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This paper is concerned with bubble dynamics at a corner formed by two flat rigid boundaries, 
which is associated with applications in ultrasonic cleaning and cavitation damage. This 
phenomenon is modelled using the potential flow theory and the boundary integral method. The 
Green function is obtained to satisfy the impenetrable conditions at the rigid boundaries using the 
method of images, with the corner angle  = /k, where k is a natural number. To evaluate the 
numerical model, experiments were carried out with a spark-generated bubble in water and 
recorded by a high-speed camera. The predicted bubble shapes have excellent agreement with 
experiments. A jet forms towards the end of the collapse, pointing to the corner when initiated at 
the bisector of the two walls, but pointing to the near wall and inclined to the corner when initiated 
nearer one of the two walls. The Kelvin impulse theory predicts the jet direction well. As compared 
to a bubble near a flat wall, the oscillation period and the jet width increase but the jet velocity 
decreases. The bubble migrates away from the near wall and corner during its expansion and moves 
back towards them during its collapse, but at much larger speed and amplitude. A velocity 
stagnation point forms at the start of the collapse and a high-pressure zone is generated at the base 
of the jet during the late stages of the collapse, which drives the jet and the bubble towards the near 
wall and corner. 

Key words: Bubble dynamics; Bubble Jetting; Boundary Integral Method; Green’s function; 
Method of images. 

 
 
1. Introduction 

Bubble dynamics near a rigid boundary are associated with cavitation damage to pumps, 
turbines and propellers (Blake & Gibson 1987; Brennen 1995; Lauterborn & Kurz 2010). 
Microbubble dynamics near a boundary subject to an acoustic wave are associated with 
applications in biomedical ultrasonics (Coussios & Roy 2007; Kim, et al 2009; Curtiss et al. 2013; 
Brennen 2015; Vyas et al. 2016 2017), and ultrasonic cavitation cleaning (Ohl et al. 2006; Chahine 
et al. 2016; Rosselló et al. 2018;Yamashita & Ando 2019). 

A collapsing bubble migrates to a flat rigid boundary which results in the formation of a high-
speed liquid jet on the distal side pointing towards the boundary. The jet pierces the bubble and 
forms a toroidal bubble. The jet then penetrates the fluid between the bubble and boundary and 
subsequently impacts on the boundary. This phenomenon has been studied for decades (Lauterborn 
& Bolle 1975; Vogel, Lauterborn & Timm 1989; Philipp & Lauterborn 1998; Brujan et al. 2002; 
Lindau & Lauterborn 2003; Brujan et al. 2012; Liu et al. 2016; Supponen et al. 2016, 2017; 
Lechner et al. 2017). The jet concentrates momentum along its direction and impacts on a small 
area of the boundary. This concept is believed to be one of the main mechanisms of cleaning or 
damaging a rigid boundary (Hsiao et al. 2014; Chahine et al. 2016). Another main cause of 
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cavitation erosion is due to shock waves emitted from the torus ring coming into contact with the 
boundary (Tomita & Shima 1986; Philipp & Lauterborn 1998; Wang 2014).  

Relatively, much less research has been carried out on bubble dynamics near non-flat rigid 
boundaries. However, geometries in applications are often more complex than just a plane surface. 
Tomita et al. (2002) studied a bubble collapsing near a curved rigid boundary for an axisymmetric 
configuration, using high-speed photography as well as the method of images and the boundary 
integral method (BIM). The curved boundary is prescribed by a family of curves, which are suitable 
for applying the method of images and conformal mapping. They observed that when a bubble 
collapses near a curved boundary, the jet velocity may be larger than that near a flat boundary and 
higher pressures can occur. Brujan et al. (2018) studied the behaviour of a laser-induced cavitation 
bubble near two perpendicular rigid walls. A liquid jet is formed during bubble collapse pointing 
mainly to the nearer wall and inclined to the further wall, and the bubble migrates in the direction 
of the jet.  

We will study three-dimensional (3D) bubble dynamics in a corner formed by two flat, rigid 
boundaries, using the potential flow theory and BIM. This is a basic type of non-flat surface, which 
often occurs in engineering due to manufacturing procedures and/or practical needs. Kucera and 
Blake (1990) and Tagawa et al. (2018) provided the Green function for bubble dynamics in a corner 
having a corner angle  = /k, where k is a natural number. The Green function is obtained to 
satisfy the impenetrable conditions at the flat rigid boundaries using the method of images. Kucera 
and Blake (1990) obtained the Green function for  = /4, and Tagawa et al. (2018) provided the 
image locations for the corner angle  = /k. This paper demonstrates how the images together with 
the original source are symmetric with respect to both of the walls.  

We aim to study the expansion, collapse and migration of the bubble, the behaviour of the jet, 
and the pressure contours of the flow field. The predicted bubble shapes have excellent agreement 
with the published experiments for  = /2 as well as the experiments performed for electric spark 
generated bubbles for  = /4. A parametric study is carried out in terms of the corner angle and the 
dimensionless standoff distances of the bubble centre at inception from the two walls.   
 
2. Physical and mathematical modelling 
Consider the dynamics of a gas bubble near a corner with an angle α formed by two rigid flat 
boundaries, to be called wall1 and wall2  henceforth, as shown in figure 1. The Cartesian coordinate 
system Oxyz is set, with the Oxy plane being on the wall1, the Ozx plane being the symmetry plane 
of the configuration and the origin at the intersection vertex of the corner.  

 
Figure 1: Configuration and coordinate system for bubble dynamics near a corner, with c, N, F, 
being the dimensionless standoff distances of the bubble centre at inception from the corner, the 
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near and far wall. The corner angle is α and the eccentricity angle of the initial position of the 
bubble centre from the α-bisector is . 
 

The length scale is chosen as the maximum bubble radius Rm and the time reference scale is  

,mT R
p




                                                                  (1) 

where vp p p   , p, pv and ρ are the ambient pressure, saturated vapour pressure and liquid 

density, respectively. These values are taken as p = 101 kPa, pv = 2.3 kPa and ρ = 1000 kg m-3. 
Dimensionless variables are used in the remaining text unless stated otherwise.   

There are three significant parameters in this phenomenon: the corner angle , the lean angle 
from the bisector  of the centre of the initial bubble, and the dimensionless distance, γc, from the 
centre of the initial bubble to the corner vertex, 

.c
c

m

d

R
                                                                         (2) 

 
As the problem is symmetric in terms of , we only consider [0, /2]. The dimensionless 
standoff distances N and F from the centre of the initial bubble to the near and far walls are  

          sin ,     sin .
2 2N c F c

               
   

                                     (3) 

 The flow is assumed to be incompressible, inviscid and irrotational. The fluid velocity v thus 
has a potential , v , satisfying Laplace’s equation,  

2 0.                                                                            (4a) 
The viscous effects of the liquid flow are neglected here since inertial effects are usually dominant 
for bubble dynamics (Manmi et al. 2017). The compressible effects are only essential during a short 
period at the end of the collapse (Wang & Blake 2010, 2011; Wang 2016). 
 The kinematic boundary conditions on the two walls, wall1, wall2, the bubble surface SB and at 
the far field are as follows 

1 20 on wall ,wall
n





,                                                               (4b) 

on ,B

D
S

Dt


r
                                                             (4c) 

0 as ,r                                                                       (4d) 
where r is the position vector of the boundary, n is normal on the boundary surface, D/Dt denotes 
the material derivative, and r is the radial distance. The impermeable boundary condition on the 
rigid boundaries is (4b) and (4c) requires a material point on the bubble surface to remain there.  

Assuming that the gas-bubble is under an adiabatic process, its dimensional pressure pB 
satisfies 

  0
0 ,B v g

V
p t p p

V


    
 

                                                           (5) 

where pg0 is the initial pressure of the bubble gas, V0 and V are the initial and transient bubble 
volumes, and κ is the polytropic index of the bubble gas. Additionally, heat and mass transfer 
across the bubble surface can be included (Szeri et al. 2003), but are neglected here. 

The dynamic boundary condition on the bubble surface SB requires that the pressure 
difference across the surface is equal to the Laplace pressure, which can be written as follows by 
using the Bernoulli equation (Manmi & Wang 2017) 
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               
                             (6) 

where mWe R p    is the Weber number, /mgR p    is the buoyancy parameter, 

0 /gp p    is dimensionless initial pressure inside the bubble and rc is the radius of curvature of 

the bubble surface. The cases considered correspond to small bubbles, therefore the buoyancy 
effect is negligible, i.e.  = 0, unless explicitly stated otherwise. Buoyancy effects are essential for 
large bubbles (Wang 1998, 2004).  
 The last term in (6) is associated with the viscous effects, where the Reynolds number Re is 
defined as 0Re R p /   , n the unit outward normal at the bubble surface SB directed from 

liquid to gas and C is determined as following (Manmi & Wang 2017) 
 

2

2

1B

B

S

S

dS
n
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dS

n n
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 
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 


 

 
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


.

                                                                 

(7)    

Viscous fluid dynamics can be described approximately by potential flows when the vorticity is 
small or is confined to a narrow layer near the boundary (Joseph & Wang 2004; Joseph et al. 2007). 
It is particularly useful for a gas–liquid two-phase flow with an interface. 
 For a bubble subject to an ultrasonic wave, an incident wave should be incorporated into the 
model by adding the acoustic pressure in (6) (Wang et al 2014). Ultransonic wave effects can cause 
nonspherical collapse and formation of bubble jetting (Rosselló et al. 2018). 
 
 
3. Boundary integral method 
In this section, we describe the BIM, the Kelvin impulse theory and the calculation of the velocity 
and pressure field in the flow domain. 
 

3.1 Method of images 
Using Green's second theorem, the potential can be expressed as the integral over the bubble 
surface  

             , ,
, , , , ,

BS

t G
c t t G t dS

n n


 

  
    


q r q
r r r q q q                                    (8) 

where c(r, t) is the solid angle of bubble surface at the point r. Green’s function G(r, q) for 
Laplace’s equation satisfies the impenetrable boundary conditions at the two walls.  
 As the corner angle  = /k, in which k is a natural number, the Green function is given by 

2

0

1 1
( , ) ,

| |

k

j j

G





r q

r q
                                                              (9) 

where q0 = q is the source point and qj, j = 1, 2, …, 2k -1 are 2k-1 images of q0 in the two walls. The 
images were provided by Kucera and Blake (1990) and Tagawa et al. (2018). We provide a proof as 
follows. 
 Let the source point q0: (x0, y0, z0) make an angle θ0 = θa with wall1 and its successive images qj 
= (xj, y0, zj), which make an angle θj with wall1. The images lie on a circle with centre at (0, y0, 0) 

and a radius 2 2
0 0qr x z  . Figure 2 illustrates the images when a bubble is located between two 

walls inclined at an angle  = /2.  
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 The angles of θj, j = 0, 1, 2, …, 2k -1, can be divided into two groups as follows 

 0,  1,  2,  ,
2 2

, , 1.a a l k
l l

k k

         
 

                                             (10)                                         

The source and images are thus symmetric to wall1. Their angles relative to wall2 are ϴj = θj-π/k 
whose corresponding groups are 

                                       
 0,  1,  2,  ,

2
, 1

2 1 1
,a a

l l

k k
l k

 
 

  
   


  


.                               (11) 

Notice the last angle in the first group is  2 1 / 2 /a ak k k           , which is identical to 

/ ak  . Upon moving this last element from the first group to the first element, we have 

                         2 1 2
 0,  1,  2,  ,  -1

1
, ,a a l k

l l

k k

 
 

  
   


 


.                               (12) 

Therefore, the source and the images are also symmetric to wall2. 

 
Figure 2. The images for a source point q0 which makes angle θ0 with wall1 for α = π/2. 

 
 The BIM model is grid-free in the flow domain and computationally efficient and is thus 
widely used in the field of bubble dynamics. Linear planar triangular elements are used in the 
present BIM model. At each time step, we have a known bubble surface and known potential 
distribution on the surface. With this information, the tangential velocity on the bubble surface can 
be calculated from the gradient of the potential at the surface. The normal velocity on the bubble 
surface is obtained after solving the boundary integral equation (8). The bubble surface and 
potential distribution on the bubble surface are updated by performing the Lagrangian time 
integration to (2.4c, 2.6). This is obtained by using a second-order Runge-Kutta scheme, and an 
interpolated polynomial scheme coupled with the moving least square method. A variable time step 
is chosen for accuracy and efficiency, in such a way that the maximum change of the potential in 
each time step is restricted by a constant (Blake et al. 1986, 1987). A high-quality surface mesh is 
maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh 
technique. The details of the numerical model using the BIM model for this problem can be found 
in (Wang & Manmi 2014, 2015; Zhang & Liu 2015).  
 

3.2  Kelvin impulse theory 
The Kelvin impulse I of a bubble is defined as 

BS

dS I n .       (13) 

The Kelvin impulse corresponds to the apparent inertia of the bubble and its direction indicates the 
directions of the bubble migration and bubble jet (Blake 1988; Blake et al. 2015). 
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 If the bubble is taken a sufficient distance away from the boundary, it may be represented 
approximately by a time-varying point source. For a bubble at a corner with an angle of  = /k, 
where k is a natural number, the potential can be approximated by 

    2 1

0

1
,

4

k

j j

m t
t










r
r q

,                      (14) 

where m(t) is the source strength given by    24 /R t dR t dt , where R(t) is the transient radius of 

the bubble. In this section, q0 denotes the initial bubble centroid and qj for j ≥ 1 denotes its images 
in the two walls.  
 The potential (r, t) in (3.7) can be rewritten as 

     
0

, ,
4

m t
t t




 
 q

r r
r

,       2 1

1

1
,

4

k

j j

m t
t








 

r
r q

.                             (15) 

Utilising this notation, the Kelvin impulse can be calculated as follows (Best & Blake 1994) 

0

( )
t

t dt I F ,                                                                   (16) 

where 

         

0

2 22 1 2 1
0

3
1 1

0

1
,

4 4

k k
j

s
j jj j

m t m t
t m t t

 

 

 


  
       
   

 
r q

q q
F r

r q q q
.                  (17) 

Substituting (17) into (16), we have 

    
2 1

02
3

10 0

1
  

4

t k
j

j
j

t m t dt







 




q q
I

q q
.                                                   (18) 

 The Kelvin impulse is determined by the positions of the initial bubble and its images in the 
two walls (or the corner angle ). Tagawa et al. (2018) obtained the induced velocity at the bubble 
centroid using the method of images and complex functions via a two-dimensional analysis, which 
is in the same direction as the Kelvin impulse (18). 
 The Rayleigh bubble solution for m(t) is (Blake et al. 1986), 

   
2

2 332
1

2
m t R R


  .                                                   (19) 

For a Rayleigh bubble, we can calculate the Kelvin impulse at the end of collapse Tc  1.83 as 
follows 

   
2 1

07 3
6 2 3

1
0

8 6
,

9

k
j

c
j

j

T B
 




 




q q
I

q q
,                                                  (20) 

where B(z, w) is the beta function (see Abramowitz & Stegun (1965)). 
 

3.3 Calculation of velocity and pressure in the flow domain  
The velocity  can be calculated using the finite difference method with the potential calculated 
from the BIM.  The pressure distribution can be calculated using the Bernoulli equation, 

2 21
1

2
p z

t

  
    


.                                 (21) 

However, to calculate / t     using the finite difference method often results in unacceptable 
errors, due to the very small time-steps usually used for simulating a violent collapsing bubble. We 
calculate / t     using the BIM model following Tanizawa (1995) and Wu (1998). 
 The boundary volume problem for   can be obtained from (2.4a, b, d) as follows: 
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2 0,                                                                                        (22a) 

1 20 on wall ,wall
n







,                                                               (22b) 

0 as r   .                                                                   (22c) 

As such,   satisfies the same boundary integral equation on the bubble surface as  as follows 

             , ,
, , , , ,

BS

t G
c t t G t dS

n n


 

   
    



 

q r q
r r r q q q                                (23) 

where G(r, q) is the same Green’s function given in (3.2).   on SB is obtained from the dynamic 
boundary condition 

2 2 01

2
cV r

z
V We



           
 

  on SB.            (24) 

On the bubble surface SB, / n   can thus be calculated using the BIM (8). In the flow field,  (r, t) 
is then calculated using (23). 
 To verify the results, the numerical model is compared with the Rayleigh-Plesset equation 
(RPE) for a spherical bubble in an unbounded liquid. The pressure p(r, t) from the spherical bubble 
theory is given as follows, in a coordinate system with the origin at the centre of the bubble 

2 4
2

4

( ) ( ) 1 ( )
( , ) 1 ( ) 2 .

4

R t R t R t
p t R t R

r r r

 
    

 
 r                  (25) 

 Figure 3 compares the BIM and the spherical bubble theory for the time histories of the 
pressure for two different field points, with radial distances from the bubble centre at r = 1.5 and r 
= 5, in figure 3(a) and 3(b) respectively. The BIM results have excellent agreement with that of the 
spherical bubble theory.  

 

Figure 3. Comparison of the pressure for RPE and BIM for a spherical bubble in an unbounded 
liquid at a field point, with radial distances from the bubble centre at (a) r = 1.5 and (b) r = 5. The 
remaining parameters are Rm = 0.8mm, ε = 200, δ = 0.0089, We = 1084 and κ = 1.4. 

 We next compare the present results with the pressure calculated with an axisymmetric BIM by 
Li et al. (2016). It is for a bubble with Rm =16.6mm above a rigid wall, with the initial standoff 
distance γW = 0.99, ε = 50, δ = 0.04, We=2250 and κ = 1.4. The present 3D BIM in figure 4(a) 
agrees well with the axisymmetric BIM (Li et al. 2016) shown in figure 4(b) for the pressure 
contours, velocity field, bubble shape and jet shape immediately before jet impact. 
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Figure 4. Comparison between the velocity field and pressure distributions of the (a) 3D-BIM 
model (present study) and (b) axisymmetric BIM (Li et al. 2016), for a bubble near a wall with γW = 
0.99, and at t = 2.32. The remaining parameters are Rm = 16.6mm, ε = 50, δ = 0.04, We = 22500, δ 
= 0.04 and κ = 1.4. 
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4. Validation of the numerical model 

4.1 Comparison with experiments 
To evaluate the BIM model, we compare the computational results with experimental images. The 
first case is for a laser beam generated bubble having a maximum radius Rm = 0.85mm at a right-
angled corner for  = /2,  = 0.1, N = 1.08, and F = 0.88  (Brujan et al. 2018). The corresponding 
dimensionless distance of the bubble centre at the inception form the near and far walls are N = 
0.88 and F = 1.08. As shown in figure 5, during the early stages of the expansion (frame 1), the 
bubble remains spherical except its surface facing the near wall is retarded by the wall. At the end 
of the expansion (frame 3), the parts of the bubble surface facing two walls are flattened by the 
walls, with the greater flattening by the near wall, while the distal part opposite to the corner 
remains spherical. The bubble collapses from the distal side, with the near wall sides kept in contact 
with the wall (frames 3-6). Towards the end of the collapse, a wide jet forms on the distal side 
which points to the corner (frames 5-6). All the features are reproduced by the computations and 
the bubble shapes obtained from the computations are in very good agreement with the 
experiments, except that the bubble jet is not visible in the experiments due to the opaqueness of 
the bubble.  
 

 

Figure 5. Comparison between (a) experimental (Brujan et al. 2018) and (b) BIM results 
characterized by  = /2,  = 0.1, N = 1.08, and F = 0.88  , Rm = 0.85mm,  = 100, We = 1152, δ = 
0.009  and κ = 1.4. The dimensionless times are t = 0.2, 0.9, 1.37, 2.1, 2.52, and 2.683, respectively. 

 The second case is for a bubble initiated at the bisector of an acute corner for  = /4,  = 0 
and c = 1.45. The experiments were carried out with a spark-generated bubble in water and 
recorded by a high-speed camera. Experiments are performed in a cubic glass tank with 0.5 m side 
length filled with tap water to a depth of 0.4 m. A corner is formed by two transparent rectangular 
fiberglass walls with a thickness of 4.5 mm; the joined sides being 210 mm and the other side 150 
mm. The two walls are inserted from the top of the glass tank using adjustable positioners. The 
water tank is illuminated by a 2 kW spot light opposite to the camera through a diffuser (matte 
glass). Images of bubbles are recorded by a VRI-Phantom V611 high-speed camera working at 
20,000 frames per second with an exposure time of 140,000 ns. The interval between two image 
frames is 144.93 μs, which is small compared to the period of bubble oscillation (about 6 ms). For 
illumination, a flash lamp with a 500 ms flash duration is used which covers the most relevant part 
of the first two cycles of oscillation. The timing of the photography is adjusted with an electronic 
delay circuit.  

 The maximum bubble radius is about Rm = 13.5mm. This is associated with N = F = 1.03. 
Large parts of the bubble surface facing two walls are flattened by the walls at the end of the 
expansion (frame 2) as shown in figure 6. During collapse (frames 3-7), the parts of the bubble 



10    
 

 
surface facing the two walls are kept in contact with the walls, the distal side opposite to the corner 
collapses faster than the side facing the corner, a jet forms pointing towards the corner in the late 
stage of the collapse (frames 6 and 7). Again, the computations agree well with the experiment for 
this case. 

 

Figure 6. Comparison between (a) experimental and (b) BIM results characterized by  = /4,  = 
0, c = 1.45, Rm = 13.5mm,  = 100, We = 1886, δ = 0.036  and κ = 1.4. The dimensionless times 
are t =0.96, 1.813, 2.23, 2.55, 2.76, 2.99, and 3.305, respectively. 

4.2 Convergence tests 
To analyze the convergence of the BIM modelling, convergence tests were performed for the case 
for  = /2,  = 0.1, c = 2.12 and Rm = 0.8mm. Various numbers of the elements were used on the 
bubble surface, M = 720, 980, 1280 and 2000. Figures 7(a) and 7(b) show the results of the jet 

velocity vjet and the equivalent bubble radius  1 3
3 / (4 )eqR V  . Both results converge well with the 

surface element number M as M  980. Figure 7(c) compares the bubble shapes immediately before 
jet impacting on the opposite bubble surface for various values of M. It shows that the bubble shape 
for M = 1280 agrees well with that for M = 2000. As such, all the remaining calculations in this 
study were performed for M = 1280. 

             

 
Figure 7. Convergence tests for the BIM modelling in terms of (a) time history of the jet velocity,  
(b) equivalent bubble radius, and (c) bubble shapes immediately before jet impact for  = /2,  = 
0, c = 2.12, We = 1084  and Rm = 0.8mm, κ = 1.4, δ = 0.0089 for various bubble surface elements 
M = 720, 980, 1280 and 2000. 
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5. Numerical results 

5.1 Symmetric cases ( = 0) 
We firstly consider symmetric cases for bubbles initiated at the bisector of the corner for  = 0. 
Figure 8 displays bubble dynamics near a right-angled corner  = /2 at various standoff distances 
from the two walls for N = F =  = 1, 2, 3, 4, 5, 6. Each row in figure 8(a) illustrates the bubble 
shapes at the inception of the bubble, the maximum volume, jet formation, and jet impact on the 
opposite bubble surface. The bubble expands approximately spherically (frame 1), except for  = 1 
for which the bubble surfaces facing the two walls are compressed by the walls (frame 1). During 
the latter stages of the collapse, the bubble becomes oblate along the bisector direction, the far side 
of the bubble opposite to the corner becomes noticeably flattened and a high-speed liquid jet forms 
pointing to the corner (frames 2 and 3). As the bubble is initiated closer to the corner, the bubble 
volumes at the start of jet formation and jet impact increase and the width of the jet increases. The 
start of jet formation occurs at the moment when the far side becomes flattened. 

 The Bjerknes forces are forces on bubbles due to pressure. The primary Bjerknes forces are 
due to an external pressure field, and the secondary Bjerknes forces are caused by a neighbouring 
bubbles or boundaries. The bubble becomes oblate along the bisector during collapsing, as the 
second Bjerknes forces are stronger for the parts of the bubble surfaces near the walls. The jet 
pointing towards the corner, due to the combined effects of the two second Bjerknes forces.  
 

 
Figure 8. Bubble dynamics near a right-angled corner  = /2 at various standoff distances from the 
two walls N = F =  = 1, 2, 3, 4, 5, 6: (a) Side view of the bubble shapes at inception (dot point), 
maximum volume, jet formation and jet impact, enlarged bubble shapes before jet impact, and (b) 
Top views of the enlarged bubble shape before impact. The remaining of parameters are set as  = 
0, Rm = 0.85mm,  = 200, We = 1152, δ = 0.009   and κ = 1.4. 

 Figure 9 shows the bubble shapes in a smaller corner angle for  = /4. The bubble remains 
spherical during expansion except for  ≤ 1 for which it becomes elongated along the bisector 
direction. A jet forms towards the end of the collapse pointing to the corner (frame 3). The bubble 
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volumes at jet formation and jet impact and the jet width increase inversely with . These features 
are analogous to a bubble oscillating near a flat wall (Blake et al. 1986). Also, comparing figures 8 
and 9, one can see that the bubble volumes at jet formation and jet impact and the jet width increase 
inversely with . Note that the jet for  = 6 is slightly asymmetric due to the numerical errors 
associated with the asymmetric mesh. 
 

 

Figure 9. Bubble dynamics near a corner angled at  = /4 at various standoff distances from the 
two walls N = F =  = 1, 2, …, 6: (a) Side view of the bubble shapes at inception (dot point), 
maximum volume, jet formation and jet impact, enlarged bubble shapes before jet impact, and (b) 
Top views of the enlarged bubble shape before impact. The remaining parameters are the same as 
in figure 8. 

Figure 10 shows the pressure contours and velocity fields in the flow domain for  = /2 and γ 
= 1, 2, with the remaining parameters being the same as figure 8. The pressure field loses spherical 
symmetry at the start of the expansion, even though the bubble is approximately spherical (frames 
a1, a2, b1 and b2). The pressure decreases radially and is relatively high near the corner (frames a1 
and b1). The velocity decreases radially too and decreases faster on the wall sides. At the start of 
the collapse (frames a2 and b2), the pressure increases radially and is small in the corner and the 
flow becomes almost motionless there, stagnation points occurring on the bisector of the corner. 
The liquid far away from the bubble moves away and the liquid near the bubble surface opposite to 
the corner moves back, where the bubble first collapses. A stagnation point is formed on the 
bisector. During the later stages of the collapse, a high-pressure zone develops on the opposite side 
of the bubble to the corner (frames a3 and b3), which subsequently generates the jet and pushes the 
bubble towards the corner (frames a4 and b4). Similar features were observed for a bubble 
oscillating near a flat wall (Li et al. 2016). As the bubble is initiated closer to the corner, the 
pressure near the corner is larger during the early stages of the expansion and lower towards the end 
of the collapse. 
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The pressure near the corner is high at the beginning of expansion, where the liquid is 

compressed by the expanding bubble surface and confined by the corner. In contrast, the pressure 
near the corner is low during collapse, where the liquid is pulled by the receding bubble surface but 
constrained by the corner. During the collapse, the free inflow of liquid from the open side is faster, 
no longer pointing to the center of the bubble, but toward its top near the bisector of the corner. 
Thereby the pressure on the top of the bubble increases and the bubble gets indented by the liquid 
flow directed inwardly into the bubble toward the corner. Similar behaviour was noticed for a 
bubble collapsing near a flat rigid boundary by Blake et al. (1986). 
 Figure 11 displays the similar features of the pressure contours and velocity fields in the flow 
domain for  = /4, with other parameters being the same as in figure 10. However, a larger zone 
of higher pressure at the corner during the early stage of the expansion and a larger zone of lower 
pressure towards the end of the collapse are observed for  = /4. The high pressure zone near the 
base of the jet forms later, since the flow following the receding bubble surface along the walls are 
closer to the bisector than that for  = /2. 
 In this and some other cases, the bubble surface tends to keep in contact with walls once 
started. This did not cause any singularity problem in the computations as the normal velocity and 
normal derivative of the Green function are small in this region. Wang et al. (2015) discussed the 
following mechanism on this phenomenon. The pressure in the thin layer of liquid between the 
bubble and the boundary is approximately constant and equal to the pressure of the bubble gas. The 
flow velocity within the thin layer is close to zero. In addition, the surface tension effects tend to 
keep this part of the bubble surface, as the pressure is constant and equal at its two sides. Reuter & 
Kaiser (2019) measured the time evolution of the liquid-film thickness of a single cavitation bubble 
in water collapsing onto a solid surface. They found that during the first cycle of oscillation, the 
bubble does not come in direct contact with the solid surface.  

 
Figure 10. Pressure contours and velocity fields in the flow domain and normal velocity on the 
bubble surface for a bubble in a corner with  = /2 and at (a) γ = 1.0, (b) γ = 2.0 , for the case 
shown in figure 8.  
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Figure 11. Pressure contours and velocity vectors for a bubble in a corner with  = /4, and at 
(a) γ = 1.0, and (b) γ = 2.0, for the case shown in figure 9.  

Figures 12(a) and 12(b) show the time histories of the jet velocity vjet and equivalent bubble 
radius Req for  = /2, and  = 1, 2, 3, 4. As the bubble is initiated nearer the corner, the oscillation 
period increases and the jet velocity decreases. From  = 4 to 1, the oscillation period increases by 
12% and the dimensionless maximum jet velocity decreases from 17.8 to 3.5. Figures 12(c) and 
12(d) show the time histories for  =/2, /4,  = 1, 4. For comparison, we also display the results 
for a bubble near a rigid flat boundary ( = ). For a smaller corner angle, the oscillation period 
increases and the jet velocity decreases. For  = 1, the oscillation period increases by 10% and the 
maximum jet velocity decreases by 21% as  is decreases from /2 to /4. 

       

 
Figure 12. Time histories of (a, c) the jet velocity vjet and (b, d) the equivalent bubble radius Req  
for the cases shown in figures 8 and 9, respectively. 
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For a bubble nearer to rigid boundaries, both its expansion and collapse are slowed down by 

the blocking of the boundaries. Their oscillation periods thus decrease. This differs from a bubble 
in a fully confined domain, where the volume within the confinement is fixed for a rigid 
confinement or with limited change for an elastic confinement. While the bubble oscillates, the 
liquid is compressed or expanded, therefore the compressible effects of a liquid enhances the 
stiffness of the oscillation system (Wang 2017, Liu et al. 2018). Consequently the natural frequency 
of oscillation for a bubble in a confinement is larger, in order of magnitude, than that in an 
unbounded liquid.  

For a larger value of  less than about 5, the higher jet speed occurs because the bubble has 
the opportunity to collapse to a smaller size, and hence higher velocities and pressures. This is true 
for bubbles near a rigid boundary (Blake et al. 1986). As  is about larger than 5, the asymmetric 
effects are weak and bubble minimum volume does not change significantly with , the jet velocity 
decreases with . Lechner et al. (2019) observed a different type of axial jet with very high speed 
for a bubble being in extreme vicinity to a solid boundary for  ⪅ 0.2, which is formed by an 
annular-liquid-flow collision.   

Figure 13 displays the time history of the displacement of the bubble centroid dc(t) for cases 
shown in figures 8 and 9. For the case of a bubble near a rigid flat boundary,  dc(t) is the distance 
from the bubble centroid to the boundary. The bubble moves away from the corner during 
expansion along the bisector and moves back at much higher amplitude during the collapse. The 
migration amplitude decreases with  and increases with . These trends have been verified in our 
calculations for 1   20.  

 

Figure 13.  Time history of the displacement of the bubble centroid, for the cases in figures 8 and 9. 
 

 Figure 14 displays the jet velocity and displacement amplitude of the bubble centroid dc(t) 
before jet impacting on the opposite bubble wall. The jet velocity firstly increases with the standoff 
distance  from the corner, reaches the maximum around  = 5 and after that decreases. The 
displacement amplitude dc(t) firstly increases and then decreases with  too, but reaching the 
maximum much earlier around  = 1.5. Both the jet velocity and displacement amplitude increases 
with the corner angle α. 
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Figure 14. Comparison of the (a) jet velocity, and (b) bubble centroid displacement versus   for  
= /2 (red-line) , and  = /4 (blue-line), for the cases in figures 8 and 9. 
  

5.2 The asymmetric case (  0) 

Figure 15 shows the bubble shapes for the asymmetric cases (  0), for  = /2, N = 1 and 
F = 2, 3, 6 and 15. Each row in figure 15(a) illustrates the bubble shapes at the inception, 
maximum bubble volume, jet formation and immediately before the jet impact. The bubble expands 
spherically for all of the cases, except for the near bubble surface which is flattened by the near 
wall. The bubble is symmetric to the vertical plane to the near wall passing through its geometrical 
centre for F  2. During the later stages of the collapse (the third row), the bubble develops a non-
spherical, asymmetry for F  3 but approximately symmetric to the plane vertical to the near wall 
for F  6.5. The jet starts to form on the part of the bubble surface opposite to the near wall and 
further away from the far wall. Towards the end of the collapse, the jet is approximately pointing to 
the near wall, but inclined to the further wall as F decreases. The bubble volumes at jet formation 
and jet impact and the jet width decrease with F. 

 Figure 16(a) shows the corresponding bubble shapes for  = /4. The jet is approximately 
pointing vertically to the near wall for F = 15 but inclined to the further wall as F decreases. Here, 
the jet is more inclined to the further wall, and it is wider compared with the case for  = /2.  

Figures 15(b) and 16(b) show the top view, (x-y plane), of the bubble shape immediately 
before the jet impact. It is observed that the bubble is elongated along the symmetrical plane of the 
configuration. This effect reduces with increasing F and the top view of the bubble and jet shapes 
become axisymmetric for F ≥ 6.0. 
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Figure 15. Bubble shapes at different views for N = 1, various values of F, and  = /2, (a) xz-
coordinate view, and (b) xy-coordinate view. The remaining parameters are the same as in figure 8. 
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Figure 16. Bubble shapes at different views for N = 1, various values of F, and  = /4, (a) xz-
coordinate view, and (b) xy-coordinate view. The remaining parameters are the same as in Figure 8. 

 Figure 17 presents the pressure contours and velocity vectors for a bubble in a corner with  = 
/2, N = 1, γF = 2.0 in figure 17(a), γF = 3.0 in figure 17(b) and the remaining parameters are the 
same as in figure 8. During the early stages of the expansion, the pressure decreases radially from 
the bubble and is relatively high between the bubble and the near wall (frames a1 and b1). The 
velocity decreases radially too but decreases faster on the wall sides. At the start of the collapse, the 
pressure increases further away and is relatively low between the bubble and the near wall (frames 
a2 and b2). The liquid in the far field flows outwards and the liquid near the part of the surface 
opposite to the near wall and further away from the far wall recedes, where the bubble first 
collapses, resulting in a stagnation point between the bubble and the far field. In the late stages of 
collapse (frames a3 and b3), a high-pressure zone develops above the bubble and away from the far 
wall, which subsequently generates the jet towards the near wall, but inclined to the far wall 
(frames a4 and b4). During the period of jet development, the high-pressure zone moves towards 
the far wall. As the bubble is initiated nearer to the corner, the pressure field displays stronger 
asymmetry in the vertical plane to the near wall passing through the bubble centroid, and the high-
pressure zone is more inclined away from the vertical plane. 

 

Figure 17. Pressure contours and velocity vectors for a bubble in a corner for  = /2, N = 1, and 
(a) γF = 2.0, (b) γF =3.0 , for the cases in figure 15.  
 
 Figure 18 displays similar features of the pressure contours and velocity vectors in the domain 
for a bubble in a corner with  = /4, N = 1, γF = 2.0 in figure 18(a), γF = 3.0 in figure 18(b) and 
the remaining parameters are the same as in figure 8. During the early stages of the expansion 
(collapse), the pressure decreases (increases) radially, quickly in the open side but slowly towards 
the near-wall. A velocity stagnation point forms at the start of the collapse and high-pressure zone 
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forms during the late stages of the collapse above the bubble and away from the far wall. The 
asymmetry of the pressure field to the plane vertical to the near-wall passing through the bubble 
centre is stronger than that for  = /2.    

 

Figure 18. Pressure contours and velocity vectors for a bubble in a corner with N = 1 and  = /4, 
(a) γF = 2.0, (b) γF = 3.0, for the cases in figure 15.  

 
Figures 19(a) and 19(b) show the time histories of the jet velocity vjet and the equivalent 

bubble radius Req, respectively, for  = /2, N = 1 and F = 1, 2, 3, 4. The period of bubble 
oscillation decreases with F but the jet velocity increases with F. Figures 19c and 19d show the 
time histories of jet velocity vjet, and the equivalent bubble radius Req and for  = /2, /4 and F = 
1, 4. The period decreases with  but the jet velocity increases with . The maximum bubble 
volume does not change significantly with  and F.  

        

   
Figure 19. Time histories of (a) the jet velocity vjet, and (b) the equivalent bubble radius Req for  = 
/2, N = 1 and F = 1, 2, 3, 4; (c) jet velocity vjet, and (d) the equivalent bubble radius Req for  = 
/2, /4, N = 1 and F = 1, 4, for the cases in figures 15 and 16. 
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Figures 20(a) and 20(b) show the displacements of the bubble centred (xc, zc) versus time. The 

bubble migrates away from the near wall and corner during expansion and moves back to the near 
wall and corner during collapse at much larger speed and amplitude. This is analogous to a bubble 
oscillating near a wall, migrating away from the wall during expansion and moves back during 
collapse (Blake et al. 1986). The amplitude of migration towards the corner, xc, decreases with F 
but increases with . The amplitude of migration perpendicular to the near wall, zc, increases both 
with F and . These trends are consistent to the time histories of the Kelvin impulse shown in 
figure 21. The x-component of the Kelvin impulse decreases with F but increases with , whereas 
the y-component of the Kelvin impulse increases with both F and .  

 

 

 
Figure 20. Displacements of the centroid for a bubble in a corner: (a) parallel to the near wall, xc, 
(b) perpendicular to the near wall, zc, for  = /2, N = 1 and F = 1, 2, 3, 4; (c) parallel to the near 
wall, xc, (d) perpendicular to the near wall, zc, for N = 1 and F = 1, 4,  = /2,  = /4, for the 
cases in figures 15 and 16.    

 

Figure 21. Time histories of the Kelvin impulse (a) Ix and (b) Iz for  = /2 (b) for  = /4, /2, and 
F =1, 4  for the cases in figures 15 and 16. 

 Figure 22 compares the directions of the Kelvin impulse and the jet direction. The directions of 
the Kelvin impulse are obtained using both the analytical result (18), θF, and the BIM result, θI. The 
jet is not symmetric as β  0, so its direction θjet is defined in terms of its basement direction as 
shown in figure 22(a). The jet angle θjet to the near wall increases with F and approaches /2 as F 

≥ 10. The directions of the Kelvin impulse and the jet have excellent agreement. 
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Figure 22. Comparison of the directions of the Kelvin impulse F and I, the displacement of the 
geometrical centre just before the jet impact jet, (a)  = /2 and (b)  = /4, for N = 1 and F [1, 
15]. The remaining parameters are the same as figure 8. 

6. The dynamics of microbubble in a corner 

In this section, we consider the simulation for microbubbles having the maximum bubble radius Rm 

= 5, 10, 15 , 20 and 25μm with the corresponding Reynold number Re = 49, 99,  149, 199 and 249 
respectively. Rm denotes the maximum bubble radius that the bubble achieves in an infinite domain 
without viscous and surface tension effects. The bubble evolution and jet shapes are displayed in 
figure 23 and the time histories of the jet velocity, bubble equivalent radius, centroid motion and 
Kelvin impulse are shown in figure 24.  

 For smaller bubbles, the maximum bubble radius acheived and oscillation period decrease, 
because its energy is lost due to viscous effects and owned by surface tension. The energy of a 
bubble system is lost due to the viscous effects and the acoustic radiation associated with the 
emission of shockwaves. Shockwaves emitted at the minimum bubble volumes after bubble jets 
penetrate bubbles (Wang 2016), which are not considered in this paper. As the maximum bubble 
radius decreases, the effectively dimensionless standoff distance from the walls increases and the 
associated wall effects decreases too. This results in stronger collapse, smaller bubble volume 
before jet impact, higher jet velocity, less migration of the bubble centroid to the walls and weaker 
Kelvin impulse. 

 

      expansion         Maximum volume           Jet-formation             Jet-impact 

Rm=5 μm 

    
Rm=10 μm 
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Rm=15 μm 

    
Rm=20 μm 

    
Rm=25 μm 

    
     

Figure 23. Bubble dynamics near a right-angled corner α = π/2 for various bubble size at Rm = 5, 
10, 15, 20 and 25 μm with the corresponding Reynolds's numbers Re = 49, 99,  149, 199 and 249, 
and Weber numbers We=6.8, 13.5, 20.3, 27.1 and 33.8, respectively. The remaining parameters are 
set as γ = 1, β = 0,  = 200 and κ = 1.4.  
 
a)                                                                           b) 

 
 
c)                                                                           d) 
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Figure 24. Time histories of (a) the jet velocity vjet, (b) the equivalent bubble radius Req, (c) 
displacements of the bubble centroid xc, zc, and (d) Kelvin impulse I, for the cases shown in figure 
23. 
 
7. Conclusions 
 In this paper, we have considered the growth and collapse of a bubble in a corner subject to the 
secondary Bjerknes forces due to the walls. The bubble expands approximately spherically, except 
for the bubble surfaces near walls which are compressed by the walls. Physically the sides of the 
bubble nearer the walls will move into a region of higher relative impedance than other sides. 
During the latter stages of the collapse, the bubble initiated at the bisector of the corner becomes 
oblate along the bisector, as the secondary Bjerknes forces are stronger for the parts of the bubble 
surfaces near the walls. A high-speed liquid jet then forms pointing towards the corner, due to the 
combined effects of the two secondary Bjerknes forces. For a bubble initiated away from the 
bisector, the jet is approximately pointing to the near wall but inclined to the corner, when the 
Bjerknes force due to the near wall is dominant.  

 The pressure field loses spherical symmetry during the early stages of the expansion long 
before the bubble becomes non-spherical. A velocity stagnation point forms at the start of the 
collapse and a high pressure zone forms during the latter stages of the collapse at the base of the jet, 
which subsequently drives the jet. As the bubble is initiated near the corner, the pressure field 
displays strong asymmetry to the vertical plane to the near wall passing through the bubble 
centroid. The asymmetry is stronger for a smaller corner angle. 

 For a smaller standoff distance to the corner or for a smaller corner angle, the oscillation 
period, the bubble volumes at the start of the jet formation and jet impact, and the width of the jet 
increase, whereas the jet velocity decreases.    

 The bubble migrates away from the near wall and corner during its expansion and moves back 
to the near wall and corner during its collapse, but at much larger speed and amplitude. The 
amplitude of migration towards the corner decreases with the standoff distance to the corner but 
increases with corner angle. The amplitude of migration perpendicular to the near wall increases 
with both of them, as the second Bjerknes force due to the far wall decreases. These trends are 
consistent with the time histories of the Kelvin impulse. The Kelvin impulse theory is shown to 
predict the jet direction accurately. 

 The bubble migration and jetting towards the near wall and the corner show that there are no 
blind spots in the cavitation cleaning of a corner in terms of the jetting, the acoustic microstreaming 
and the associated shear stress. However, the combined effect of the decrease in jet velocity and the 
increase of jet width for smaller corner angles is worthy of further investigation for the cleaning of 
the vertex in these corners. 
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