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Abstract
Soluble iron (Fg in aerosols contributes to free oxygen radicategation with

implications for human health, and potentially &atas sulfur dioxide oxidation. It is
also an important external source of micronutridatsocean ecosystems. However,
factors controlling Feconcentration and its contribution to total iréiey) in aerosols
remain poorly understand. Here,sfend Fe in PM, 5 was studied at four urban sites
in eastern China from 21 to 31 December 2017. Aeig (869-1490 ng i) and
Fes (24-68 ng rit) concentrations were higher in northern than sematiChina cities,
but Fe solubility (%Fg 2.7-5.0%) showed no spatial pattern. Correlatoalyses
suggested %kewas strongly correlated with Feand PMg5s instead of Fe
concentrations. Individual particle observationsiftmned that more than 65% of
nano-sized Fe-containing particles were internalixed with sulfates and nitrates.
Furthermore, there was a high correlation betwedfates or nitrates/Femolar ratio
and %Fe. We also found that the sulfates/nitrates had eeakects on %Fgeat RH

< 50% than at RH > 50%, suggesting RH as indiractor can influence %kean
PM,s. These results suggest an important role of chamigrocessing in

enhancing %FRein the polluted atmosphere.

Capsule abstract: Iron solubility related to sulfate and nitrate fine particles in

polluted ambient air.

Keywords. Polluted air; Bulk aerosol analysis; Individualriides analysis; Fe

solubility; Atmospheric acidification processing
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1. Introduction

Iron (Fe) as an important aerosol component is sserdial external source for
phytoplankton growth in large parts of the remateams; it indirectly modulates GO
sequestration, and it thus has feedback effecth@global carbon cycle, and climate
(Martin and Fitzwater, 1988; De Baar et al., 198bkells et al., 2005; Tagliabue et al.,
2017; Matsui et al., 2018). Fe-containing fine jgdet can adversely affect human
health via reactive oxygen species (ROS) formafimith and Aust, 1997; Park et al.,
2006; Abbaspour et al., 2014). In addition, Fe @énogol particles or cloud droplets
can convert S(IV) to S(VI) by catalytic oxidatiowhich is a substantial pathway for
atmospheric sulfate production (Alexander et aD09. These roles of Fe largely
depend on the fractional solubility of aerosol Bai(et al., 2012), thus, crucial factors
and mechanisms that influence aerosol Fe solulfttye;) (the concentration ratio of
soluble Fe (Fg and total Fe (R@) need to be better understood.

Fe has natural (e.g., desert dust and soil dust)aathropogenic (e.g., fossil fuel
combustion and steel industrial activities) sour@dahowald et al., 2005; Jickells et
al., 2005; Sedwick et al., 2007). Different sourhase different %Fg spanning three
orders of magnitude (0.04-81%) (Schroth et al.,920MNatural emissions are the
major sources for Fewith a contribution of 70-80% in global air (Jitkeet al.,
2005), while their %Fe is less than 1% (Schroth et al., 2009). Althoubk t
contribution of anthropogenic sources ta Fesmall compared with that from natural
sources, their contribution to % much higher (0.06-81%) (Schroth et al., 2009;
Oakes et al., 2012). The anthropogenic Fe emissaasstrongly associated with
anthropogenic combustion sources in regions adflictvith elevated air pollution
levels (Guieu et al., 2005; Lough et al., 2005; ek et al., 2007; Zhang et al.,
2019). Therefore, it is important to understand %oiecontinental air polluted by
various anthropogenic sources.

Chemical processing of aerosols during transpadtaging in the atmosphere has
been hypothesized to influence %HK&hi et al., 2011; Ito, 2015; Shi et al., 2015 Li
et al., 2019; Xie et al., 2020). Aerosol acidificatinvolving anthropogenic pollutants

was thought to be an important hypothesis: acidsdyged from anthropogenic
3



74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

pollutants can dissolve aerosol Fe, thus increa%if@ (Meskhidze et al., 2003;
Rubasinghege et al., 2010; Zhang et al., 2018)eraéstudies have estimated aerosol
acidity during air polluted periods, but the resultffer widely, pH ranging from close
to 2 (highly acidic) to about 7 (neutral) in Norhina based on the chemical
modelling calculations (Cheng et al., 2016; Wanglgt2016; Shi et al., 2017; Guo et
al., 2017; He et al., 2018). Such a large pH disamey is still under debate because
no direct method has been used to measure pH wladividual particles until now.
As we know, Fe oxides can be dissolved intg iReaerosol particles under pH < 4
(Shi et al., 2012). Recently, Li et al. (2017) eaonkd at the first time that the §ean
dissolve from Fe oxides mixed in acidic sulfatetipbes over East China Sea using
transmission electron microscopy (TEM) and nan@scsecondary ion mass
spectrometry (NanoSIMS) analysis methods. As thag, W the detailed information
of Fes can be obtained from bulk aerosol samples, wepcavide direct evidence for
the fine particles are acidic in bulk sample leveherefore, understanding mass
concentrations of Feand Fe as well as the corresponding %F&an be one direct
evidence to show aerosol acidity.

In this study, we collected PM and individual particle samples at four urbanssite
of East China, and combined bulk aerosol and iddii particle chemical analysis
techniques to investigate: (1) the concentratidrifsep, Fe;, and corresponding %Ee
(2) factors influencing %k including Feg concentration, PWs concentration, Fe
concentration, atmospheric acidification processimixing state of Fe-containing
particles, and relative humidity (RH).

2. Experimental methods
2.1. Sampling site

Four urban areas were selected to represent typrbain environments: Beijing,
Handan, and Zhengzhou in the North China Plain (N@RAd Hangzhou in the
Yangtze River Delta (YRD) of southern China (Fiyj. A population in 2018 is about
21.5, 9.5, 10.1, and 9.8 million in Beijing, Hand&mengzhou, and Hangzhou city.
The sampling sites in Beijing, Handan, Zhengzhow Bangzhou were located in

China University of Mining and Technology (BeijinfUMTB), Hebei University of
1
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Engineering (HUE), Zhongyuan University of Techrglo(ZUT), and Zhejiang
University (ZU), respectively. The sampling instrembs at each sampling site were
installed on the rooftop of an academic buildinghva height of about 15 m above the
ground. The surrounding environments of CUMTB, HZEJT, and ZU are similar.
They are all situated in the center of the corradpw city, and surrounded by
intensive university and residential buildings, iness offices and urban streets.

Beijing, the capital of China, is the national @¥ntor politics and culture. As a
megacity, Beijing mainly suffers from vehicular exist pollution. Emissions in
Beijing's neighboring regions also significantlyflience its air quality due to
long-range transport of air pollutants. Zhang et(2016) suggested that the regional
transport of pollutants contributed 28-36% of PMn Beijing. The annual average
concentration of PMs was 51ug m* in 2018 (source from 2018 Beijing State of
Ecological Environment Bulletin), which exceedeé tmtional standard (3% ni°)
of China.

Handan in northern China is a heavy-industry ciihwrinciple industries for steel,
coal, cement, coke and electric power generatitrose contribution to Handan GDP
has now reached as high as 45% (Handan Statiseatbook, 2018). This high
energy consumption has resulted in copious emissibair pollutants. Handan city is
among the most polluted cities in China with thewal average Pk concentration
in 2018 at 69ug m* (source from 2018 Hebei Province Ecology and Emrirent
Condition Statement).

Zhengzhou in central China is a coal-driven energgsumption city, with coal
burning accounting for about 70% of energy consionpfJiang et al., 2017). As a
hub of the country’s major railway, motorway andaéion transportation, Zhengzhou
suffers from serious vehicular exhaust pollutioheZgzhou is often ranked as among
the top ten most polluted cities in China with am@al average Py concentration
of 63ug m* in 2018 (source from 2018 Zhengzhou EnvironmeQtality Bulletin).

Hangzhou in southeastern China is the second laojgsin the Yangtze River
Delta (YRD). As one of the most beautiful cities @hina, industrial activities in

Hangzhou are minor. Traffic emission is one of thest important sources for
5



134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Hangzhou air pollution. In addition, pollutants ¢exl in northern China or in
surrounding regions such as some heavy industridngbo are transported into the
city to significantly degrade its air quality. Tlanual average PM concentration
was 40ug m* in 2018 (source from 2018 Hangzhou EnvironmentaiuS Bulletin).
2.2. Sample collection

PM, s and individual particle samples were collectethatfour sampling sites from
21 to 31 December, 2017, only on days without &, 5 samples were collected on
90 mm diameter quartz filters for 11.5 h (daytim@8:30-20:00; nighttime:
20:30-08:00 (next day)) using a TH-16A Intelligd?¥l, 5 sampler at a flow rate of
100 L min! (Wuhan Tianhong Corporation, China). Before artéradollection, the
flow rate was calibrated. Daytime and nighttimenkl@amples were collected using
the same method, but without pumping. Before sarplkection, all quartz filters
were baked at 600 °C in a muffle furnace for 4 hetmove any possible contaminants.
After baking, the quartz filters were placed incam with temperature of 20 + 1 °C
and RH of 50 + 2% for 24 h, then, they were weighisthg a Sartorius analytical
balance (detection limit 0.001 mg). After sampldlemion, the loaded filters were
similarly conditioned and weighed. Difference vabfethe two weighed mass divide
by sample volume was Pidconcentration.

Individual particle samples were also collectedcopper grids coated with carbon
film by a single-stage cascade impactor with arf8 diameter jet nozzle and a flow
of 1.0 L miri*. Individual particle samples were collected faores each day at 8:00,
12:00, 18:00 and 0:00. The sampling duration spa&i@des to 8 min depending on the
PM,s mass concentration. The collection efficiency b€ tsingle-stage cascade
impactor is 50% for aerodynamic diameter of 0 particles and a density of 2 g
cm®. After sampling, the grids were placed in a sealadplastic tube and stored at
25°C and 20 = 3% RH in a desiccator.

Meteorological data were measured and recordedy évanin by an automated
weather instrument (Kestrel 5500, USA).

2.3. Feextraction procedure

2.3.1 Fer fraction



164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

The microwave acid digestion was employed to digest quartz fiber-filter
samples into liquid solution for Fe analysis. Fysthe digestion vessels were cleaned
by ultrasonification with ultra-pure water (18.2Nifor 15 min, then with 5% HN©
for 15 min, and finally with ultra-pure water fob Imin. Then, one quarter of the
sample filters were placed in the digestion vessgh a mixed-acid solution
consisting of 6 ml nitric acid (65%, Merck, Germar¥ ml hydrogen peroxide (> 8%,
Beijing Institute of Chemical Reagents, China) &@ ml hydrofluoric acid (40%,
Merck, Germany). After closing the vessels, the pglas were digested by a
microwave digestion system (MARS 5, CEM Corporatibtatthews, NC, USA) on
the basis of a temperature-controlled procedur@easing to 120 °C in 8 min and
holding for 3 min, then increasing to 160 °C inrth and holding for 10 min, and
finally increasing to 190 °C for 10 min and holdifog 55 min. After cooling to room
temperature, the digested materials was transféaedeaned brown PTFE bottles
and diluted to 100 ml using ultra-pure water. Thok filters for each sampling site
were treated in the same manner as the samples.

2.3.2 Fesfraction

Ultrasonification was used to extract the wateubtd fraction of the samples
filters for Fe analysis following the procedure described by Kaal. (2003). One
quarter of the sample filters were placed in cledres with 15 ml ultra-pure water.
Then, the tubes were placed in an ultrasonic batiitra-pure water for 60 min. The
water extracts were filtered through a 0.2dm pore size PTFE
(polytetrafluoroethylene) syringe filter into cleah brown PTFE bottles, and
subsequently acidified with ultra-pure concentratidiO; to 0.4% v/v HNQ. Three
blank filters for each sampling site were treatedhe same manner as the samples.
All solutions were stored at 4 °C until instrumértaalysis.

2.4. Analytical procedures of Fe

The concentrations of the total and water-solutdetfons of Fe were determined
by inductively coupled plasma mass spectrometryP{MS, Agilent 7500ce).
Detailed descriptions of the procedure were givenPan et al. (2013). Briefly,

according to the standard procedures and critgyexiied in the manufacturer's
7
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manual, the ICP-MS was optimized daily by a tursofution containing Li, Y, Tl, Ce
and Co. External calibration standards (Agilent hfedogies, Environmental
Calibration Standard) were employed to quantify Bee and an internal standard
(containing®Sc, “Ge, ' *Rh, *3n, **°Tb, *Lu and®**Bi) was added online during Fe
analysis. The two certified materials (soil: GBWO014 fly ash: GBW08401) were
digested and analyzed in the same manner as thglesafor recovery calculation.
The recovery of Fe was greater than 95%. Moreawessignificant Fe was found in
the field and reagent blank samples. The detedttiuts of Fer and Fg were 0.15 and
2.43ug I, respectively.

2.5. Analysis of water-solubleions, organic carbon, and elemental carbon

Water-soluble ions were analyzed by ion chromatagygDionex 1Cs-90, Dionex
Corporation, USA). Detailed descriptions about dimalytical method were given in
Zhang et al. (2017).

Organic carbon (OC) and elemental carbon (EC) waralyzed by a Sunset
Laboratory carbon analyzer with the thermal-optitahsmittance method. Organic
matter (OM) concentrations were obtained by mujiigy the OC concentration by
1.91, as reported in Xing et al. (2013).

2.6. Individual particleanalysis

The copper grids were analyzed by a JEOL JEM-2X@@smission electron
microscope (TEM) combined with an energy-dispersiveay spectrometer (EDS).
1613 patrticles in Beijing samples, 1667 particteslandan samples, 1523 particles in
Zhengzhou samples and 1833 particles in Hangzhoylsa were analyzed by the
TEM/EDS at 200 kV. TEM does an excellent job ofedetining the morphology and
mixing state of individual particles; EDS detedie tmain elements above carben (
12). Copper was not included in the analyses dubddanterferences of the copper
TEM grids. EDS collection duration was limited t6 & to reduce beam damage. Five
areas from center to periphery of the grids wereseh for analysis to ensure their
representativeness. Equivalent circle diameter©@©f the particles were identified
by ITEM software (Olympus Soft Imaging Solutions Bi) Germany).

3. Results and discussion
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3.1. Overview of PM 5 pollution

PM, 5 concentrations were 155 + @ mi® in Beijing, 237 + 71ug m* in Handan,
179 + 90ug m* in Zhengzhou, and 93 + 48 m® in Hangzhou (Table 1) during
21-31 December, 2017, which were all higher thanrtational daily PMs standard
of 75 ug m*. Even the lowest P concentrations in Beijing (74g m®), Handan
(117 ug m®), Zhengzhou (51i,g m*), and Hangzhou (7jlg m>) were close or higher
than 75ug m>. The day number that P concentration exceeded #§ ni® to total
observation days were 10/12, 13/13, 13/14, and8liiVBeijing, Handan, Zhengzhou,
and Hangzhou city, respectively. In general,,BMoncentrations were 1.7-2.6 times
higher in Beijing, Handan, and Zhengzhou citiethim NCP than in Hangzhou city in
the YRD.

OM was the most abundant chemical component i ¥ Beijing, Handan,
Zhengzhou and Hangzhou cities with contributions40%, 31%, 29%, and 31%,
respectively (Fig. S1). The next most abundant aomepts in PMs were nitrate
(NO3), sulfate (S&), and ammonium (NK) with contributions of 13%, 8%, and 7%
in Beijing, 14%, 9%, and 7% in Handan, 17%, 8%, @#din Zhengzhou, and 20%,
9%, and 8% in Hangzhou.

3.2. Overview of individual particlesdata

A total of 1613, 1667, 1523, and 1833 individuatosel particles collected in
Beijing, Handan, Zhengzhou, and Hangzhou citiestewanalyzed by TEM/EDS
(Table S1). Based on elemental composition and habdogy of individual particles,
the internally mixed sulfate particles (e.g., S-OBArich, S-soot, S-fly ash, and S-Fe)
were dominant in all the analyzed patrticles, whiekre 68% in Beijing, 62% in
Handan, 63% in Zhengzhou, and 73% in Hangzhou @&&). All internally mixed
sulfate particles contain S. Because of the deteclimitation of TEM/EDS for
ammonium nitrate, the technique could not quantityates in individual particles.
However, some studies already confirmed that saulfstrticles normally contained
secondary nitrates in individual secondary paricie urban air (Li et al. 2016;
Riemer et al., 2019).

3.3. Fe solubility
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Table 1 presents the concentrations of &ed Fe in PM, 5 as well as %Fkeat the
four sites. The average Feoncentration was 1490 + 428 n¢g’rim Beijing, 1310 +
271 ng nT in Handan, 1132 + 467 ngfrin Zhengzhou, and 869 + 215 ng*rin
Hangzhou during 21-31 December, 2017, accounting.fid + 0.60%, 0.60 £ 0.21%,
0.90 + 0.58%, and 0.95 £ 0.31% of Rd/respectively. The averagedencentration
was 68 + 46 ng m in Beijing, 59 + 33 ng M in Handan, 32 + 20 ng thin
Zhengzhou, and 24 + 8.5 ng*rin Hangzhou (Table 1). F&nd Fe concentrations in
the cities of NCP were 1.3-1.7 and 1.3-2.8 timehéi than that in the city of YRD,
respectively. Here, we calculated %Fas Fe concentration/Fe concentration x
100%. The results showed that the averagesdkas 5.0 + 3.8% in Beijing, 4.5 + 2.6%
in Handan, 2.7 + 1.5% in Zhengzhou, and 3.0 + lii%angzhou (Table 1). %E@
Zhengzhou was lower than that in Hangzhou, althdtghand Fe concentrations in
the former were higher than the latter.

We compared the measurements ofr eead %Fe with those in the marine
atmosphere. Table 2 shows that Eencentrations (869-1490 ng3rnin this study are
much higher than those in the marine atmosphengjrg from 28.4 ng M over the
Pacific Ocean (Buck et al., 2013), 218 ng m the North Atlantic Ocean (Buck et al.,
2010), 590 ng M at the Bay of Bengal (Srinivas et al., 2012), &1 hg m® at the
East China Sea (Hsu et al.,, 2010). In contrast, AE&%-5.0%) in this study is
1.2-3.3 times lower than those in the marine atrmesy ranging from 6.0% in the
Bay of Bengal, 7.7% in the East China Sea, 8.1%enPacific Ocean, to 9.0% in the
North Atlantic Ocean. These results indicate thahgtrange transport of
Fe-containing particles significantly increases%biés; in fine particles.

3.4. Factorsinfluencing Fe solubility
3.4.1 Correlations between % Fes and PM 5, Fes, Fer
%Fe; had strong correlations with §at all four urban sites with correlation
coefficients of 0.81-0.96 (Fig. 2). %fand PM s also had high correlations with the
correlation coefficients at 0.58-0.93, but %Pad no obvious correlations withFe
except the Hangzhou site. In addition, Figure S8xshthat %Fggenerally displays

similarly variation trend with Plyls and Fe concentrations, but different from¥e
10



284  3.4.2 Potential chemical processing in enhancing Fe solubility

285 To understand what controled the solubility of Wee compared %keon
286 non-haze, light haze, intermediate haze and heawg lhays (Fig. S4). Here we
287 defined non-haze days as daily Ptoncentratiors 75 ug m>, light haze days as
288 75 < PMys< 150pug m?®, intermediate haze days as 150 <,RM 250pug m®, and
289 heavy haze days as > 2B mi°. Figure S4 shows that %§&nge from 0.9% to 1.2%
290 (average: 1.0%+ 0.2%) on non-haze days, 1.4% to 6.3% (averagéb 219 1.2%)
291 on light haze days, 1.5% to 10.6% (average: 4.424/%) on intermediate haze days
292 and 3.8% to 11.4% (average: 6.5% + 2.6%) on heaxy ldays. In a word, the %fe
293 significantly increased from non-haze to heavy hdags at each sampling site.
294 There are two possible reasons to explain the ase %Fe following the heavy
295 haze formation: (1) changes in sources, and (2nad# processing.

296 Here we firstly investigated the feontributions from various primary emissions,
297 which were calculated by e concentrations dividing particulate matter
298 concentrations in different sources. Secondly, $akas investigated from various
299 primary emissions, and calculated by Eencentrations dividing Feconcentrations
300 in different sources. Fecontribution ranged approximately from 3.7%-11.886
301 coal combustion (Desboeufs et al., 2005; Fu et28l1,2), 0.4%-3.3% for biomass
302 burning (Yamasoe etal., 2000; Lee et al., 2005zFatal., 2007; Fu et al., 2012),
303 0.86%-9.3% for oil combustion (Desboeufs et alQ20Schroth et al., 2009; Fu et
304 al., 2012), and 3.1%-8.5% for mineral dust (Schetdthl., 2009; Fu et al., 2012; Shi
305 et al., 2011, 2012). %keanged from 0.06%-0.2% for coal combustion (Deslmoe
306 et al., 2005; Oakes et al., 2012), 2%-46% for bssnaurning (Guieu et al., 2005;
307 Bowie et al. 2009; Oakes et al., 2012), 35.7%-7@%®ofl combustion (Desboefus et
308 al. 2005; Schroth et al., 2009; Oakes et al., 2042 0.04%-0.54% for mineral dust
309 (Schroth et al., 2009; Oakes et al., 2012; Shi.ek@12). In addition, our previous
310 study showed that %Eein smelter particles (e.g., Fe oxides) from indabt
311 emissions was extremely low (Li et al., 2017). #os type of particles, we used 0.1%
312 as a conservative value.

313 The contributions of coal combustion, biomass mgnoil combustion, mineral
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dust, and industrial emission to PMwere 16%-57%, 7%-11.2%, 2%-17.1%,
10%-23.1%, and 12%-20% in Beijing (Yu et al., 20ZBang et al., 2013; Ma et al.,
2017), 22.3%-25.9%, 6.3%-10.6%, 10.2%-12.8%, 9.08%, and 16.2%-24.2% in
Handan (Wei et al., 2014; Meng et al., 2016; Wamgale 2015), 14%-23%,
12%-13%, 7%-23%, 8%-26%, and 4%-26% in Zhengzhan{et al., 2013; Wang
et al., 2017; Jiang et al., 2018), and 12.8%-16 2%-14%, 10.2%-22%, 2%-8.2%,
and 2%-9% in Hangzhou (Zhen et al., 2010; Liu gt24115).

Based on above data, we can know that coal cambyusndustry and mineral
dust have extremely low %ge(< 1%). Although biomass burning and oil
combustion having high %Egetheir Fg contribution to fine particles are low. Using
the equation of Recontent x PMs source apportionment data x 100%, we find that
the Fe contributions of biomass burning and oil combustawe less than 3.0% in
PM.s. In a word, even though the solubility in the twources is high, their
contribution to the Reis low due to their small contribution to sF€eTherefore,
variations in primary emissions alone are not dbleexplain the enhanced %fe
during the haze days, which suggests that chempicalessing is the key reason
leading to enhanced %f#during haze events.

TEM observations further support this argument. aéarly identified abundant
fine Fe-containing particles (including Fe-rich aBeFe particles) in the samples
with a size range of 25 nm to @gm (Fig. 4). The number contribution of
Fe-containing particles to the total analyzed pbasi was 9.2% in Beijing, 7.7% in
Handan, 6.6% in Zhengzhou, and 5.2% in Hangzhobl€T&1). In particular, we
found that S-Fe particles (internally mixed witlc@edary inorganic aerosols) were
dominant in Fe-containing particles. S-Fe partidesounted for 77%, 74%, 68%
and 85% in all the Fe-containing particles in Bgji Handan, Zhengzhou, and
Hangzhou, respectively (Table S1). TEM/EDS showed $secondary inorganic parts
in S-Fe particles more or less contained elemdvaalFig. 3). The phenomenon is
consistent with the findings of Li et al. (2017).

Size distributions of individual particles in Figud showed that the peaks of

Fe-rich particles were at 325 nm, 225 nm, 175 nmd, &5 nm in Beijing, Handan,
12



344 Zhengzhou and Hangzhou, while the correspondirgrnatly mixed S-Fe particles
345 had peaks at 625 nm, 575 nm, 625 nm and 625 nmpectgely. Thus, secondary
346 sulfate/nitrate uptake led to an increase in parsize by 48%-72%.

347 Figure 5 provides further evidence to support thiemtial role of acidic species in
348 the enhancement of %§m PM, s during haze days. Hsu et al. (2014) have used the
349 molar ratio of acidic components to {Féo indicate the influence of aerosol
350 acidification on the %Fe In this study, we followed the method to inveateythe
351 impact of aerosol acidification on %EeNOs;/Fer and SQ*/Fer molar ratios
352 showed high correlations with %fg-at each sampling site (r > 0.7). This suggested a
353 potential role of secondary species, such as sulfacid in the dissolution of
354 insoluble Fe in fine particles (Fig. 3 and 5).

355 RH is influential in the formation and phases of,5@nd NQ in the polluted air
356 of East China (Sun et al., 2018; Wu et al., 20118; £t al., 2020). As a result, RH
357 should be an impact factor on %Hay influencing secondary sulfate and nitrate
358 formation. Sun et al. (2018) showed that solid pegsarticle started to convert to
359 solid-liquid mixed phase particles when RH was 065@h polluted urban air.
360 Therefore, we assumed RH at 50% as the thresholdeofaerosols. Here, we
361 investigated the combined effects of RH and aerasidlic species on %EéFig. 6).
362 Hsu et al. (2010) reported that the dissolutioraefosol Fe was enhanced by the
363 presence of acidic constituents. $@nd NQ, as the two major acidic constituents
364 in PMys, were examined in this study. We used the mol#ip raf [2SQ* +
365 NOs]/Fer to represent the acidification degree. Figure éwshthat %Fe ranged
366 from 0.7% to 3.8% in four cities at RH < 50%, evaamples with a high degree of
367 acidification. However, %Fganged from 1.3% to 11.4% at RH > 50% in fouresiti
368 Therefore, our results suggested that the sulfatestes had a weaker effect
369 on %Fe at RH < 50% than at RH > 50% at all the sampliitgss Indeed, RH
370 showed high correlations with %@ Beijing, Handan, Zhengzhou and Hangzhou,
371 their correlation coefficients ranged from 0.510®2 (Fig. S5). In a word, RH
372 appears to be an indirect factor influencing thee%sir fine particles.

373 4. Conclusions and atmospheric implications
13
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The study suggests that acidic species contributéné dissolution of Fe in the
internally mixed patrticles collected in the fourllpted urban sites. Our individual
particle analysis suggests that most of Fe-comtgimorganic particles with size less
than 1pum in urban air have undergone acidic processegcant study shows that
aerosol acidity increases with decreasing partisize generated from the
(NH4)2SO-H,SO, solution (Crag et al, 2018). Since most of thecBetaining
particles are small with the peak size of Fe-rialtiples of 175 to 325 nm and S-Fe
particles of 575 to 625 nm (Fig. 4), these particieay tend to be more acidic, even
though the bulk aerosol pH may be higher (Shi et28l17; Liu et al., 2017; Song et
al., 2018).

The presence of large amount ofsheay catalyze the reactions for secondary
sulfate formation in polluted air of China. How thRes;, as the dominant soluble metal
in fine particles, changes the heterogeneous umtikgdroxyl peroxy radicals (H£
on aerosol should be paid more attention in palle in East China (Zou et al.,
2019). Moreover, large amounts of tiny Fe partides their associated §&ean be
inhaled into the respiratory tract, even into luisgues, and can cause adverse health
effects in urban cities through the generation »ygen free radicals (Gonet and
Maher, 2019).

Under prevailing westerly winds in winter, thesedéataining particles in Belijing,
Handan, Zhengzhou and Hangzhou urban areas caartspadrted into the East China
Sea and possibly influence the oceanic ecosysteimetlLal. (2017) collected
atmospheric particles during a research cruise thveEast China Sea, and found that
14% of all analyzed particles were Fe-containingiglas, and among them, 75%
were internal mixtures of sulfate coating and Felusions. Takahashi et al. (2013)
observed that anthropogenic Fe emitted from megadi Eastern Asia was the most
important contributor to kein the North Pacific Ocean. Our study shows thasé
anthropogenic Fe particles have already been partissolved into Fegin aerosols
before leaving the continental air.
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Tablel
PM, s, Fer, and Fe concentrations as well as %Fa the four urban sites from NCP to YRD (the
numbers in parentheses were minimum and maximum).

Beijing Handan Zhengzhou Hangzhou
PM,.5 (ug m°) 155 + 60 (74-270) 237 + 71 (117-378) 179 + 90-857) 93 + 18 (71-156)
Fer (ng m°) 1490 + 428 (971-2601) 1310 + 271 (977-1996) 14387 (342-1945) 869 + 215 (433-12¢
Fes (ng ni®) 68 + 46 (15-148) 59 + 33 (16-119) 32+20(2.9-72 24 + 8.5 (13-53)
%Fes 5.0 £ 3.8 (0.9-11) 4.5+2.6(0.7-9.6) 2.7 + 1057¢5.6) 3.0+1.1(1.2-5.5)
Table 2

Total Fe (Fg) concentration and Fe solubility (Yofeeported in this study and literature data
from ocean sites in the world.

Location Type Sampling period Size Fag n® %Fe; References

Beijing Urban 21-31 December 2017 PM 1490 5.0 This study
Handan Urban  21-31 December 2017 R2M 1310 4.5 This study
Zhengzhou Urban  21-31 December 2017 PM 1132 2.7 This study
Hangzhou Urban  21-31 December 2017 2M 869 3.0 This study

North Atlantic Ocean  Ocean 20 June-7 August 2003 PTS 218 9.0 Buck et al., 2010
Pacific Ocean Ocean 2004-2006 TSP 28.4 8.1 Buak,e2013
Bay of Bengal Ocean  March-April 2006 TSP 590 6.0 inigas et al., 2012

East China Sea Ocean  Spring 2005- Spring 2007 TSP 61 7 7.7 Hsu et al., 2010




Figure Captions

Fig. 1. Map showing the locations of Beijing, Handan, Zhengzhou and Hangzhou sampling sites.
The map is color-coded by surface elevation heights, which were obtained from SRTM (Shuttle
Radar Topography Missionv) data (http://srtm.csi.cgiar.org/srtmdata/).

Fig. 2. Correlations of %Fes and Fer (ng m™) (red), PM.5 (ug m*) (blue) and Fes (ng m™) (black)
at the Beijing (a), Handan (b), Zhengzhou (c) and Hangzhou (d).

Fig. 3. TEM images and EDS of Fe-containing particles in this study: (a) TEM image of
Fe-containing particle, (b) EDS of Fe-rich particle, (c) EDS of S-Fe particle.

Fig. 4. Size distributions of Fe-rich particle (blue) and internally mixed S-Fe particle (green) at the
four urban sites. The distribution pattern is normalized.

Fig. 5. Correlations between %Fes and NO; /Fer (red) and SO,%/Fer (blue) molar ratio at Beijing
(a), Handan (b), Zhengzhou (c) and Hangzhou (d).

Fig. 6. Relationships of %Fes with RH and acidification degree molar ratio (2S0,% + NO3)/Fer in
Beijing (red), Handan (blue), Zhengzhou (green) and Hangzhou (purple).
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Fig. 1. Map showing the locations of Beijing, Handan, Zhengzhou and Hangzhou sampling sites.
The map is color-coded by surface elevation heights, which were obtained from SRTM (Shuttle
Radar Topography Missionv) data (http://srtm.csi.cgiar.org/srtmdata/).
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Fig. 2. Correlations of %Fes and Fer (ng m™) (red), PM,s (ug m*) (blue) and Fes (ng m™) (black)
at the Beijing (a), Handan (b), Zhengzhou (c) and Hangzhou (d).
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Fig. 3. TEM images and EDS of Fe-containing particles in this study: (8) TEM image of
Fe-containing particle, (b) EDS of Fe-rich particle, (c) EDS of S-Fe particle.
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Highlights
1. Total iron and soluble iron concentrations as well as iron solubility in polluted air at
four urban sites across East China were investigated.
2. A magority of nano-sized Fe-containing particles were internally mixed with
sulfates and nitrates.
3. Chemica processing plays an important role in enhancing iron solubility in the

polluted atmosphere.
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