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Adult neurons in the mammalian central nervous system (CNS) fail to regenerate after injury 
due to a number of factors including the reduced intrinsic growth capacity together with the 
hostile environment of the injured CNS microenvironment [1-4]. However recent studies have 
shown that modifying the intrinsic growth capacity through a number of cell signalling pathways 
can promote regeneration of adult CNS neurons. For example, intrinsic factors such as cyclic 
adenosine monophosphate (cAMP), mammalian target of rapamycin (mTOR), and the repressors 
phosphatase and tensin homolog (PTEN) and suppressor of cytokine signalling 3 (SOCS3) promote 
CNS axon regeneration [5-7]. The observation that cAMP and mTOR activity are developmentally 
downregulated and new protein synthesis is suppressed after mTOR inactivation probably explains 
why some axons do not normally regenerate in the mature CNS.

The retina is an extension of the CNS and optic nerve injury leads to the same problems in 
terms of neuronal survival and axon regeneration as other parts of the CNS. However, recent studies 
have demonstrated that inflammatory stimulation, such as oncomodulin [8-10], activation of the 
JAK/STAT3 pathway [11-13], transcriptional repressors, such as Kruppel-like factors (KLFs) [14,15], 
Sox11 [16], c-Myc [17], activation of the PTEN/mTOR pathway [18-21], codeletion of PTEN/
SOCS3 [5], and activation of BMP4/Smad1 pathway [22], pigment epithelium-derived factor 
(PEDF) [23-25], and glycogen synthase kinase-3 (GSK3) all promote the survival and regeneration of 
approximately 10% of retinal ganglion cell (RGC) axons in the murine retina [19]. It seems apparent 
that no matter what the regenerative strategy in the optic nerve, <10% of RGC survive and regenerate 
their axons [26,27].

The discovery of the dependence of different subsets of RGC upon specific neurotrophic factor 
(NTF) combinations implies that phenotypically diverse neurons will require different combinations 
of NTF for survival and regeneration and eventual re-innervation of appropriate targets. For example, 
there are over ~30 different types of RGC in the murine retina, which are classified by morphology, 
gene expression, physiology and regularity of spacing in the retina [19]. The intrinsically photosensitive 
(ip) RGCs (ipRGCs), contain a range of concentrations of the photosensitive pigment, melanopsin 
G, giving their variable properties [28,29]. Five types of ipRGC, M1-M5, have been described with 
varied morphological, molecular and physiological properties and occupy the innermost region of the 
ganglion cell layer (GCL) juxtaposed to the inner plexiform layer (IPL). These ipRGC have extensive 
dendritic ramifications that terminate in the ON, OFF and ON/OFF sub-laminae of the IPL [30,31]. 
M1 ipRGC are strongly melanopsin+ and mainly subserve pupillary reflexes and entrainment of the 
circadian clock [32-34]. M4 ipRGC resemble αRGC in that they have a large somata, expansive 
dendritic fields ramifying in the ON sub-laminae of the IPL and similar physiological properties 
[19,33,35,36]. Only M1 and αRGC preferentially survive axotomy but only 2.5% of surviving RGC 
regenerate their axons, >90% of which are derived from αRGC [19]. Therefore, finding alternative 
signalling pathways to promote RGC axon regeneration in non-ipRGC/αRGC is a key priority to 
restore function after optic nerve injury.      

With this in mind, we investigated the involvement of the GSK3 pathway after optic nerve 
injury in RGC survival and axon regeneration (Figure 1). GSK3 is a multifunctional serine/threonine 
kinase, originally described in mammals with homologs being present in all eukaryotes [37,38]. It 
inactivates glycogen synthase, an enzyme that regulates the synthesis of glycogen and two homologs 
are encoded in mammals: GSK3α and GSK3β. GSK3 has diverse functions, including regulation 
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environment and the fact that GSK3 has diverse functions in nerve 
regeneration. Collapsin response mediator protein 2 (CRMP2), 
which is normally inhibited by GSK3-mediated phosphorylation, 
promotes microtubule polymerisation and myelin disinhibition, 
whilst microtubule associated protein 1B (MAP1B), is directly 
phosphorylated by GSK3 and promotes axon growth. In addition, 
expression of non-physiological levels of either isoforms of GSK3, 
mainly GSK3β, may be detrimental since compensation by GSK3α 
and vice-versa can occur. Indeed, peripheral nerve regeneration was 
accelerated by elevated GSK3 activity using the phosphorylation 
resistant GSK3αS21A/βS9A [GSK3(α/β)S/A] double knock-in 
mouse strains, an effect which was based on phosphorylated 
MAP1B-associated inhibition of microtubule detyrosination and 
subsequent increase in microtubule dynamics in axonal growth 
cones. Using this transgenic mouse plus RGC specific GSK3α and 
GSK3β knockout mice, elevation of GSK3 activity in GSK3S/A 
mice was compromised whilst GSK3β knockout mice potentiated 
inflammatory-stimulation-mediated RGC axon regeneration [43]. 
Rapamycin-mediated inhibition of mTOR has no effect on GSK3β 
activation, but inhibition of GSK3β activates mTOR in cultured 
dorsal root ganglion neurons, probably by releasing the tuberous 

survival [37,38]. The two isoforms of GSK3 are not functionally 
identical and redundant, despite sharing a high degree of similarity 
and functional overlap. For example, GSK3β plays a prominent 
role in the CNS and regulates neuronal development, neurogenesis, 
neuronal migration, differentiation and survival. GSK3beta 
is constitutively active in resting cells and undergoes rapid 
phosphorylation, which regulates its function. Phosphorylation 
at tyrosine 216 (Tyr216) confers full activity of GSK3β, whilst 
phosphorylation of serine 9 (Ser9) inhibits GSK3β activity. Ser9 
phosphorylation is the most common regulatory mechanism for 
GSK3β, with many kinases including p70 S6 kinase, extracellular 
signal-regulated kinases (ERKs), p90RSK (also called MAP-MAP 
kinase-1), protein kinase B (also called Akt), certain isoforms of 
protein kinase C (PKC) and cyclic AMP-dependent protein kinase 
(protein kinase A, PKA), phosphorylating Ser9.

The role of GSK3 in CNS axon regeneration, including optic 
nerve regeneration, is controversial. Some report that GSK3 activity 
is required for axonal growth or myelin disinhibition, others report 
that the opposite is true [39-43]. These reported differences may be 
due to factors including cell types studies, neuronal age, the axon 

Figure 1: Crosstalk of neurotrophin and BMP signalling in RGCs. Neurotrophins (NTs) act on tyrosine kinase (Trk) receptors and activates 
phosphatidylinositol kinase (PI3K) activity that converts phosphatidylinositol (4,5) bisphosphate (PIP2) to phosphatidylinositol (3,4,5) triphosphate 
(PIP3), an effect that is reversed by phosphatase and tensin homolog deleted on chromosome 10 (PTEN). PIP3 then activates phosphatidylinositol-
dependent protein kinase 1 (PDK1) and Akt, inhibiting tuberous sclerosis complex (TSC1/2). TSC1/2 can stimulate the Ras homolog enriched in 
the brain (Rheb) to upregulate mTOR activity. Akt also inhibits GSK3β, which in turn disinhibits CREB-mediated NT transcription, adenomatous 
polyposis col (APC), and collapsing response mediator protein 2 (CRMP2) to promote growth cone assembly. Bone morphogenetic proteins (BMPs) 
normally signal through C-terminal phosphorylation of small mothers against decapentaplegic homolog 1 (Smad1), which then makes nuclear 
entry and regulates transcription of downstream axogenic growth programs (e.g. Extracellular signal-related kinase 1 (Erk1) and Erk2). NT such as 
brain-derived neurotrophic factor (BDNF) can activate intra-axonal translation of Smads which are then translocated to the soma to be activated 
by BMP signalosomes, connecting retrograde signalling of BDNF and BMP.
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sclerosis complex 1 (TSC1) from direct GSK3β-dependent 
activation [44]. 

Therefore, we hypothesised that suppression of GSK3β activity 
in RGC may enhance RGC survival and axon regeneration. We 
showed that knockdown of GSK3β using translationally relevant 
short interfering RNA (siRNA; siGSK3β) in adult mixed retinal 
cultures promoted significant RGC survival and the number of RGC 
with neurites (i.e. growth initiation) but did not affect neurite length 
(i.e. neurite elongation), effects that were sensitive to Rapamycin 
(i.e. mTOR-mediated) [45]. In agreement with this, knockdown 
of GSK3β in vivo promoted significant RGC survival and modest 
RGC axon regeneration. Our study therefore suggested that GSK3β 
not only promoted RGC survival but also axon regeneration. 

The role of GSK3β in promoting neuroprotection is 
controversial, with a dual regulation identified suggesting that 
GSK3β not only promotes the intrinsic apoptotic pathway but also 
inhibits the extrinsic apoptotic pathway (Figure 2) [46-53]. In the 
intrinsic apoptotic pathway, GSK3 is pro-apoptotic and acts on Bax, 
Bim and Bid causing mitochondrial depolarisation and release of 
cytochrome c which then activates apoptosis. Conversely, GSK3 
prevents death inducing signalling complex (DISC) formation and 

prevents apoptosis by the extrinsic pathway. In addition, inhibition 
of GSK3β not only protects against glutamate-induced NMDA-
receptor-mediated toxicity but also suppresses the up-regulation of 
pro-apoptotic dynamin-related protein (Drp1) in the retina [54-
56]. Lithium-induced inhibition of GSK3β also protects against 
axotomy-induced RGC death, despite enhancing mTOR activity, 
an effect that was sensitive to Rapamycin and mediated through 
phosphorylated S6 (pS6) [5,57]. Interestingly, most pS6+ RGC are 
melanopsin+ ipRGC and hence are resistant to apoptosis, suggesting 
that inhibition of GSK3β likely mediates neuroprotection of non-
ipRGCs.

Despite the role of GSK3β in axon regeneration being 
controversial, our results demonstrated that inhibition of GSK3β 
is important for both RGC growth initiation and axon elongation. 
Others have shown that inhibition of GSK3β after nerve growth 
factor activation of the PI3K-Akt pathway was required for axon 
growth, but our study agrees with the observation that Akt-induced 
phosphorylation of GSK3β may not be the sole determinant of 
GSK3β activity [58]. GSK3β is a key axogenic factor and regulates 
ntf gene expression and phosphorylation of axon growth substrates 
such as the nuclear factor of activated T cells (NFAT), CREB 

Figure 2: GSK3 has opposite effects in the intrinsic and extrinsic apoptotic pathways. A. Mitochondria lose their integrity and release 
cytochrome C (cyt C) which then bind to apoptotic protease activating factor (APAF), adenosine triphosphate (ATP) and procaspase-9, 
forming the apoptosome and activation of the intrinsic death pathway. GSK plays a pro-apoptotic role by activating the formation of the 
apoptosome and eventual apoptosis. B. Ligand binding to tumor necrosis factor receptor (TNFR) family such as TNFR, Fas, death receptor 
(DR)4 and DR5 all activate trimerization of the receptor to which Fas-associated death domain (FADD) and procaspase-8 can bind. This 
promotes the formation of the death inducing signalling complex (DISC), leading to activation of effector caspases and completion of extrinsic 
apoptosis. GSK3 inhibits the formation of the DISC by associating with death receptor and so prevents activation of the extrinsic apoptotic 
pathway.
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and β-catenin [59-61]. Our results demonstrated that inhibition 
of GSK3β altered pCRMP2 levels downstream of RhoA/ROCK 
whilst others have shown that inactivation of CRMP2 inhibits 
microtubule polymerisation resulting in axon growth cone collapse 
[62-64]. Although MAP1B is normally activated after GSK3β-
dependent phosphorylation, leading to axon growth cone advance 
[61,65], our results showed that MAP1B did not play a major role 
in siGSK3β dependent RGC axon regeneration. 

GSK3β also regulates axon growth cone microtubule dynamics 
and is implicated in growth cone collapse induced by CNS myelin- 
and scar-derived inhibitory molecules [66,67]. Although RGC 
growth is normally inhibited by myelin associated axon growth 
inhibitory molecules such as myelin associated glycoprotein (MAG), 
Nogo and chondroitin sulphate proteoglycans (CSPG), inhibition 
of GSK3β reversed RGC neurite outgrowth in the presence of 
inhibitory concentrations of Nogo-peptide substrates, thus agreeing 
with previous observations [68,69]. Conversely, overexpression of 
GSK3β attenuates myelin-dependent axon growth inhibition whilst 
GSK3β inhibitors neither promotes nor represses neurite outgrowth 
in the presence of CNS axon growth inhibitors [41]. These seemingly 
discrepant studies can be reconciled by a model where inhibition of 
GSK3β can both enhance and prevent axon growth depending on 
the substrates involved [70]. 

Many substrates of GSK3 normally require phosphorylation 
by a distinct kinase, an event called priming, before they can 
be phosphorylated by GSK3. Some of the substrates of GSK3 
regulate microtubule assembly at the growth cone. These include 
APC and CRMP2, which are primed substrates, and GSK3 
phosphorylation abrogates their microtubule binding affinity 
[50,71]. Dephosphorylated CRMP2 and APC are enriched in the 
growth cone and promote axon formation and NT-induced axon 
growth [71,72], whilst inhibition of GSK3 activity, specifically 
towards primed substrates [73,74] results in reduced CRMP2 
phosphorylation and increased axon outgrowth [70]. In contrast, 
MAP1b is an unprimed substrate, which can be phosphorylated by 
GSK3 [75], promoting microtubule dynamics and allow efficient 
probing of the intracellular space and their ability to respond to 
extracellular signals, all of which are essential for axon growth [65,76]. 
Thus, a working model proposes that preferential suppression of 
GSK3 activity towards primed substrates promotes axon growth, 
whereas inhibition towards unprimed substrates blocks axon 
growth (Figure 3) [70]. In this way, GSK3 can coordinate essential 
properties of axonal microtubules to ensure optimal microtubule 
assembly in axons during axon regeneration.

GSK3 can also regulate axon regeneration by transcriptional 
control via the β-catenin and NFAT transcription factors. For 

Figure 3: Differential regulation of GSK3 substrates during axon regeneration. During axon regeneration, GSK3 activity towards primed 
substrates is blocked while its activity towards unprimed substrates is preserved. Inhibition of GSK3 activity towards collapsin response 
mediator protein (CRMP) 2 and adenomatosis polyposis coli (APC) allows CRMP2 and APC to bind microtubules, thereby increasing 
microtubule polymerization and stability. In contrast, GSK3’s activity towards microtubule-associated protein (MAP) 1b is preserved in the 
growth cone and maintains microtubules in a dynamic state, promoting axon growth.
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example, Wnt3a induces axon growth from developing sensory 
neurons via accumulation of β-catenin and subsequent activation 
of TCF4 [77]. Since CREB is a well-established transcription factor 
downstream of neurotrophins, deletion of CREB in Creb null mice 
display impaired axon growth [78]. Neurotrophins and netrins also 
induce the transcription of axon growth promoting genes triggering 
nuclear translocation of NFAT, which is required for axon growth 
[79]. 

In conclusion, it is clear that the activity of GSK3 is controlled 
via protein-protein interactions and considering the number of 
substrates that interact with GSK3, the regulation appears complex 
and dynamic. Some substrates of GSK3 require priming before 
they can be phosphorylated by GSK3 while others do not require 
priming, adding to its complexity but also its specificity. Further 
work will be required to determine the contribution of GSK3 in 
CNS neuroprotection and axon regeneration.
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