

further repeated to yield infinitely long current-carrying gold
electrodes. Each molecule was attached to two (111) directed

pyramidal gold electrodes. The molecules and first layers of
gold atoms within each electrode were then allowed to relax

again, to yield the optimal junction geometries shown in

Figure 10. From these model junctions, the transmission coeffi-
cient, T(E), was calculated by using the GOLLUM code.[80]

A key factor governing the conductance of a molecular junc-
tion is the position of the Fermi level of a metal electrode with

respect to the molecular HOMO and LUMO levels. In turn, this
energy alignment is sensitive to not only the chemical nature

of the contacting groups that bind the molecule to the elec-

trode, but also the precise configuration of the metal elec-
trode–molecule contact.[15, 81] However, it is well known that

the Fermi energy predicted by DFT (EF
DFT) is often not reli-

able,[33] and as such the room-temperature electrical conduc-
tance G was computed for a range of Fermi energies EF. The

calculated conductances G are plotted as functions of EF@EF
DFT

in Figure 11, which reveal similar conductance values over

a wide range of Fermi energies, between @0.4 eV to + 0.4 eV
relative to the DFT-predicted value. The predicted conductance

Figure 9. The isosurfaces (:0.04 (e bohr@3)1/2) of the HOMOs for: a) 2, b) perp-3, c) planar-3, d) 4, and e) 5.

Figure 10. Relaxed geometries of molecular junctions of 2–5.
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values of all molecules were compared with the experimental
values and a single common value of EF was chosen, which

gave the closest overall agreement. This yielded a small correc-
tion of EF@EF

DFT =@0.075 eV, which has been used in all of the

theoretical results described below. Thygesen and colleagues
have discussed similar situations for C60-contacted molecular

wires, and have shown that critical molecular orbitals can

become pinned close to the Fermi level owing to partial
charge transfer, leading to good quantitative agreement be-

tween calculated and experimentally determined conduc-
tance.[82]

The experimental data, now interpreted with the aid of
Figure 11, indicates that in all cases the Fermi level lies close to

the centre of the HOMO–LUMO gap, but shifted slightly to-

wards the HOMO resonance, and therefore a HOMO-mediated
hole tunnelling mechanism is anticipated in each case.[47–50, 83, 84]

However, in contrast to the studies of Wang,[56] Rigaut[57] and
Mayor[52] with organic, ruthenium and platinum bis(alkynyl)

compounds and complexes contacted into molecular junctions
by thiolate groups, conductance values only differing by
a factor of &2 are obtained across the thienyl-contacted series

2–5. This lack of variation occurs because although the HOMO
and LUMO transport resonances differ significantly between
molecules 2–5, transport in the vicinity of the middle of the
HOMO–LUMO gap is similar for all molecules (Figure 11).

To further explore the reasons for the small differences in
conductance across the series, the nature of the molecule–

gold contact was also examined. Table 2 summarises the mole-

cule–gold interaction in terms of the number of valence elec-

trons (QI) associated with the molecule, the number calculated
on the molecule in the junction (QMG) and hence the number

of electrons associated with the thienyl SAu contacts (G) (or
“bonds”) based on calculated Mulliken charges. Mulliken charg-

es are basis-set-dependent mathematical constructions and
therefore only approximately coincide with the physical charge

on a molecule. However, it is clear from the data in Table 2
that the value of G, and the nature of the contact, is only

weakly dependent on the nature of the backbone and auxiliary

ligands in 2–5. Overall, the molecular conductances of these
molecules are similar, with minor variations arising through

convolution of the strength of the S!Au bond, and the posi-
tion of the tail of the HOMO resonance relative to the Fermi

level of the electrodes (Table 2).

Conclusions

The family of 3-thienylethynyl contacted compounds 1,4-

C6H4(C/C-cyclo-3-C4H3S)2 (2), trans-[Pt(C/C-cyclo-3-
C4H3S)2(PEt3)2] (3), trans-[Ru(C/C-cyclo-3-C4H3S)2(dppe)2] (4) and

trans-[Ru(C/C-cyclo-3-C4H3S)2{P(OEt)3}4] (5) have been prepared

and studied in metal jmolecule jmetal junctions by using both
STM-I(s) and STM-BJ methods. The compounds 2–5 each dis-

play two conductance values that differ by a factor of &2
within the following range of conductance values: (0.44:
0.10–1.03:0.28) V 10@4 G0 (low conductance group) and
(2.70:0.66–3.18:1.04) V 10@4 G0 (high conductance group).

The MPVC method has been applied to verify the lowest con-
ductance group in an algorithmically definable fashion. For the

3-thienyl contact employed here, the conductance values ob-

tained by using MPVC and manual data selection were very
similar, although there were some differences between the cur-

rent–distance data sets assigned by each method. The MPVC
method, which allows reproducible and objective analysis of

conductance features close to the limit of the current amplifier,
is therefore a promising avenue for the further exploration of

low conductance features. In addition, with an increase in the

number of sub-clusters the method should also prove useful in
the analysis of a wider array of junction configurations or in

cases where the junction evolves over time or with distance.
Further efforts to develop and exploit the MPVC tool are now
underway. A quantum chemical analysis of the electronic struc-
tures of the isolated molecules reveals a similarly structured
HOMO in each case. Within model junctions, the Fermi level

lies slightly towards the HOMO resonance in each case, and

Figure 11. The calculated conductance as a function of the Fermi energy for
2–5. Black dashed line shows the chosen Fermi energy (EF =@0.075 eV).

Table 2. The HOMO and LUMO energies of the isolated molecules (eV, c.f. Figure 5), the total number of electrons of the isolated molecule (QI), the total
number of electrons of the molecule attached to the gold electrodes (QMG), the total number of electrons transferred from the molecule (G= Q@QMG) and
the calculated and experimental G/G0.

Molecule EHOMO ELUMO QI QMG G Th. G/G0 Ex. G/G0

(L group)

2 @5.67 @1.98 94 93.83 0.17 0.45 V 10@4 0.44:0.10 V 10@4

planar-3[a] @4.78 @0.71 164 163.775 0.23 0.77 V 10@4 0.77:0.14 V 10@4

4 @4.34 @0.87 350 349.696 0.30 1.06 V 10@4 1.03:0.28 V 10@4

5 @4.50 @0.08 322 321.672 0.33 0.99 V 10@4 0.98:0.14 V 10@4

[a] perp-[3] HOMO @4.96 eV, LUMO @0.39 eV.
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a non-resonant hole tunnelling mechanism mediated by the
similarly structured HOMOs is proposed. The positioning of the

Fermi level well within the HOMO–LUMO gap is proposed to
account for the similar conductance behaviour across the

series. Our study demonstrates that although for some sys-
tems, platinum complexes may well be less conductive than

purely organic analogues or similarly structured complexes of
the group 8 metals, this is not a universal situation, and by ap-

propriate use of contacts and ancillary ligands to position key

molecular orbitals with respect to the Fermi levels of the elec-
trodes, rather efficient molecular wires may be engineered. For

the future, it will be of interest to study thermal transport
through such wires, as although they have similar electrical

properties, their vibrational properties and phonon thermal
conductances are likely to differ significantly. This ability to
tune the latter, while preserving electronic conductance is an

attractive proposition for the design of thermoelectric thin
films.[85]

Experimental Section

Crystal and refinement data

3 : C24H36P2PtS2, M = 645.69, monoclinic, a = 8.6132(1), b =
11.1767(2), c = 14.1265(2) a, b= 104.958(1)8, U = 1313.84(3) a3, T =
180 K, space group P21/n, Z = 2, qmax =36.568, 31 485 reflections
measured, 6229 unique (Rint = 0.034), R1 = 0.0230 [I>2s(I)] , wR2 =
0.0560 (all data), S = 1.068, D1max,min = 1.509, @0.775 e a@3.

4 : C64H54P4RuS2·CH2Cl2, M = 1197.07, triclinic, a = 10.3342(2), b =
13.2414(3), c = 21.4418(5) a, a= 78.892(2), b= 84.176(2), g=
71.219(2)8, U = 2723.36(10) a3, T = 100 K, space group P1̄, Z = 2,
qmax =34.388, 63 208 reflections measured, 21 631 unique (Rint =
0.033), R1 = 0.0464 [I>2s(I)] , wR2 = 0.1100 (all data), S = 1.040,
D1max,min = 1.912, @1.936 e a@3.

The thiophene group on molecule 2 is disordered over two sites
with occupancies constrained to 0.5 after trial refinement. Geome-
tries were restrained to ideal values. Both dichloromethane solvent
molecules are disordered about crystallographic inversion centres.

5 : C36H66O12P4RuS2, M = 979.96, tetragonal, a = 11.7879(1), c =
17.5181(3) a, U = 2432.22(5) a3, T = 180 K, space group P4̄21c, Z = 2,
qmax =37.64, 49 278 reflections measured, 6324 unique (Rint = 0.037),
R1 = 0.0325 [I>2s(I)] , wR2 = 0.0746 (all data). S = 1.135, D1max,min =
0.476, @0.356 e a@3.

The thiophene group was modelled as being disordered about the
crystallographic twofold axis. One methyl group of the triethyl-
phosphite ligand was also modelled as being disordered over two
sites with occupancies constrained to 0.5 after trial refinement.

CCDC 1504230 (3), 1504231 (4), and 1504232 (5) contain the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre.

Single-molecule conductance measurements

All single-molecule conductance measurements were recorded at
room temperature in mesitylene with an Agilent 5500 SPM micro-
scope. Molecular adlayers were formed on flame-annealed gold on
glass samples, purchased from Arrandee, Germany. These commer-
cially available substrates were rinsed with acetone and flame-an-
nealed carefully for about 20 s with a butane torch until a slight

orange glow was obtained. This flame-annealing procedure was
performed three times and generally resulted in relatively large
area flat Au(111) terraces.[86] Gold STM tips were fabricated from
0.25 mm Au wire (99.99 %), which was freshly anodically electro-
chemically etched at + 2.4 V for each experiment in a mixture of
ethanol (50 %) and HCl (50 %).

Single-molecule electrical measurements were performed by using
both the in situ break-junction (BJ) and I(s) methods. The in situ
break-junction method developed by Xu and Tao relies on the for-
mation and cleavage of metallic break junctions between the STM
tip and the underlying gold substrate.[63] Such metallic break junc-
tions are formed by forcing the STM tip a certain distance into the
gold substrate. The STM tip is then retracted until the gold–gold
contact breaks, which leaves an open nanoscale gap into which
the molecular targets can adsorb. These molecular bridges then
cleave upon further retraction of the STM tip and molecular con-
ductance can be determined by monitoring the current versus dis-
tance retraction profiles.

In the I(s) technique, a gold STM tip is brought to a fixed distance,
determined by the set point conditions, above the gold surface
covered with the target molecule under analysis.[62] Direct metal-
to-metal contact between the STM tip and substrate is avoided.
The initial approach distance of the STM tip to the substrate sur-
face is controlled by the bias voltage and set-point current (I0). The
measurement involves first locating the STM tip close to the gold
substrate at a given height by setting the I0 and Vbias values. The
feedback loop of the STM is then temporary disabled and the STM
tip is rapidly retracted (s = distance) while the tunnelling current (I)
is continuously recorded. At the initial set-point conditions, the
target molecules can be trapped between the STM tip and the
gold substrate as a molecular bridge. In such circumstances,
during the retraction of the STM tip, the molecular bridge is then
pulled up and stretched in the nanojunction until the molecular
junction is cleaved. For both the BJ and the I(s) methods, when the
molecular bridge is formed and then cleaved, a characteristic cur-
rent plateau is typically observed, with a step-like drop in the cur-
rent reflecting cleavage of the molecular bridge. On the other
hand, if during the tip retraction molecules are not caught in the
STM nanogap then the tunnelling current simply decreases expo-
nentially with separation.

Data from the single-molecule studies are available from the Uni-
versity of Liverpool data catalogue (http://datacat.liverpool.ac.uk/
187/).
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