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ABSTRACT
We consider the impact of stochastic perturbations on otherwise coherent oscillations of
classical pulsators. The resulting dynamics are modelled by a driven damped harmonic
oscillator subject to either an external or an internal forcing and white noise velocity
perturbations. We characterize the phase and relative amplitude variations using analytical
and numerical tools. When the forcing is internal the phase variation displays a random walk
behaviour and a red noise power spectrum with a ragged erratic appearance. We determine
the dependence of the root mean square phase and relative amplitude variations (σ�ϕ and
σ�A/A, respectively) on the amplitude of the stochastic perturbations, the damping constant
η, and the total observation time tobs for this case, under the assumption that the relative
amplitude variations remain small, showing that σ�ϕ increases with t

1/2
obs becoming much

larger than σ�A/A for tobs � η−1. In the case of an external forcing the phase and relative
amplitude variations remain of the same order, independent of the observing time. In the
case of an internal forcing, we find that σ�ϕ does not depend on η. Hence, the damping
time cannot be inferred from fitting the power of the signal, as done for solar-like pulsators,
but the amplitude of the stochastic perturbations may be constrained from the observations.
Our results imply that, given sufficient time, the variation of the phase associated with the
stochastic perturbations in internally driven classical pulsators will become sufficiently large
to be probed observationally.

Key words: stars: evolution – stars: interiors – stars: oscillations.

1 IN T RO D U C T I O N

Pulsating stars are often classified as either solar-like or classical
pulsators, depending on whether their oscillations are intrinsically
stable or unstable, respectively (i.e. on whether small perturbations
will, respectively, decay or grow in the linear regime; e.g. Cunha
et al. 2007; Aerts, Christensen-Dalsgaard & Kurtz 2010). In solar-
like pulsators, the oscillations are stochastically excited by near-
surface convection (Chaplin & Miglio 2013). As a result of their
stochastic nature, their amplitudes and phases vary with time in a
manner that is best described in statistical terms. On the other hand,
in classical pulsators the excitation follows from the amplification of
small disturbances by a coherent forcing, most commonly resulting
from the heating of particular layers during compression (e.g. due
to an increase of the opacity), similar to the process underlying a
heat engine. In classical pulsators the oscillations tend to be stable
and coherent on long time-scales.

� E-mail: pedro.avelino@astro.up.pt

Despite the above, mode frequency (or phase) variability, often
accompanied by variations in mode amplitude, has long been
observed in classical pulsators (see Neilson, Percy & Smith 2016,
for an historical review). Such variations are found across the
Hertzsprung–Russell (HR) diagram, in giant stars, such as Cepheids
(e.g. Derekas et al. 2017; Smolec 2017), RR Lyrae (e.g. Benkő,
Jurcsik & Derekas 2019), and Mira-like stars (e.g. Percy & Colivas
1999; Bedding et al. 2005), compact pulsators, such as white dwarfs
(e.g. Winget, Hansen & van Horn 1983; Winget et al. 1994; Vauclair
et al. 2011) and subdwarf B stars (e.g. Kilkenny 2010; Zong et al.
2018), and in a diverse range of main-sequence pulsators, including
β Cepheid (Pigulski & Pojmański 2008; Degroote et al. 2010),
δ Scuti (e.g. Breger & Pamyatnykh 1998; Bowman et al. 2016;
Breger et al. 2017), and rapidly oscillating Ap stars (e.g. Kurtz
et al. 1997; Holdsworth et al. 2014; Balona, Holdsworth & Cunha
2019). In some cases these variations may have an extrinsic origin,
such as an unseen companion. However, in most cases the origin is
likely intrinsic to the star. Common physical mechanisms evoked
to explain frequency variability in classical pulsators are secular
evolution (e.g. Winget et al. 1983), non-linear effects (e.g. Buchler,
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Goupil & Hansen 1997; Buchler, Kolláth & Cadmus 2004), and
beating of close frequencies (e.g. Breger & Bischof 2002).

An interesting question to address in this context is whether
stochastic perturbations, such as those responsible for the driving
of solar-like pulsators, will lead to significant phase and amplitude
variations in oscillations driven by a coherent forcing. In fact, such
perturbations are expected to be ubiquitous at least in stars with
convective unstable envelopes. The idea that random perturbations
could be responsible for period irregularities in classical pulsators,
in particular long-period variable (LPV) stars, dates back to Ed-
dington & Plakidis (1929) and has found observational support in
many works (e.g. Percy & Colivas 1999; Benkő et al. 2019). While
the pulsations in LPV stars are generally thought to be intrinsically
unstable (Trabucchi et al. 2019), significant convection–pulsation
interaction is expected (e.g. Freytag, Liljegren & Höfner 2017),
with convection possibly having a significant role in the coherent
driving (Xiong, Deng & Zhang 2018), as well as on the stochastic
signature observed in a number of stars (e.g. Christensen-Dalsgaard,
Kjeldsen & Mattei 2001; Bedding et al. 2005).

With the long and ultraprecise photometric time series provided
by the Kepler satellite (Borucki et al. 2010; Gilliland et al. 2010)
one would expect the impact of stochastic processes on classical
pulsators to become more evident across the HR diagram. With
this in mind, in this work we introduce a phenomenological model
for a coherent pulsator in the presence of a stochastic perturbation
based on a modified driven damped harmonic oscillator. We start, in
Section 2, by describing the impact expected from stochastic noise
when the driving of the oscillations is external to the star. We then
modify our model to consider the possibility that the phase of the
acceleration associated to the driving mechanism varies in time in
reaction to the changes to the pulsation phase introduced by the
stochastic noise, as expected for internal forcing. The analytical
results for the modified model are discussed in Section 3 and
the more general numerical results are discussed in Section 4. In
Section 5, we discuss our findings and conclude.

2 EXTERNA LLY DRIVEN DAMPED
HAR M ONIC OSCILLATO R W ITH NOISE

Consider the equation of motion of a driven damped harmonic
oscillator with noise as given by

ẍ + 2ηẋ + ω2
0x = af + ξ. (1)

Here, a dot represents a derivative with respect to the physical time
t, x(t) is the displacement, ω0 is the natural angular frequency of the
oscillator, η is the damping constant, af is the acceleration associated
to the driving mechanism, and ξ (t) is the function that parametrizes
the noise. Equation (1) will be used to describe the dynamics of a
single intrinsically unstable mode subject to random perturbations,
such as those produced by convection, here represented by the
noise term. In this section, we shall consider the case of an external
coherent driving, e.g. imposed by a companion. The case of an
internal driving, e.g. resulting from a heat-engine-like mechanism
will be discussed in Sections 3 and 4. To guarantee that the system
in the presence of driving and noise remains in equilibrium, energy
must be subtracted in every cycle. That is achieved by assuming
that some source of continuous damping is present, parametrized
by a characteristic damping time-scale of η−1.

In this paper, we shall assume that the stochastic perturbations
generate random impulses acting on short time-scales, which we
model as instantaneous finite variations of the velocity, with the
displacement being always continuous. We shall consider both the

effect of a single instantaneous kick modifying the velocity by �ẋ

at an arbitrary time tk, in which case

ξ (t) = �ẋ(tk)δ(t − tk), (2)

where δ represents the Dirac delta function, or a series of successive
random velocity kicks that, for simplicity, are assumed to be
separated by a fixed time interval �t. In this case ξ may be written
as

ξ (t) = 2ANω0

√
ω0�t

∞∑
k=0

r(k) δ(t − k�t), (3)

where r(k) are independent random variables with a normal distri-
bution of mean zero and unit standard deviation (r(k) ∼ N(0, 1)),
and AN, with dimensions of a length, parametrizes the amplitude
of the white noise. As we shall see later, the normalization in
equation (3) is such that the average velocity variation in a time-
scale equal to the oscillation period P is proportional to ANω0. We
shall consider that �t is significantly shorter than the time-scales for
which the behaviour of the stochastic perturbations can be probed
observationally, so that the assumed regularity of the velocity kicks
or the specific value of the parameter �t have a negligible impact
on our main results.

Let us now consider the standard driven damped harmonic
oscillator, for which the driving acceleration is given by

af (t) = ã sin
(
ωt + ϕaf

)
, (4)

where ã is a constant amplitude of the acceleration associated with
the driving mechanism of angular frequency ω. We shall refer to the
model described by equation (1) with af(t) given by equation (4) as
the externally driven damped harmonic oscillator. In Section 3, a
modification will be introduced to af(t) that takes into account the
explicit dependence on x and ẋ expected in the case of an internal
forcing.

In the absence of noise (ξ = 0), after a transient phase dependent
on initial conditions, the general solution of the driven damped
harmonic oscillator tends to a steady state with

xf (t) = Af sin θf, (5)

ẋf (t) = ωAf cos θf, (6)

where

θf = ωt + ϕf, (7)

Af = ã

ωω∗
, (8)

ω∗ =
√

4η2 +
(
ω2

0 − ω2
)2

ω2
, (9)

ϕ∗ = ϕf − ϕaf = arctan

(
ω2

0 − ω2

2ωη

)
− π

2
, (10)

and ϕf is a constant. The resonant angular frequency, defined as the
value of ω for which the amplitude Af is maximal (or, equivalently,
ωω∗ is minimal) is

ωr =
√

ω2
0 − 2η2. (11)

Throughout this work we shall assume that the driving frequency
is equal to the resonant frequency (ω = ωr), an assumption that
ensures an optimal condition for the modes to be visible, for a given
driving. In addition, we shall consider that η � ω0 (implying that
the characteristic damping time exceeds significantly the oscillation
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Figure 1. Phase variation �ϕ and relative amplitude variation �A/A (black
and red solid lines, respectively) as a function of the number of pulsation
cycles t/P for a single realization of the evolution of the externally driven
damped harmonic oscillator with noise, assuming a total time span equal to
104 periods, η = 0.2P−1, and AN/A = 0.01. The variations are computed
with respect to the constant phase and amplitude of the noiseless case (see
text for details) and are shown at regular time intervals of 10 periods. The
results show that, in the presence of a coherent external driving mechanism, a
small amplitude stochastic excitation mechanism produces limited changes
of similar magnitude to the phase ϕ and amplitude A of the oscillations.

period, which is expected in general). In this case the driving
frequency is close to the natural frequency (ω = ωr ≈ ω0) and
ϕ∗ = −π/2 to an excellent approximation.

The solution to the equation of motion for the standard driven
damped harmonic oscillator with white noise velocity perturbations
may be written as x = xf + xp, where xf(t) is the steady state solution
for the displacement for ξ = 0 given in equation (5) and xp(t) is the
perturbation induced by the noise. The evolution of xp is given by

ẍp + 2ηẋp + ω2
0xp = ξ (t). (12)

In between random kicks ξ = 0 and equation (12) has the following
general solution:

xp(t) = Ap(t) sin

(
t

√
ω2

0 − η2 + α

)
, (13)

where Ap = C e−ηt, C is a constant, and α is an arbitrary phase.
Thus, in between kicks the full solution (x(t), ẋ(t)) can still be
written approximately as in equations (5) and (6), but with slowly
varying time-dependent amplitude, A, and phase, ϕ:

x(t) = A(t) sin (ωt + ϕ(t)) , (14)

ẋ(t) = ωA(t) cos (ωt + ϕ(t)) . (15)

In going from equation (14) to equation (15) we have taken into
account the assumption previously discussed that η � ω0 ≈ ω,
which implies that both Ȧ/A and ϕ̇ are much smaller than ω.

The values of A and ϕ (or, equivalently, Ap and α) immediately
after each kick may be determined from the corresponding values
immediately before, knowing the values of x and ẋ prior to each
kick and the velocity change �ẋ induced by each kick, and by
requiring that x is always continuous. If Ap � Af, then the solution
for the displacement x (= xf + xp) is always very close to that of the
standard driven damped harmonic oscillator without noise. In this
case, the phase varies little, independently of the elapsed time.

To illustrate this, we computed the solutions in the presence of
noise. The results are illustrated in Fig. 1. In particular, we show the
evolution of the phase difference �ϕ ≡ ϕ − ϕf and of the relative

amplitude variation �A/A ≡ (A − Af)/Af in terms of the number
of elapsed pulsation cycles, taking �ϕ = 0 and �A = 0 at t = 0.
Both quantities vary little, as expected, because the phase ϕaf of the
driving acceleration is fixed, as may happen in the case of an external
forcing. However, the excitation mechanisms inside the stars are
expected to depend explicitly on the phase ϕ of the oscillation
cycles, which, unlike in the case discussed in the present section,
is, in general, time dependent. In the following section, we shall
consider a more realistic assumption for the acceleration associated
with the driving mechanism that is free from this problem.

3 INTERNA LLY DRI VEN DAMPED H ARMO NIC
OSCI LLATO R W I TH NOI SE: ANALYTI CAL
RESULTS

As discussed in the previous section, in the presence of an internal
driving mechanism the assumption that the acceleration associated
to the driving mechanism in equation (1) always has the same phase
in the presence of noise is unrealistic. Hence, we shall modify af(t)
in order to make it explicitly dependent on x and ẋ in such a way
that, in the absence of noise, the steady state solution is unaltered.
We shall refer to this model, described by equation (1) with the
modified af(t), as the internally driven damped harmonic oscillator.
Equations (14) and (15) imply that

χ (x, ẋ) ≡ ẋ

xω
= cot θ, (16)

where θ = ωt + ϕ(t). Therefore, we shall now consider a forcing
acceleration described by

af = ã sin (θ (x, ẋ) − ϕ∗) , (17)

where ϕ∗ is given by equation (10), and

θ = arccot χ, if sign(ẋ) = +1,

θ = π + arccot χ, if sign(ẋ) = −1. (18)

Here, by convention, the range of the function arccot is [0, π].
When ξ = 0, ϕ(t) = ϕf = constant and equation (17) reduces to
equation (4). However, in the presence of noise, the forcing in each
pulsation cycle now responds to the pulsation phase in that cycle,
which may have been slightly modified from that in the previous
cycle by the stochastic perturbations.

On time-scales much shorter than η−1, the internally driven
damped harmonic oscillator behaves essentially as a simple har-
monic oscillator (η = 0 and af = 0) with noise. Let us consider
the impact in the phase and amplitude of the oscillations of a single
instantaneous random kick �ẋ, given at the time tk, in the velocity of
the oscillations (ẋ → ẋ + �ẋ). The displacement and the velocity
of the harmonic oscillator are given approximately by equations (14)
and (15), with A = A− and θ = θ− = ωt + ϕ−, for t < tk, and A =
A+ and θ+ = ωt + ϕ+, for t > tk. Here, we shall again assume that
the variation of the amplitude with respect to the amplitude Af of
the steady state solution for the forced harmonic oscillator in the
absence of noise is small. Therefore,

�χ (tk) = ẋ(tk+) − ẋ(tk−)

ωx(tk)
= �ẋ(tk)

ωx[tk]
= cot θ+ − cot θ−

≈ −�ϕ(tk)

sin2 θ−
, (19)

where �ϕ(tk) = θ+ − θ− is the change in the phase of the oscillation
associated with the instantaneous random kick at time tk, and the
approximation is valid up to first order in �ϕ(tk). Hence, using
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equation (14) with A = A− and θ = θ−, the change in the phase at
t = tk is given by

�ϕ(tk) ≈ −�ẋ sin θ−
Aω

. (20)

The change in amplitude of the oscillations may be calculated by
requiring that x(t) is always a continuous function. The requirement
of continuity at t = ti implies that

A− sin θ− = A+ sin θ+, (21)

or equivalently that

(A+ − A−) sin θ− = −A+(sin θ+ − sin θ−)

≈ −A+�ϕ(tk) cos θ−, (22)

where the approximation is valid up to first order in �ϕ(tk).
Therefore,

�A

A
(tk) ≈ −�ϕ(tk) cot θ−, (23)

up to first order in �A/A(tk) and �ϕ(tk), where �A(tk) = A+ − A−.
The root mean square (rms) variation of the phase due to a single

random kick at an arbitrary time tk is given by

σ�ϕ(tk) ≡
√〈

(�ϕ(tk))2
〉

= σ�A(tk)/A ≡
√√√√〈(

�A

A
(tk)

)2
〉

≈
√〈

(�ẋ(tk))2
〉 〈

(sin θ−)2
〉

ω2A2

≈ AN

√
2ω�t

A
, (24)

where we have taken into account that 〈(sin θ−)2〉= 1/2 and assumed
that �ẋ(tk) = 2rANω0

√
ω0�t with ω0 ≈ ω, and, in a accordance

to the discussion in Section 2, r is a random variable with a normal
distribution of mean zero and unit standard deviation (r ∼ N(0, 1)).

In a total observing time tobs, the average number of kicks is
equal to N = tobs/�t, each described by equation (24). The phase
variation displays a random walk and, therefore, the rms variance
of the phase at the end of that time is given by

σ�ϕ =
√

Nσ�ϕ(tk) ≈ AN

A

√
2ωtobs. (25)

The random walk nature of the phase variation �ϕ gives rise to a
red noise power spectra of �ϕ that we shall discuss in the following
section.

In order to estimate the rms of �A/A in the case of periodic
instantaneous random kicks, we take into account that the amplitude
perturbation generated at an arbitrary time tk decays roughly pro-
portionally to e−ηt, meaning that the memory of previous amplitude
perturbations is effectively erased on a time-scale of the order of
η−1. Therefore

σ 2
�A/A ≈ 1

�t

∫ tobs

0
σ 2

�A/A(tk) e−2ηt dt

≈
(

AN

A

)2
ω

η

(
1 − e−2ηtobs

)
. (26)

For tobs � η−1 the rms of �A/A is approximately given by

σ�A/A = AN

A

√
ω

η
. (27)

Figure 2. Phase variation �ϕ as a function of the number of oscillation
cycles t/P for a single realization of the evolution of the internally driven
damped harmonic oscillator with noise, assuming a total time span equal to
104 periods, η = 0.2P−1, and AN/A = 0.01 (the numerical and analytical
results are given by the black and blue solid lines, respectively). The variation
is shown at regular time intervals of 10 periods. The results show that, in
the presence of a coherent internal driving mechanism, a small amplitude
stochastic excitation mechanism is able to produce, over a sufficient amount
time, large variations in the phase of the oscillations.

From equations (25)–(27), we then find that, σ�ϕ ≈ σ�A/A for tobs

� η−1, and σ�ϕ ≈ σ�A/A(2tobsη)1/2 for tobs � η−1. These analytical
results are valid under the assumption that the relative amplitude
variations are small.

4 IN T E R NA L LY D R I V E N DA M P E D H A R M O N I C
OSCI LLATO R W I TH NOI SE: NUMERI CAL
RESULTS

In order to investigate the impact of stochastic perturbations on
classical pulsators, we computed the evolution of the displacement
x by numerically solving the equation of motion for the internally
driven damped harmonic oscillator with white noise velocity per-
turbations using a fourth-order Runge–Kutta algorithm. The initial
conditions are those of the steady solution of the standard driven
damped harmonic oscillator (with ξ = 0).

Fig. 2 illustrates the phase variation �ϕ as a function of the
number of oscillation cycles t/P (the values of �ϕ are displayed
with a cadence of 10 periods of oscillation) for a single numerical
realization of the evolution of an internally driven damped harmonic
oscillator with noise, considering a total time span equal to 104

periods, η = 0.2P−1, and AN/A = 0.01 (the time interval between
successive kicks was assumed to be equal to �t = 0.025P). Note
that ω0 ∼ 2πP−1, thus implying that η/ω0 ∼ 0.03 is significantly
smaller than unity for the value of η adopted in this realization.
The evolution of the phase variation �ϕ obtained by solving
numerically equation (1) is shown in black, while that resulting
from the analytical approximation given in equation (20) for the
instantaneous phase variation associated with each kick is shown
in blue. Here, �ϕ was assumed to vanish at t = 0. Fig. 2 shows
that not only equation (20) provides an excellent approximation
that may be used to accurately compute the phase variation �ϕ

over many oscillation cycles, but also that in the presence of a
coherent internal driving mechanism, small amplitude stochastic
perturbations are able to produce, over a sufficient amount of time,
large variations in the phase of the oscillations. This is in contrast
with the results for the phase variation �ϕ of a damped harmonic
oscillator with noise driven by an external forcing shown in Fig. 1.
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Figure 3. Relative amplitude variation �A/A as a function of the number
of oscillation cycles t/P for the same realization of the evolution of the
internally driven damped harmonic oscillator with noise considered in Fig. 2
(the numerical and analytical results are given by the red and blue solid lines,
respectively). The variation is shown at regular time intervals of 10 periods.
In the case of �A/A the results are similar to those obtained for the externally
driven damped harmonic oscillator with noise.

Fig. 3 illustrates the relative amplitude variation �A/A as a
function of the number of oscillation cycles t/P for the same re-
alization of the evolution of the internally driven damped harmonic
oscillator with noise considered in Fig. 2. The evolution of �A/A
obtained by solving numerically equation (1) and then determining
the amplitude from the maxima of x over time-scales of the order
of the oscillation period P is shown in red, while that obtained by
using the approximation given in equation (23) for the instantaneous
amplitude variation associated with each kick in combination with a
subsequent exponential decay proportional to e−ηt is shown in blue.
Fig. 3 shows that both these results for �A/A are similar to the ones
obtained in the previous section for the externally driven damped
harmonic oscillator with white noise velocity perturbations.

The different evolution of the phase variation �ϕ in the context
of standard (external) and modified (internal) versions of the driven
damped harmonic oscillator with white noise velocity perturbations
is also imprinted in the power spectrum of the phase variation
�ϕ. In the internally driven case �ϕ displays a random walk over
arbitrary large time spans, which leaves a red noise signature in
the power spectrum. On the other hand, in the externally driven
case the random walk of �ϕ is only approximately valid on time-
scales much smaller than η−1, with results separated by a larger
time difference being essentially independent. Hence, in the case of
the externally driven damped harmonic oscillator with white noise
velocity perturbations a transition from a high-frequency red noise
spectrum to a low-frequency white noise spectrum at a frequency
approximately equal to 2π/η would be expected. Fig. 4 shows that
this is indeed the case. It displays the power spectral density of
the phase variation �ϕ obtained for the evolution of the externally
driven and internally driven damped harmonic oscillators with white
noise velocity perturbations (upper and lower panels, respectively).
The black line represents the results obtained for a single realization
(the same realization considered in Figs 2 and 3), while the green
line represents the average over 100 realizations. The hypotenuse
of the red triangle has a f−2 slope characteristic of red noise. Notice
that the transition from red noise to white noise (flat spectrum) at f
∼ η/(2π) (indicated by the blue vertical line in the upper panel of
Fig. 4) does not happen in the internally driven case.

Fig. 5 shows the power spectra of the velocity for a single
numerical realization of a time series with 105 oscillation cycles,

Figure 4. Power spectral density of the phase variation �ϕ obtained
considering the externally (upper panel) and the internally (lower panel)
driven damped harmonic oscillator with noise. The black line represents
the results obtained for a single realization (the same that was considered
in Figs 2 and 3), while the green line represents the average over 100
realizations. The hypotenuse of the red triangle has a f−2 slope characteristic
of red noise. Notice that the transition from red noise to white noise (flat
spectrum) at f ∼ η/(2π) (the blue vertical line in the upper panel is defined
by f = η/(2π)) does not happens in the modified case.

η = 0.2P−1, and AN/A = 0.01, considering the externally and the
internally driven damped harmonic oscillator with noise (black and
light green lines, respectively). Here, for visualization purposes,
both power spectra are normalized in such a way that their maximum
amplitude is equal to unity. Notice that the ragged erratic appearance
displayed by the power spectrum generated assuming an internal
forcing mechanism contrasts with the sharp high-amplitude peak
obtained for the externally driven damped harmonic oscillator. Also
shown in the figure is the average performed over 100 realizations
for the case of the internally driven damped harmonic oscillator
with the same parameters as above (smooth continuous pink line).
For comparison, we present also the average of another set of
100 realizations for the same model computed with a damping
constant 10 times smaller (η = 0.02P−1; smooth dashed magenta
line). The two lines clearly overlap, confirming that as long as the
relative amplitude variations are small, the envelope of the power is
essentially independent of η.

5 C O N C L U S I O N S

We developed a parametric phenomenological model to describe
the impact of stochastic perturbations on classical pulsators based
upon a driven damped harmonic oscillator with added white noise.
Besides ω0, which in our model is approximately equal to the
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Figure 5. Power spectra of the velocity for a single numerical realization
assuming a time span equal to 105 periods, η = 0.2P−1, and AN/A =
0.01, considering the externally (black line) and the internally (light green
line) driven damped harmonic oscillator with noise. Both power spectra are
normalized such that their maximum amplitude is equal to one. The ragged
erratic appearance displayed by the power spectrum generated assuming
an internal forcing mechanism contrasts with the sharp high-amplitude
peak obtained for the externally driven damped harmonic oscillator. The
continuous pink and dashed magenta smooth lines show the results from
averaging over 100 realizations of the internally driven damped harmonic
oscillator for the same model parameters and when taking η = 0.02P−1,
respectively. The independence of the average curve on η in the regime of
small amplitude perturbations considered here is evident from the overlap
of the two lines.

pulsation frequency, hence directly determined by the observations,
the model incorporates three parameters, AN/A, characterizing the
relative amplitude of the white noise, η, the inverse of the damping
time, and �t, the interval between consecutive stochastic kicks.
However, the choice of �t is unimportant, so far as it is significantly
smaller than the time-scale over which the stochastic signature
can be observationally probed. Thus the results can effectively be
thought of as pertaining to a two-parameter model.

We started by considering the standard case of an external
coherent (resonant) forcing, which would be adequate if the driving
phase was unaltered by the dynamics of the stellar interior (as
expected, e.g. in tidally excited oscillations; Zahn 1970), and then
modified it by replacing the forcing term by an internal (resonant)
forcing that reduces to the standard one in the absence of noise.
Thus, the modified model considers that the driving throughout any
given cycle is adjusted to the current phase of the oscillation that may
differ from the phase of previous cycles due to small perturbations
introduced by the stochastic kicks.

The model predictions for the evolution of the phase and relative
amplitude variations (�ϕ and �A/A, respectively) have been studied
using both analytical approximations and numerical simulations
exploring, in particular, the case in which the relative amplitude
variations remain small. We have shown that in the case of an
internal forcing, the rms value of the phase variation �ϕ induced
by the stochastic perturbations grows on average proportionally to
the square root of the observing time. This is in contrast with the
relative amplitude variations whose rms stabilizes after a time ∼η−1,
the two observables being related by σ�ϕ = σ�A/A(2tobsη)1/2, for tobs

� η−1.
We have further shown that in the case of an internal forcing the

signatures of the random walk evolution of the phase variation �ϕ

are imprinted on its characteristic ragged erratic red noise power
spectrum – the power spectrum of the signal (ẋ) also displaying a

ragged erratic appearance. An important outcome of the model is
that, for a given observing time, the rms of the phase depends only
on one model parameter, AN/A, opening the interesting possibility
of that parameter being directly constrained from either an O − C
diagram (Sterken 2005) or the power spectrum of the signal. A
related fact, also worth emphasizing, is that the envelope of the
power spectrum of the signal in this case is independent of the
damping time, as shown in Fig. 5. This is valid as long as the
relative amplitude variations remain small and is in clear contrast
with what is observed is solar-like pulsators, where the damping
time can be inferred from the width of the Lorentzian profile fitted
to the power spectrum.

Our results imply that, given sufficient time, the variations of
the phase associated with the stochastic perturbations will always
become sufficiently large to be probed observationally in internally
excited classical pulsators.
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Benkő J. M., Jurcsik J., Derekas A., 2019, MNRAS, 485, 5897
Borucki W. J. et al., 2010, Science, 327, 977
Bowman D. M., Kurtz D. W., Breger M., Murphy S. J., Holdsworth D. L.,

2016, MNRAS, 460, 1970
Breger M., Bischof K. M., 2002, A&A, 385, 537
Breger M., Pamyatnykh A. A., 1998, A&A, 332, 958
Breger M., Montgomery M. H., Lenz P., Pamyatnykh A. A., 2017, A&A,

599, A116
Buchler J. R., Goupil M. J., Hansen C. J., 1997, A&A, 321, 159
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Pigulski A., Pojmański G., 2008, A&A, 477, 907
Smolec R., 2017, MNRAS, 468, 4299
Sterken C., 2005, in Sterken C., ed., ASP Conf. Ser. Vol. 335, The Light-

Time Effect in Astrophysics. Astron. Soc. Pac., San Francisco, p. 3
Trabucchi M., Wood P. R., Montalbán J., Marigo P., Pastorelli G., Girardi

L., 2019, MNRAS, 482, 929
Vauclair G. et al., 2011, A&A, 528, A5

Winget D. E., Hansen C. J., van Horn H. M., 1983, Nature, 303, 781
Winget D. E. et al., 1994, ApJ, 430, 839
Xiong D. R., Deng L., Zhang C., 2018, MNRAS, 480, 2698
Zahn J. P., 1970, A&A, 4, 452
Zong W., Charpinet S., Fu J.-N., Vauclair G., Niu J.-S., Su J., 2018, ApJ,

853, 98

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 492, 4477–4483 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/3/4477/5706862 by U
niversity of Birm

ingham
 user on 02 June 2020

http://dx.doi.org/10.1086/316290
http://dx.doi.org/10.1051/0004-6361:20078580
http://dx.doi.org/10.1093/mnras/stx679
http://dx.doi.org/10.1093/mnras/sty2745
http://dx.doi.org/10.1051/0004-6361/201014457
http://dx.doi.org/10.1038/303781a0
http://dx.doi.org/10.1086/174455
http://dx.doi.org/10.1093/mnras/sty2014
http://dx.doi.org/10.3847/1538-4357/aaa548

