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Abstract

We present a novel study of relationships between automatic accent identifi-

cation (AID) and accent-robust automatic speech recognition (ASR), using i-

vector based AID and deep neural network, hidden Markov Model (DNN-HMM)

based ASR. A visualization of the AID i-vector space and a novel analysis of

the accent content of the WSJCAM0 corpus are presented. Accents that occur

at the periphery of AID space are referred to as “extreme”. We demonstrate a

negative correlation, with respect to accent, between AID and ASR accuracy,

where extreme accents exhibit the highest AID and lowest ASR performance.

These relationships between accents inform a set of ASR experiments in which

a generic training set (WSJCAM0) is supplemented with a fixed amount of

accented data from the ABI (Accents of the British Isles) corpus. The best per-

formance across all accents, a 32% relative reduction in errors compared with

the baseline ASR system, is obtained when the supplementary data comprises

extreme accented speech, even though this accent accounts for just 14% of the

test data. We conclude that i-vector based AID analysis provides a principled

approach to the selection of training material for accent robust ASR. We spec-

ulate that this may generalize to other detection technologies and other types

of variability, such as Speaker Identification (SI) and speaker variability.
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1. Introduction

Advances in acoustic modelling combining Deep Neural Networks (DNNs)

and Hidden Markov Models (HMMs) have led to significant performance im-

provements for Automatic Speech Recognition (ASR) [1]. The DNN enables

discriminative training of HMM state posterior probabilities for a given input

feature vector, replacing the Gaussian Mixture Models (GMMs) that have rep-

resented the state-of-the art since the late 1980s.

However, research [2, 3] and evidence in news media [4, 5] indicate that

robust recognition of accented speech with limited resources is still an important

research challenge. Accents are a primary source of speech variation [6, 7]. They

are characterised by systematic changes to the realization of particular phones,

and often correspond to social, educational or geographical factors. Accents

corresponding to the latter are referred to as regional accents. Regional accents

of the British Isles have been studied extensively (for example [8, 9]) and are a

problem for ASR [10, 11]. British English accents can be divided into five broad

groups, corresponding to Southern and Northern England, Ireland, Scotland and

Wales, each of which can be sub-divided. For example, the accent of a woman

who was born in Hull and has lived there all of her life would be categorized

as northern English by most native English speakers of British English. Her

vowels in words like “bath” and “strutt” are the same as in “cat”, and “hood”,

respectively [8]. Someone from the north of England might be able to place her

accent in the east of the region and, because she does not have the “geordie”

accent of the area around Newcastle, in the south of the north-east. Some Hull

residents would even hear that she is from the west of the city. In the lowest

layer of this hierarchical description of accent she has her own unique “ideolect”,

influenced by physiological, social, educational and other factors.

To achieve the best ASR performance, DNN-HMM systems require large

training corpora that represent potential variations in the test material. Al-

though publicly available corpora exist for British English, for example WSJ-
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CAM0 [12], only the Accents of the British Isles (ABI) corpus [13] contains

recordings that are explicitly representative of regional accents. Although ABI

is relatively large, with speech from 285 subjects representing 14 different ac-

cents (13 regional accents plus Standard Southern English), the amount of data

per accent is limited. For example, there are just 22 subjects in the ABI-1

corpus with the same regional accent as our speaker from Hull, and 40 and 96

subjects with accents from the North-East and North of England, respectively.

Thus the hierarchical description of accent in the previous paragraph reveals

a familiar trade-off for acoustic modelling. A model conditioned on an accent

class lower in the hierarchy will be more specific to our subject’s speech, but less

data will be available to train it. The challenge is to identify accent classes that

are sufficiently low in the hierarchy to reduce variability, but at the same time

contain sufficient data to support robust modelling. The correct model can then

be selected using automatic accent identification (AID) (for example, [7, 14]). A

standard alternative to model selection is to construct a single ‘multiple accent’

acoustic model by including all data from all accents in the training set.

The premise of this paper is that AID provides an analysis tool for a more

pricipled approach to the selection of training material for accent robust ASR.

AID can be used to analyse the diversity of accents in a training set and

hence identify accent groups that are not represented. Furthermore, modern

approaches to AID typically represent an utterance as an i-vector [15] or super-

vector in a high dimensional vector space. Visualisation of this space, via a

two-dimensional projection, can indicate the acoustic relationships between dif-

ferent accents, identify accent groups at the periphery of the space, and suggests

ways in which the training data could be supplemented to improve ASR perfor-

mance. The paper also investigates the relationship between AID accuracy for

a particular accent and ASR accuracy for the corresponding accented speech.

In this paper these ideas are applied to the WSJCAM0 and ABI corpora.

We begin by visualising the AID i-vector space and the locations of WSJCAM0

and the different accents of the ABI corpus in that space. It emerges that the

groupings of accent data in this space correspond, approximately, to natural
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broad geographical accent groups. The term “extreme” accents is used to refer

to accents that are located at the periphery of the AID accent space. Next, AID

is applied to the utterances in WSJCAM0 to determine the distribution of the

regional accents of its subjects, and to the ABI corpus. This analysis indicates

that approximately 81% of the subjects in WSJCAM0 speak with a northern

or southern English accent, with the remainder categorised as Scottish or Irish.

The second part of the paper is concerned with the application of these ideas

to accent-robust ASR. A negative correlation is shown between AID accuracy

and ASR accuracy for a baseline DNN-HMM ASR system trainied on WSJ-

CAM0. Intuitively, if the AID system achieves a high accuracy for a particular

accent, then it is likely that this accent is separated from the other accents in the

AID i-vector space. Hence it is also likely to be separated from the ASR train-

ing data, so that ASR performance is poor. Thus, the Scottish accents gla and

shl, which according to the visualisation of the AID i-vector space are extreme,

have the lowest AID error rates (5% and 0%, respectively), but the highest ASR

word error rates (WERs) (13.3% and 11.5%, respectively). In the remainder of

the paper, the relationships between the accents in the ABI corpus inform a set

of ASR experiments in which the generic training set (WSJCAM0) is supple-

mented with accented data from the ABI corpus. The experiments investigate

the effect of the size and accent-diversity of the supplementary training data,

and the impact of including data from extreme accents. The best performance

across all accents, a 32% relative reduction in WER compared with the base-

line ASR system, is obtained when the supplementary data comprises extreme

(Scottish) accented speech, even though this accent accounts for just 14% of the

test data.

The paper begins with a review of previous work on ASR for accented speech

(Section 2). The ABI and WSJCAM0 corpora are described in Section 3. Sec-

tion 4 describes the i-vector based AID system used in the study. Section 5

presents the results of AID experiments on the ABI-1 corpus, together with

an analysis of the regional accent diversity of the WSJCAM0 corpus and a 2

dimensional visualisation of the AID feature space. The AID results inform the
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design of the ASR experiments described in the remainder of the paper.

Sections 6 and 7 describe the GMM-HMM and DNN-HMM ASR systems

used in the study and the ASR experiments that were conducted on the accented

data in the ABI-1 corpus. Section 8 presents the results of these experiments,

including a comparison of the baseline GMM-HMM and DNN-HMM systems,

an exploration of the relationship between ASR and AID, and an assessment

of the utility of augmenting the acoustic feature vectors with i-vectors. The

results obtained using accent-dependent GMM-HMM systems with AID-based

model selection are also included, because this was previously the most effective

GMM-HMM method for accent robust ASR on this data. The remainder of

Section 8 is concerned with the effects on DNN-HMM based ASR of augmenting

the WSJCAM0 training set with different subsets of ABI-1 with varying ‘accent

diversity’, ranging from ‘multi-accent’, in which the supplementary data includes

examples from all of the ABI accents (maximum accent diversity), to subsets

that only contain recordings from a single broad accent group. Section 9 presents

our conclusions.

2. Regional accents and ASR

Previous approaches to ASR for accented speech can be categorised as fea-

ture vector augmentation, acoustic modelling, pronunciation modelling, and

combinations of these techniques.

2.1. Feature vector augmentation

Feature vector augmentation adds information about a speaker’s accent to

conventional acoustic feature vectors, incorporating accent information early in

the classification process. Zheng et al. [16] append MFCCs with additional fea-

ture vectors which precisely track formant frequencies. This results in 1.4% char-

acter error rate reduction for Wu-accented Chinese speech from the Mandarin

Broadcast news corpus. More recently, speaker- or utterance-level i-vectors [15]

were added to acoustic feature vectors to enable DNNs to accommodate speaker
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and session variability [17, 18, 19]. This method achieves a 1.53% Word Error

Rate (WER) reduction on French TV broadcast data [19] and 10% [18] and

7.5% [20] relative improvements on Switchboard, compared with DNN base-

lines. Since i-vectors include information relevant to accent classification [14]

one would expect their addition to acoustic feature vectors to provide robustness

to accent variability in ASR.

2.2. Pronunciation modelling

Regional accents are characterised by systematic variations in pronunciation

at the phone level. It is natural to try to compensate for this in the pronun-

ciation dictionary. Reductions in WER for accented speech using rule-based

modification of pronunciation dictionaries have been reported by a number of

researchers [21, 22, 23, 24, 25, 26, 27]. More recently, [28] Polyphone Decision

Trees (PDTs) have been used to model contextual acoustic variants in multi-

accented Arabic speech, where PDT adaptation obtained 7% relative WER re-

duction compared with maximum a posteriori (MAP) [29] accent adaptation, on

the Broadcast Conversations (BC) part of LDC GALE corpus. In another study

[30] PDT adaptation achieved 13.9% relative improvement in WER compared

with accent-specific MAP adaptation. A similar study has been conducted for

variations of South African English [31].

2.3. Acoustic modelling

A number of authors use MAP and Maximum Likelihood Linear Regression

(MLLR) [32] to adapt GMM-HMM based ASR systems to accented speech

[33, 34, 35]. For example, a 78% reduction in WER for Korean spoken English

was reported [34] from MAP and MLLR adaptation of a system trained on US

English. For British English, it has been shown that adapting a baseline system

to different accents and using AID to select an appropriate accent-dependent

model, WER can be reduced by up to 47% [36, 10, 11]. Subspace Gaussian

Mixture Models (SGMMs) [37], which enable more robust parameter estimation

with limited data, are applied to accented English in [38], resulting in 8% relative
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improvement in WER compared with speaker-adapted GMM-HMMs. A multi-

accent DNN with an accent-specific top layer and shared hidden layers has been

applied to British and Indian accented speech [39], resulting in reductions in

WER of up to 30.6% on a short message dictation task, compared to a baseline

system trained on 400 hours of speech. NN- and GMM-based acoustic models

have also been compared in a study involving 412 hours of Chinese data with

native and non-native accents [40].

2.4. Combination of multiple techniques

Additional improvements in ASR performance can be obtained by combin-

ing these approaches. Accent-specific pronunciation dictionary adaptation and

accent-dependent acoustic model adaptation using MLLR are combined in [6]

to achieve 36.02% relative WER reduction on Mandarin accented speech com-

pared to a multi-accent baseline system. Chen et al. [41] combined acoustic

feature vectors augmented with speaker-specific i-vectors with a DNN-HMM

ASR system in which the hidden layers are common across all accents but the

top softmax layers are accent-dependent. Their results showed a 11.8% relative

improvement in %WER compared to a baseline DNN system.

3. Speech corpora

3.1. The ABI-1 “Accents of the British Isles” corpus

The ABI-1 corpus consists of speech from 285 speakers representing 13

British accent regions plus standard Southern British English (sse) [13] (Figure

1). For the 13 regions, regional accented speech was defined to be speech from

individuals who had lived in the region since birth, while the sse speakers were

selected by a phonetician. For each ABI-1 subject, his or her “true” accent is the

accent (region or sse) that he or she represents in the corpus. The ABI accents

fall into 4 broad accent groups (BAGs), namely Northern English (NE: lan, ncl,

lvp, brm, nwa, eyk), Southern English (SE: sse, crn, ean, ilo), Scottish (SC:

shl, gla) and Irish (IR: uls, roi). ABI contains only one example of a Welsh
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accent (nwa), which was recorded in Denbigh in North Wales. Because of the

proximity of Denbigh to the north of England, and Liverpool in particular, it

was decided to include the nwa accent in the NE group rather than to include

a Welsh set with one member. The boundaries between the BAGs in Figure 1

are very approximate and loosely based on [8] and [9]. ABI is used for training

and testing our AID and ASR systems. Each of the subjects read the same 20

prompt texts. The experiments reported in this paper focus on a subset of these

texts, namely the ‘short passages’ (SPA, SPB and SPC), the ‘short sentences’

and the ‘short phrases’. These are described below:

� SPA, SPB and SPC are short paragraphs comprising 92, 92 and 107 words,

respectively, which together form the accent-diagnostic ‘sailor passage’

(“When a sailor in a small craft ...”)1. The recordings have average

durations 43.2 s, 48.1 s and 53.4 s.

� ‘Short sentences’ are 20 phonetically balanced sentences (e.g.“Kangaroo

Point overlooked the ocean”). They are a subset of the 200 Pre-Scribe B

sentences (a version of the TIMIT sentences for British English), chosen

to avoid some of the more ‘difficult’ of those sentences, whilst maintaining

coverage (146 words, average duration 85.0 s).

� ‘Short phrases’ are 18 phonetically rich short phrases (e.g.“while we were

away”) containing English phonemes in particular contexts in as con-

densed form as possible (58 words, average duration 34.5 s).

Table 1 complements Figure 1. It details the recording locations (“accents”)

for each BAG, the numbers of subjects and total hours of data for each accent

and BAG, and the numbers of hours of data for each of the three subsets listed

above for each BAG, namely the Short paragraphs SPA, SPB and SPC, Short

sentences and Short phrases.

The ABI-1 corpus is publicly available2.

1http://www.phon.ucl.ac.uk/resource/scribe/scribe-manual.htm
2http://www.thespeechark.com/abi-1-page.html
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Table 1: Details of the ABI-1 corpus. Horizontal blocks correspond to Broad Accent Groups

(BAGs). Columns indicate BAG, accent, accent code, total subjects per accent and per BAG,

total hours per accent and per BAG, and hours per BAG for the Short Passages A, B & C

(SPass), Short Sentences (SSent) and Short Phrases (SPhr). The final row gives totals for

the whole corpus.

BAG Location Code
Subjects Hours Hours (per BAG)

accent BAG accent BAG SPass SSent SPhr

Northern

England

(NE)

Birmingham brm 20

127

4.07

26.08 5.24 3.06 1.23

East Yorkshire eyk 25 6.24

Lancashire lan 21 3.66

Liverpool lvp 20 4.38

Newcastle ncl 20 3.82

North Wales nwa 21 3.90

Southern

England

(SE)

Cornwall crn 20

76

3.56

15.14 3.00 1.81 0.73
East Anglia ean 20 4.74

Inner London ilo 21 3.59

Std. S. English sse 16 3.26

Scotland

(SC)

Glasgow gla 20
42

3.95
8.89 1.77 1.03 0.43

Scottish Highlands shl 22 4.94

Ireland

(IR)

Dublin roi 20
40

3.51
7.57 1.44 0.83 0.35

Belfast uls 20 4.06

Totals 14 285 57.7 11.5 6.7 2.73
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Figure 1: Accents of the British Isles, their codes and their broad accent groups (IR, NE,

SC and SE),represented in the ABI corpus

3.2. The WSJCAM0 Corpus

The WSJCAM0 corpus is a British English version of the US American En-

glish WSJ0 corpus [12]. In the work reported in this paper, the WSJCAM0

training set (referred to in this paper as WSJT) is 15.5 hours of speech, com-

prising 90 utterances from each of 92 speakers, selected randomly in paragraph

units from the WSJCAM0 training set. The development set is 2.25 hours of

speech, made up of 90 utterances from each of 18 speakers, taken from the

WSJCAM0 development set. The test set is part of the WSJCAM0 test set.

It comprises recordings from 48 speakers each reading 40 sentences contained

within a 5,000 word vocabulary (referred to as SI-dt-o5). Detailed transcriptions

of all the utterances are available.

4. Automatic accent identification (AID)

This section describes the AID system and the experimental method that

was used.
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4.1. Automatic accent identification (AID) system

In this paper i-vector based AID is used for accent-specific acoustic model

selection (Section 7.2), analysing the accent properties of the WSJCAM0 corpus

(Section 5.2), and augmenting the acoustic features that are input to a DNN-

HMM ASR system (Section 7.1).

An i-vector for a speech segment u is a representation of u in a relatively low

dimensional ‘total variability’ vector space that is designed to capture salient

information about u. The i-vector concept was proposed for speaker verification

in [15] based on the work of Kenny et al. [42]. The GMM supervector su corre-

sponding to u is represented as su = s0 + Twu + ε, where s0 is the supervector

corresponding to a ‘universal’ GMM estimated using all available training ma-

terial, T is a linear transform from the total variability vector space V into the

supervector space S, wu ∈ V is the i-vector corresponding to u and ε is the resid-

ual error. The transform T and the i-vectors wu are determined by an iterative

process to maximise, over the training set, the probability of the utterance u

given the GMM corresponding to the supervector s0 +Twu, where wu is drawn

from a zero mean unit covariance Gaussian distribution. GMM-based i-vectors

have subsequently been replaced by “DNN i-vectors” where sufficient statistics

are computed from senone posterior probabilities (obtained at the output of

HMM/DNN acoustic model). These statistics are used to compute T-matrix

[43].

Our system uses GMM i-vectors estimated using the Microsoft Research

i-vector toolkit [44]. Acoustic feature vectors are 68 dimensional, comprising

19 MFCCs (with C0) plus Shifted-Delta Cepstral coefficients (7-3-1-7 config-

uration) [45]. All GMMs have 512 components. The dimension of the total

variability vector space V is 200 for accent identification (Sections 5.1 and 7.2)

and 100 for acoustic feature augmentation (Section 7.1). Further, the back-end

classifier is represented by a multi-class Support Vector Machine (SVM) [46].

The SVM is trained to classify the i-vectors into the 14 accent classes.
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4.1.1. AID training and test data

Our AID experiment used a 3-fold cross validation. The ABI corpus was

divided into three subsets; two with 95 and one with 94 speakers. For each ex-

periment, two subsets were used for training and the remaining subset was used

for testing. The SPA utterances from each ABI speaker were used for testing

and the SPB and SPC utterances plus ‘short sentences’ and ‘short phrases’ were

used for training (Section 3.1).

5. Accent identification experiment results

This section reports the results of applying the i-vector based AID system

(Section 4.1) to identify accents in the ABI-1 corpus (Section 5.1), analyse the

distribution of regional accents of British English in the WSJCAM0 corpus

(Section 5.2), and visualise the relationships between the accents in the ABI-1

corpus (Section 5.3). The results are report at this stage because they inform

the ASR experiments in Section 6.

5.1. Accent identification results on ABI-1

The i-vector based AID system (Section 4.1) identifies the correct ABI-1

accent and correct BAG (NE, SE, SC, IR) with accuracies of 76.8% and 89.8%,

respectively [14]. Table 2 shows the confusion matrix from this experiment.

The blocks of the matrix correspond to the BAGs. The percentages of speakers

from the NE, SE, IR and SC BAGs that are assigned to the incorrect BAGs are

9.4%, 21%, 0% and 2.4%, respectively. The poorest performance is for SE, with

18% of SE speakers assigned to the NE BAG. The poorest performance for an

individual accent is for nwa, the North Wales accent. This is confused mainly

with the northern English accents (though not with the Liverpool accent, to

which it is closest, subjectively). The best performance is achieved for the two

Scottish accents, shl and gla. Note that the 3-fold cross validation ensures

that no test speaker appears in the training set for his or her experiment and

excludes the possibility that the system is doing speaker, rather than accent,

identification.
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Table 2: Confusion matrix for the i-vector accent identification system (NE: Northern En-

glish, SE: Southern English, SC: Scottish English, IR: Irish English)

Accent Accent Acc. brm eyk lan lvp ncl nwa ilo sse ean crn roi uls shl gla

code group

brm NE 80% 16 0 0 0 0 1 0 1 1 1 0 0 0 0

eyk 84% 1 21 2 0 1 0 0 0 0 0 0 0 0 0

lan 76% 1 0 16 0 1 1 1 0 1 0 0 0 0 0

lvp 85% 0 0 1 17 0 2 0 0 0 0 0 0 0 0

ncl 65% 0 0 2 1 13 0 0 0 1 0 0 0 2 1

nwa 52% 1 4 1 0 1 11 0 0 0 2 0 0 1 0

ilo SE 57% 2 1 3 0 0 0 12 0 2 0 0 0 0 1

sse 69% 0 2 0 0 0 1 2 11 0 0 0 0 0 0

ean 84% 1 1 0 0 0 0 1 0 16 0 0 0 0 0

crn 55% 0 1 0 0 1 1 3 1 1 11 0 0 1 0

roi IR 78% 0 0 0 0 0 0 0 0 0 0 15 4 0 0

uls 90% 0 0 0 0 0 0 0 0 0 0 2 18 0 0

shl SC 100% 0 0 0 0 0 0 0 0 0 0 0 0 22 0

gla 95% 0 0 0 0 1 0 0 0 0 0 0 0 0 19

5.2. Accent properties of WSJCAM0

According to [12], speakers in the WSJCAM0 corpus came from the Cam-

bridge area, but effort was made to exploit Cambridge University’s diverse pop-

ulation to include a wide range of regional accents. Our i-vector based AID

system (Section 4.1) was applied to WSJCAM0 to investigate its distribution

of regional accents of British English. The results (Figure 2), show that 32%,

47%, 13% and 8% of the subjects in WSJCAM0 are categorised as having South-

ern English (SE), Northern English (NE), Scottish (SC) and Irish (IR) accents,

respectively, suggesting that the objective of finding speakers with a range of

regional accents was achieved. Despite Cambridge’s location in East Anglia,

only 0.3% of the speakers were assigned to the ean class.

5.3. Visualisation of the ABI-1 i-vector accent space

Figure 3 is a 2D projection of the i-vector space for the ABI-1 corpus. Each

of the 14 regional accents is represented by a 0.7-standard-deviation contour in
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18%
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4% ean
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lvp
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ncl
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nwa

12%
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12%

sse

16%

uls

3%

Figure 2: Accent properties of WSJCAM0 according to i-vector based AID

the space (hence the true overlap of the data is much greater than illustrated).

A contour representing WSJCAM0 has been added. Principal Components

Analysis (PCA) [47] followed by Linear Discriminant Analysis (LDA) [48] was

used to map the i-vector space onto 2 dimensions [11]. The figure reflects, to

some extent, natural relationships between the ABI accents. The clusters in the

top right of the figure are Scottish, those in the upper left quarter are Northern

English, and those in the bottom left quarter are mainly Southern English. The

two Irish accents appear together near the bottom of the figure. Less intuitively,

Standard Southern English (sse) appears at the bottom of the figure, and the

Lancashire (lan) and East Yorkshire (eyk) accents intersect with North Wales

(nwa), Inner London (ilo) and Cornwall (crn). The location of the WSJCAM0

contour in the centre of the figure, and the relationship between this and the

other contours, are consistent with the distribution of accents in WSJCAM0

(Section 5.2). Finally, the AID results from Section 5.1 are consistent with the

topology of Figure 3. For example, the lowest AID accuracies for accents in
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the SE BAG are for crn (55%) and ilo (57%), which, as noted above, overlap

significantly with the NE accents in the figure.
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Figure 3: Visualization of the i-vector accent space

6. Automatic speech recognition systems

This section describes the ASR systems that were tested and the experimen-

tal method that was used.

6.1. Baseline automatic speech recognition (ASR) systems

All of our ASR systems are built using the Kaldi toolkit [49]. The baseline

GMM-HMM and DNN-HMM ASR systems are trained on WSJT (section 3.2).

These baseline systems are referred to as G 0 and D 0, respectively. For the

GMM-HMM system, speech is transformed into a sequence of 39 dimensional

feature vectors, comprising mel frequency cepstral coefficients (MFCCs) 0 to

12 plus the corresponding ∆ and ∆2 parameters (25 ms analysis window, 100
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vectors per second, mean and variance normalisation). A conventional tied-state

GMM-HMM triphone system with 6 GMMs per state is trained on WSJT. The

resulting system has 1619 physical states. This is the baseline GMM-HMM

system G 0. Each utterance in WSJT is forced-aligned with the appropriate

sequence of HMM states, associating each feature vector in WSJT with a unique

physical HMM state (senone). We use the BEEP dictionary [50], extended to

include all of the words in the ABI corpus.

A DNN was created with 195 input units, 5 hidden layers (each with 1024

neurons), and 1619 output units. The inputs to the DNN are 195 dimensional

vectors comprising 13 dimensional mean and variance normalized filterbank fea-

tures, spliced with a context of ±7. During pre-training the input and hidden

layers are treated as a Deep Belief Network (DBN) consisting of a stack of re-

stricted Boltzman machines (RBMs) such that the hidden layer of each RBM

acts as the visible layer for the next. The DBN weights are pretrained using

5 epochs of Contrastive Divergence training [51]. A 1619 dimensional “soft-

max” output layer is added. The resulting DNN is trained using minimum

cross entropy driven stochastic gradient descent with a mini-batch size of 256,

a learning rate of 0.008 and 1619 dimensional posterior probability targets de-

termined by the mapping of feature vectors onto physical states. The resulting

baseline DNN-HMM system is D 0.

The ASR system uses a bigram language model obtained as a weighted

combination of the 5k WSJ0 bigram language model and a bigram language

model built from the ABI corpus. The weight is chosen empirically to give the

same WER on the ABI and WSJCAM0 development sets [36].

6.1.1. ASR training and test data

The Short Passage A (SPA) recordings from each speaker in the ABI-1 corpus

are used as test data (average 43.2 s per speaker, total 3.42 hours). Accent-

dependent training sets are taken from Short Passages B and C (SPB, SPC),

the Short Sentences and the Short Phrases (3.1). In all cases care is taken to

ensure that the test speaker is excluded from the training set. For example, in
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unsupervised accent-dependent model selection experiments (Section (7.2)) with

a given test speaker, the accent-specific model for the speaker’s “true accent”

was created using training material excluding data from that speaker (obviously,

data for that speaker will not occur in accent-dependent training sets for the

other 13 accents).

The experiments described in Section 7 use different subsets of the ABI-1

corpus to investigate accent- and BAG-specific training, the effect of training

set size, and the utility of specific accents as training data for accent-robust

ASR. The structure of the ABI-1 corpus (Section 3.1) was exploited to ensure

that the distributions of words and speaker gender within the different sets

was consistent. It was assumed that sets with similar distributions would give

similar recognition results. However, the effect of choosing particular training

sets within these constraints was not explicitly investigated.

7. ASR experiment conditions

For clarity each ASR experiment is given a code X Y[ Z]. In this code X is

either G (GMM-HMM) or D (DNN-HMM), Y is 0 (baseline (Section 6.1)), S

(supervised accent adaptation (test speaker’s “true” accent given)), or U (un-

supervised accent adaptation (test speaker’s accent identified using AID)). Z is

an optional more detailed description of the experiment.

7.1. DNN-HMM system with i-vector augmentation of feature vectors (D U iV)

Augmenting each acoustic feature vector in a test utterance with a 100 di-

mensional i-vector derived from that utterance (Section 4.1) enables the DNN

to learn the senone-level posterior probabilities for an acoustic feature vector

given information contained in the i-vector about systematic variation in the

utterance. Since i-vectors contain information about accent in addition to other

types of variability [14], this approach to utterance-level speaker adaptation in-

cludes an element of accent adaptation. For this reason the method is included

in the current study. The resulting system is D U iV. Similar approaches to

speaker and accent adaptation are described in [18, 41].
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7.2. GMM-HMM system with unsupervised AID-based model selection

(G U MSel)

For each test speaker, 14 accent-specific GMM-HMM systems were created

by MAP adaptation [29] of the baseline GMM-HMM system using approxi-

mately 40 minutes of accent-specific training data from the ABI-1 corpus per

accent. Each such set equates to approximately 60% of the available accent-

specific training data. As indicated in Section 6.1.1, the effect of using dif-

ferent 40 minute sets was not explicitly investigated. For the speaker’s “true”

accent, the accent-specific GMM-HMM system was created using training ma-

terial excluding that speaker (Section (6.1.1)). An accent-specific model was

chosen using the result of i-vector based AID (Section 4.1) applied to the test

speaker’s Short Passage A data (Sections 3.1, 6.1.1). Speaker-adaptation was

then applied using MLLR [32] with 43 s of speaker-specific data. This system is

referred to as G U MSel. Due to differences between the HTK [52] and Kaldi

toolkits, the GMM-HMM system error rates reported in this study are lower

than in [10, 11, 36]. All subsequent experiments use DNN-HMMs. This ex-

periment enables the model-selection approach to accent-robust ASR from [10]

to be compared with the baseline DNN system (D 0, Section 6.1) and i-vector

augmentation (D U iV, Section 7.1).

7.3. Supervised accent-dependent data augmentation (D S *)

These are also referred to as “oracle” systems because they know the test

speaker’s true accent. The experiments compare the performances of DNN-

HMM systems in which the WSJT training set is augmented with data from

the speaker’s specific accent or data from the speaker’s BAG (SE, NE, SC or IR).

For each ABI accent, the WSJT training set is supplemented with 40 minutes of

accent-specific data, resulting in 14 accent-specific (AS) DNN-HMM systems.

Separately, WSJT is supplemented with 2.25 hours of data from one of the 4

‘broad accent’ groups (BAGs), namely Southern English (SE), Northern English

(NE), Scottish (SC) or Irish (IR) (Section 3.1), resulting in 4 BAG dependent

systems. The BAG-specific training sets are restricted to 2.25 hours because this
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is the largest possible training set for the smallest BAG (IR). As in previous

experiments, the effect of choosing different 2.25 hour sets for the bigger BAGs

was not investigated, but the different training sets share the same distributions

of gender and vocabulary. For a given test speaker, accent-dependent model

selection is supervised, according to the speaker’s true accent. As always, the

current test speaker is excluded from the training set for his or her accent-

specific system (Section (6.1.1)). These experiments are denoted by (D S AS)

and (D S BAG) (where D indicates DNN-HMM, S indicates supervised model

selection (the test speaker’s true accent is know) and AS and BAG indicates

accent-specific and broad accent group dependent systems, respectively.

Since these experiments were conducted a number of methods have been

proposed for DNN-HMM adaptation using restricted domain-specific data, for

example by training a small set of new [53] or existing DNN parameters (typ-

ically those in the softmax layer) [54, 55]. DNNs have also been adapted to

compensate for factors including far-field microphones and room acoustics [56].

7.4. Accent-independent, unsupervised DNN-HMM systems (D U *)

An alternative to accent-dependent training followed by model selection is

to use the same multiple accent DNN-HMM system for all speakers. Two prop-

erties of the data that is added to WSJT to train an accent-independent model

are potentially important, namely its quantity and its ‘accent diversity’ (the

number and types of different accents in the data). The experiments in this

section investigate these two factors.

7.4.1. Multiple-accent DNN-HMMs (D U MA*)

This experiment investigates the effect of the quantity of multi-accent data

that is added to the WSJT training set. Accent-independent multi-accent (MA)

DNN-HMMs are created by adding (a) 2.25 hours and (b) 8.96 hours of data,

distributed uniformly across all 14 ABI-1 regional accents, to WSJT. These ex-

periments are unsupervised ( U), since the test speaker’s true accent is unknown

(and not required), and are labelled D U MA2.25 and D U MA8.96. As in the
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previous experiments the different training sets have matching distributions of

gender and vocabulary but the effects of using different 2.25 and 8.96 hour train-

ing sets were not investigated.

7.4.2. Effect of accent diversity (D U AD*)

In contrast to the previous experiments, these experiments investigate the

effect of the accent diversity (AD) of the training data (the number of different

accents represented in the training set), rather than simply the quantity of

data. WSJT is supplemented with a total of 2.25 hours of data from (a) 2

accents from the NE (North of England) accent group (low accent diversity,

D U AD2), (b) 4 accents from the NE, SC (Scottish) and IR (Irish) accent

groups (medium accent diversity D U AD4), (c) 8 accents from the NE, SC, IR

and SE (Southern England) accent groups (medium accent diversity D U AD8),

and (d) all 14 accents in the ABI corpus (high accent diversity, (D U AD14).

Note that case (d) is identical to the first multiple-accent system in (Section

7.4.1). Hence D U AD14 and D U MA2.25 are the same.

These experiments are just a small sample from the many ways that the

accent groups and specific accents could be chosen in each condition, and this

should be taken into account when interpreting the results. As in the previous

experiments the distribution of gender and vocabulary is consistent between

training sets.

7.4.3. Effect of different broad accents groups (D U BAG(*))

Figure 3 shows the relationship between WSJCAM0 and the various accents

in ABI-1. The significant overlap between WSJCAM0 and the ean accent in the

i-vector accent space suggests that adding ean data to WSJST would have little

effect, whereas adding gla data might have a significant effect, because gla is

the most distant accent from WSJCAM0 and adding gla data to WSJT would

increase the accent diversity of the training data. Figure 2 also indicates mini-

mal overlap between WSJCAM0 and gla. The purpose of this experiment is to

investigate possible relationships between the proximity of a regional accent to
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WSJCAM0 in figure 3 and the utility of that accent as additional training mate-

rial. Four systems are created by augmenting WSJT separately with 2.25 hours

of data from each of the 4 BAGs, SE (D U BAG(SE)), NE (D U BAG(NE)),

SC (D U BAG(SC)) and IR (D U BAG(IR)). As in the previous experiments

the distribution of gender and vocabulary is consistent between training sets to

try to ensure that accent is the only variable that is changed.

8. ASR experiment results

This section presents the performances of the ASR systems described in sec-

tion 7. Results are presented in terms of percentage Word Error Rate (%WER)

and the Average WER Reduction (%AWR) with respect to the baseline DNN-

HMM system (6.1). The results are summarised in Table 4. The final column of

the table shows the amount of accented data that is added to WSJT. Where the

training set contains material from ABI-1, the %AWR for accents in the train-

ing set (‘Target’) and not in the training set (‘Off target’) are also included.

All recognition experiments on ABI-1 use the SPA data (Section 3.1) for test.

Experiment parameters were optimized empirically using cross-validation.

8.1. Results: Baseline GMM- and DNN-HMM ASR (G 0 and D 0)

The baseline GMM-HMM (G 0) and DNN-HMM (D 0) systems (Section 6.1)

achieve average %WERs of 12.89% and 6.85%, respectively, on the ABI-1 test

set. For the GMM-HMM system, WER increases from 3.5% for sse to 26.7%

for gla. The baseline DNN-HMM system also achieves its best and poorest

performances, 2.9% and 13.4% WER, on sse and gla, respectively. Figure 5

shows the %WERs for each ABI-1 accent for both systems. Overall it is clear

that the DNN-based system performs better than the GMM-based system. The

average %WERs for the baseline GMM-HMM and DNN-HMM systems (G 0

and D 0) are shown in block 2 of Table 4.
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Table 3: Summary of the motivations for testing each of the ASR systems from Section 4.

Code Description Section

Baselines

G 0 Baseline GMM-HMM trained on WSJCAM0 only. 6.1

D 0 Baseline DNN-HMM trained on WSJCAM0 only. 6.1

D U iV D 0 with acoustic vectors supplemented with accent-dependent information: each 7.1

acoustic feature vector is augmented with an utterance-level 100 dimensional i-vector

GMM-HMM with unsupervised model selection

G U MSel Accent-specific GMM-HMM chosen by i-vector AID. Enables GMM-HMM model- 7.2

selection method from [10] to be compared with DNN-HMM baselines

‘Oracle’ DNN-HMM systems - test speaker ‘true’ accent known

D S AS Accent-specific DNN-HMM trained on WSJT + 40min data for test speaker’s true accent 7.3

D S BAG BAG-specific DNN-HMM trained on WSJT + 2.25hrs ABI-1 data for speaker’s true BAG. 7.3

D S AS and D S BAG enable comparison of accent-specific and BAG-specific training.

Accent-independent ‘multi-accent’ DNN-HMM systems

D U MA2.25 Multi-accent DNN-HMM trained on WSJT + 2.25hrs data from all 14 accents. 7.4.1

Enables comparison of ’multi-accent’ system with accent- and BAG-dependent systems

D U MA8.96 Multiple-accent DNN-HMM trained on WST + 8.96hrs data from all 14 accents. 7.4.1

Comparison with D U MA2.25 indicates the effect of the quantity of multi-accent data

Effect of ‘accent diversity’ of training set on DNN-HMM performance on accented speech

D U AD2 DNN-HMM trained on WST + 2.25hrs ABI-1 data from 2 accents (NE BAG) 7.4.2

D U AD4 DNN-HMM trained on WST + 2.25hrs ABI-1 data from 4 accents (NE, SC & IR BAGs) 7.4.2

D U AD8 DNN-HMM trained on WST + 2.25hrs ABI-1 data from 8 accents (NE, SC, IR & SE BAGs) 7.4.2

D U AD14 DNN-HMM trained on WST + 2.25hrs ABI-1 data from all accents 7.4.2

Effect of selecting training data from different BAGs on DNN-HMM performance on accented speech

D U BAG(SC) DNN-HMM trained on WST + 2.25hrs ABI-1 data from SC BAG 7.4.3

D U BAG(IR) DNN-HMM trained on WST + 2.25hrs ABI-1 data from IR BAG 7.4.3

D U BAG(SE) DNN-HMM trained on WST + 2.25hrs ABI-1 data from SE BAG) 7.4.3

D U BAG(NE) DNN-HMM trained on WST + 2.25hrs ABI-1 data from NE BAG) 7.4.3

These systems enable the utility of different BAGs for training an accent-robust DNN-HMM

system to be compared with reference to their locations in AID space (Figure 3)
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8.2. The relationship between ASR and AID error rates

Figure 4 is a scatter plot of %WER for the baseline ASR system D 0 as a

function of AID error rate, showing the best straight-line fit to the data. In

this experiment, as the AID error rate increases the ASR error rate tends to

decrease, and the correlation coefficient is -0.746. Intuitively, if an accent lies

at the extremes of the i-vector accent space and has minimal overlap with other

accents in that space, then the AID error rate for this accent will be small. At

the same time, because of the location of the WSJCAM0 training set in the i-

vector space (figure 3), this accent is poorly represented in the ASR training set

and so the ASR error rate for this accent is large. For example, Glasgow (gla)

and the Scottish Highlands (shl) have the smallest AID error rates of 5% and

0%, respectively, and the biggest ASR WERs of 13.3% and 11.5%, respectively.

Note that gla and shl are also the most distinct from the other accents and

furthest from WSJCAM0 in the i-vector space (Figure 3). The accent i-vector

space provides a means to visualize the relationship between the training set

and regions that correspond to accents that may be encountered in testing.

The objective should be to ensure that the training set covers these regions.

This relationship suggests that i-vector based analysis of an ASR training

set, as described in Section 4.1, can anticipate the types of speech for which that

ASR system will perform poorly, and hence indicate categories of speech that

could most usefully be added to the training set to improve ASR performance.

The effect of supplementing the WSJCAM0 training set with different types of

accented speech is investigated in the remainder of this section.

8.3. Results: DNN-HMM, i-vector augmentation of feature vectors (D U iV)

Augmenting the input to the DNN with an utterance dependent i-vector re-

sults in a WER of 6.2%, an absolute improvement of 0.7% (9.4% AWR) relative

to the DNN baseline D 0. These results are presented in block 3 of Table 4.

8.4. Results: GMM-HMM, unsupervised AID-based model selection (G U MSel)

The GMM-HMM system with unsupervised AID-based model selection and

speaker adaptation from [10] (Section 7.2) achieves an average WER of 7.4%.
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Figure 4: Plot of ASR %WER for the baseline D 0 system as a function of % AID error rate

This is substantially better than the %WER for the baseline GMM-HMM system

G 0 (5.5% absolute improvement, 42.9% AWR), but slightly poorer than for

the baseline DNN-HMM system D 0 (0.5% absolute increase in %WER, -7.5%

AWR). Thus, the baseline DNN-HMM system, trained on WSJCAM0 only,

achieves better performance on accented British English speech than the best

GMM-HMM adaptation method from [10]. No further GMM-HMM experiments

were conducted. Figure 5 shows the %WER for each ABI accent for G U MSel.

These results are shown in block 4 of Table 4.

8.5. Results: Supervised accent-dependent data augmentation (D S *)

This experiment compares the baseline DNN-HMM result (D 0) with

DNN-HMM systems trained on WSJT plus 40 minutes of accent-specific data

(D S AS), or 2.25 hours of data from a BAG (D S BAG). This is supervised

training because the model that is used for recognition is chosen to match the

test speaker’s accent or BAG. The average WERs over the ABI test data for

D S AS and D S BAG are 5.1% and 4.9%, suggesting that the larger amount of

data available for BAG training outweighs any advantage from the specificity
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of accent-dependent training. Augmenting the WSJT training set with accent-

specific (D S AS) and broad accent group specific data (D S BAG) results in

absolute WER reductions of 1.8% (25.8% AWR) and 1.9% (28.0% AWR), re-

spectively, compared with the DNN-HMM baseline. These results are block 4

of Table 4.

A further comparison is between DS S AS and a version of GMM-HMM

model selection where the accent-specific GMM-HMM is chosen according to the

speaker’s true accent rather than the result of AID. Although this experiment

was not conducted in the present study, the results in [10] suggest that the

WER would be approximately 3% better than the 7.4% achieved by G U MSel,

or 7.2%. This is poorer than both DS S AS and the DNN-HMM baseline.

8.6. Results: Accent-independent, unsupervised DNN-HMM systems (D U *)

8.6.1. Results: Multiple-accent DNN-HMMs (D U MA2.25 and D U MA8.96)

The experiment investigates the effect of supplementing WSJT with multi-

accent data with fixed accent diversity but varying size. We compare the re-

sults of training the DNN-HMM system on WSJT augmented with 2.25 hours

(D U MA2.25) and 8.96 hours (D U MA8.96) of data selected uniformly across

all 14 ABI-1 accents. The results are shown in block 5 of Table 4. Adding 2.25

hours of multi-accent training data to WSJT reduces the average WER on ac-

cented data to 4.9%, an absolute reduction of 2% (28.3% AWR) relative to the

DNN-HMM baseline. This accent-independent, multi-accent training result is

very similar to the result for the ‘oracle’ accent-dependent system trained on the

same amount of data from the correct BAG (D S BAG). In other words, know-

ing the test subject’s accent and explicitly augmenting the training set with data

from the correct accent or BAG appears to have no advantage over multi-accent

training. Quadrupling the quantity of supplementary multi-accented data leads

to a %WER to 4.4%, an absolute reduction of 2.5% (35.9% AWR). This suggests

that accent-diversity is a key factor.
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Table 4: Summary of ASR results from Section 8. Columns 3, 4, 5, 6, 7, 8 and 9 indicate

the %WER, the % reduction in average WER relative to the baseline, the % reduction in

average WER for accents represented in the supplementary data, the % reduction in average

WER for accents that are not represented in the supplementary data, the number of regional

accents, the number of broad accent groups, and the amount of data in the supplementary

training data.

Code System
WER AWR(%) Regional Broad length

(%) Avg target off target accents accents (hours)

Baselines

G 0 Baseline GMM-HMM trained on WSJCAM0 only 12.9 - - - - - -

D 0 Baseline DNN-HMM trained on WSJCAM0 only 6.9 - - - - - -

D U iV D 0 with acoustic vectors augmented with i-vectors 6.2 9.4 - - - - -

GMM-HMM with unsupervised model selection

G U MSel Accent-specific GMM-HMM selected using AID 7.4 -7.5 - - - - -

“Oracle” DNN-HMM systems - test speaker “true” accent known

D S AS Accent-specific DNN-GMM for “true” accent 5.1 25.8 - - - - -

D S BAG BAG-specific DNN-HMM for “true” BAG 4.9 28.0 - - - - -

Accent-independent ‘multi-accent’ DNN-HMM systems

D U MA2.25 Multi-accent DNN-HMM (2.25hrs data, 14 accents) 4.9 28.3 - - 14 4 2.3

D U MA8.96 Multi-accent DNN-HMM (8.965hrs data, 14 accents) 4.4 35.9 - - 14 4 9.0

Effect of ‘accent diversity’ of training set on DNN-HMM performance on accented speech

D U AD2 Low-diversity DNN-HMM (2.25hrs data, 2 accents) 5.1 25.4 42.5 14.2 2 1 2.3

D U AD4 Med.-diversity DNN-HMM (2.25hrs data, 4 accents) 5.0 26.9 16.8 22.0 4 3 2.3

D U AD8 Med.-diversity DNN-HMM (2.25hrs data, 8 accents) 4.9 28.3 18.2 29.0 8 4 2.3

D U AD14 High-diversity DNN-HMM (2.25hrs data, all accents) 4.9 28.3 21.9 - 14 4 2.3

Effect of selecting training data from different BAGs on DNN-HMM performance on accented speech

D U BAG(SC) DNN-HMM (2.25hrs data from SC BAG) 4.7 31.7 28.7 24.4 2 SC 2.3

D U BAG(IR) DNN-HMM (2.25hrs data from IR BAG) 4.9 28.3 23.2 21.6 2 IR 2.3

D U BAG(SE) DNN-HMM (2.25hrs data from SE BAG) 5.6 17.7 -4.3 8.7 4 SE 2.3

D U BAG(NE) DNN-HMM (2.25hrs data from NE BAG) 5.3 22.3 19.3 12.4 6 NE 2.3
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8.6.2. Effect of accent diversity (D U AD*)

Augmenting WSJT with data from just 2 accents from the NE BAG results

in a WER of 5.1%, an absolute reduction of 1.8% (25.4% AWR) in WER across

all accents compared with the DNN-HMM baseline. The improvement for test

utterances whose accent is represented in the supplementary training data (‘Tar-

get’) is much greater than for accents that are not represented (‘Off-target’).

As the accent diversity of the additional training material increases, the aver-

age WER decreases until it matches the multiple accent system D U MA2.25

when 8 accents are represented in the training data. This is achieved mainly

through improvements in the off-target %AWR. The results are shown in block

6 of Table 4. The largest incremental improvement in %WER is obtained with

(D U AD2). Although the additional training data from the NE BAG has low

accent-diversity, Figure 3 shows that it differs from WSJCAM0 in AID space.

A possible explanation is that extending the training data in this way into the

NE region of AID space exposes the DNN to more accent variability, enabling

it to cope better even with unseen accents. This raises the question of whether

adding low-diversity data from other BAGs will lead to a similar result. This is

investigated in the next experiment.

8.6.3. Effect of different accent groups (D U BAG(*))

This experiment measures the effect of adding 2.25 hours of data separately

from each of the four BAGs to WSJT. The results are presented in block 7 of

Table 4. The lowest %WER is obtained by supplementing WST with Scottish

(SC) BAG data, which gives a WER of 4.7%, an absolute improvement of 2.2%

(28.7% AWR) relative to the DNN-HMM baseline. This is the best performing of

all the systems with 2.25 hours of additional training data. Moreover, it gives the

biggest average reduction in %WER not only for the Scottish accents (‘Target’)

but also for the other accents (‘Off-target’). For example, it is better to augment

WSJT with 2.25 hours of Scottish (SC) data than with 2.25 hours of multi-accent

data taken from all 14 ABI accents. There appears to be a relationship between

the utility of a BAG as additional training data, the distance of that BAG from
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WSJCAM0 in the i-vector space in Figure 3 and the proportion of WSJCAM0

that is allocated to that BAG by AID in Figure 2. The Scottish and Irish BAGs

are least represented in WSJCAM0 in Figure 2, furthest from WSJCAM0 in

Figure 3 and give the best results in this experiment. Conversely, the Northern

England (NE) and Southern England (SE) BAGs are already well-represented

in WSJCAM0, accounting for 79% of the speakers (Figure 2), are closer to

WSJCAM0 in Figure 3, and augmenting WSJT with data from the SE or NE

BAGs results in the lowest reductions in %WER.
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Figure 5: %WER per regional accent for the GMM-HMM (G 0) and DNN-HMM (D 0) base-

line systems, GMM-HMM AID-based model selection plus speaker adaptation (G U MSel),

i-vector based DNN-HMM adaptation (D U iV) and DNN-HMM training using WSJT aug-

mented with Scottish accented data (D U BAG(SC))

8.7. Detailed results for different regional accents

Figure 5 shows %WER for each accent in the ABI corpus for the GMM-HMM

(G 0) and DNN-HMM (D 0) baseline systems, the DNN-HMM system with
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i-vector augmentation of acoustic feature vectors (D U iV), accent-dependent

GMM-HMM systems with AID-based model selection followed by speaker adap-

tation (G U MSel), and training using WSJT augmented with 2.25 hours of

Scottish accented speech (D U BAG(SC), the best system with 2.25 hours of

additional training material).

8.8. Discussion of ASR results

The DNN-HMM baseline system (D 0) achieves a WER of 6.85%, a reduc-

tion of approximately 47% relative to the GMM-HMM baseline (G 0), indicating

that the DNN-HMM is inherently more able to accommodate variability due to

regional accent. Augmenting the acoustic feature vectors with an utterance-

dependent i-vector (D U iV) results in a further reduction in %WER of 6.2%

relative to the DNN-HMM baseline. The approach from [10] which uses AID

to select an accent-dependent GMM-HMM system (G U MSel) is outperformed

by both the DNN-HMM baseline (D 0) and i-vector augmentation. A negative

correlation, with respect to accent, is noted between AID accuracy and the per-

formance of the baseline DNN-HMM system. Accents at the edge of the AID

space achieve good AID accuracy, because they are relatively separate from

other accents, but poor ASR accuracy because they are not well-represented in

the training data. Thus, AID may be useful for anticipating ASR problems.

The lowest WER (4.4%) is obtained by supplementing WST with 8.96 hours

of multi-accent data (D U MA8.96), reinforcing the importance of the quantity

of data for DNN training.

In the remaining experiments, in which WSJT is supplemented with

2.25 hours of accented data, the WER ranges from 5.6% (D U BAG(SE)) to

4.7% (D U BAG(SC)). For multi-accent training, performance improves with

accent diversity. The best performance, 4.7%, is obtained by supplementing

WSJT with 2.25 hours of Scottish data, and is a reduction in %WER of 5% rel-

ative to the best result for multi-accent training with 2.25 hours of data (4.9%,

D U AD8). By analysing the accent content of WSJCAM0 (Figure 2) and vi-

sualising its relationship with the accents in the ABI-1 corpus in i-vector AID
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space (Figure 3), the AID experiments quantify the relationships between the

different accented data sets and enable the subsequent ASR experiments to be

interpreted in terms of accent diversity and the properties of the AID space.

These ASR experiments suggest that the utility of additional training material

depends on the extent to which it introduces new variability that is not included

in the original training set, and that this can be inferred from the AID space and

the distribution of accents in the training set. The most striking result is that

ASR performance for Irish (IR), Northern English (NE) and Southern English

(SE) accented speech is improved by supplementing the WSJCAM0 training set

with Scottish (SC) accented data. It is hypothesised that this is related to the

extreme position of the SC data in AID space and its absence from the WSJT

training set.

9. Conclusions

This paper has explored the relationships between AID and ASR accuracy for

regional accented British English speech, using i-vector based AID and GMM-

HMM and DNN-HMM based ASR. In particular it has shown that the i-vector

based AID feature space contains information that is useful to understand ASR

performance on particular types of accented data, can shed light on the rela-

tionships between different accents, and can anticipate the utility of different

types of training data for ASR.

The first contribution (Section 5.2) is an analysis of the accent diversity of

the WSJCAM0 corpus. This is achieved by applying an i-vector based AID

system to WSJCAM0 (Section 4.1). This indicates that 47%, 32%, 13% and

8% of its subjects are categorised as speakers of Northern English (NE), South-

ern English (SE), Scottish (SC) and Irish (IR) English, respectively (Figure 2).

This is quantitative evidence that the creators of WSJCAM0 were able to take

advantage of Cambridge University’s diverse population to find a wide range of

regional accents [12]. The next contribution of the paper is to provide insights

into the relationships between the different accents in the ABI corpus through
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visualisation of the i-vector AID space (Section 5.3). A two-dimensional pro-

jection of the space is created, using PCA and LDA, in which each accent is

represented by its mean and a 0.7 standard deviation contour (Figure 3). Sec-

tors of the i-vector space can be seen to correspond, approximately, to the broad

accent groups of Northern and Southern England, Scotland and Ireland. The

0.7 standard-deviation contour for WSJCAM0 is located in the centre of the

figure, between the Northern and Southern English BAGs, which is consistent

with Figure 2.

The second part of the paper is concerned with ASR for accented speech.

The baseline DNN-HMM system trained on WSJCAM0 outperforms both the

corresponding GMM-HMM baseline and the model selection method proposed

in [10], in which AID is used to select an accent-dependent GMM-HMM system.

Thus it appears that DNN-HMMs have some inherent ability to accommodate

accented speech. The performance of the DNN-HMM baseline can be further

improved by augmenting the acoustic feature vectors with an utterance de-

pendent i-vector, indicating that the DNN can exploit the accent information

contained in the i-vector. Inspection reveals a negative correlation between AID

accuracy for a particular accent and the performance of the baseline DNN-HMM

ASR system for that accent. The remainder of the paper describes DNN-HMM

experiments in which the WSJCAM0 training set WSJT is supplemented with

various sets of accented data. The novelty of these experiments stems from the

use of Figures 3 and 2 to understand the relationship, in terms of accent, be-

tween this supplementary data and WSJCAM0 and its diversity in accent space.

The results show that the quantity and the location of the supplementary data

in the AID feature space both influence ASR performance. In the case of the

“oracle” systems, which use knowledge of the speaker’s accent to choose an

appropriate accent- or BAG-dependent DNN-HMM, the BAG-dependent sys-

tem performs best. This has practical implications because AID systems can

identify a speaker’s BAG more accurately than his or her precise accent (89.8%

compared with 76.8% (Section 5.1)). However, both of the “oracle” systems

are outperformed by unsupervised multi-accent DNN-HMM systems that do
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not need to know the test speaker’s accent. The most interesting results are

presented in Section 8.6.3 where the supplementary data is drawn from a single

broad accent group. The results show that the lowest %WER is obtained by

adding Scottish (SC) data, which results in the biggest reductions in %WER

not only for the ‘matched’ Scottish accents but also for the other ‘unmatched’

accents. The proposed explanation is that the Scottish data, located at the pe-

riphery of the AID accent space, exposes the DNN to ‘extreme’ accented speech

and thereby renders it also able to accommodate other accents. In fact, it is

better to augment WSJT with 2.25 hours of Scottish accented data than with

2.25 hours of multi-accent data taken from all 14 ABI accents. Compared with

the DNN-HMM baseline, adding this Scottish data to the training set results

not only in a 28.7% improvement in WER for Scottish accented speech but also

a 24.4% relative improvement for non-Scottish accents. Comparison of Table 4

and Figure 3, suggests that there is a relationship between the distance of an

accent group from WSJCAM0 in the i-vector space and the recognition accuracy

obtained by using that accent group as supplementary training data.

Further work is required to determine if these results generalise to other deep

learning structures, larger systems, and training corpora. If this is the case then

they have the potential to provide a principled way to choose effective training

material and predict ASR problems in a range of applications. Although the

experiments described here are restricted to the relationship between AID and

ASR, it may also be possible to use other detection technologies, such as Speaker

Identification (SID), as an analysis tool in ASR. It may also be effective to apply

these methods to abstract classes, rather than accent groups, within a training

corpus. For example, these classes could be derived using data-drive clustering.

In this case “extreme accents” would be replaced by “extreme clusters” and

one would hope to establish a relationship between identification accuracy with

respect to a particular cluster and ASR accuracy for speech from that cluster.
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