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Abstract

A key challenge to make effective use of evolutionary algorithms is to
choose appropriate settings for their parameters. However, the appropri-
ate parameter setting generally depends on the structure of the optimi-
sation problem, which is often unknown to the user. Non-deterministic
parameter control mechanisms adjust parameters using information ob-
tained from the evolutionary process. Self-adaptation – where parameter
settings are encoded in the chromosomes of individuals and evolve through
mutation and crossover – is a popular parameter control mechanism in
evolutionary strategies. However, there is little theoretical evidence that
self-adaptation is effective, and self-adaptation has largely been ignored
by the discrete evolutionary computation community.

Here we show through a theoretical runtime analysis that a non-elitist,
discrete evolutionary algorithm which self-adapts its mutation rate not
only outperforms EAs which use static mutation rates on LeadingOnesk,
but also improves asymptotically on an EA using a state-of-the-art con-
trol mechanism. The structure of this problem depends on a parameter
k, which is a priori unknown to the algorithm, and which is needed to
appropriately set a fixed mutation rate. The self-adaptive EA achieves
the same asymptotic runtime as if this parameter was known to the al-
gorithm beforehand, which is an asymptotic speedup for this problem
compared to all other EAs previously studied. An experimental study of
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how the mutation-rates evolve show that they respond adequately to a
diverse range of problem structures.

These results suggest that self-adaptation should be adopted more
broadly as a parameter control mechanism in discrete, non-elitist evolu-
tionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) have long been heralded for their easy applica-
tion to a vast array of real-world problems. In their earlier years of study, two of
the advantages which were often given were their robustness to different param-
eter settings, such as mutation rate and population size, and their effectiveness
in domains where little is known about the problem structure [10]. However,
progress in the empirical and theoretical study of EAs has shown many excep-
tions to these statements. It is now known that even small changes to the basic
parameters of an EA can drastically increase the runtime on some problems
[20, 31], and more recently [34], and that hiding some aspects of the problem
structure from an EA can decrease performance [5, 15, 16, 26].

A popular solution to overcoming these shortcomings is parameter tuning,
where the parameters are adjusted between runs of the algorithm. Since the
parameters remain fixed throughout the entire run of the optimisation process
under this scheme, this parameter scheme is said to be static [25]. While the
majority of theoretical works have historically investigated static parameter
settings, a weakness of parameter tuning is that effective parameter settings
may depend on the current state of the search process.

An alternative approach is a dynamic parameter scheme, which has long
been known to be advantageous compared to static parameter choices in certain
settings [24, 37], reviewed in [13]. In contrast to parameter tuning, adjust-
ing parameters in this way is referred to as parameter control [25]. Dynamic
parameter control changes parameters of the EA during its execution, usually
depending on the EA’s state in the optimisation process or on time. While this
can lead to provably better performance, many theoretically-studied algorithms
are fitness-dependent, meaning they set parameters according to the given opti-
misation function. While important for understanding the limits of parameter
control, such control schemes are often ill-suited for more general optimisation
tasks or on problems where finding an effective fitness-dependent parameter set-
ting is impractical [13]. Thus, practitioners may find it challenging to transfer
theoretical results about fitness-dependent algorithms to an applied setting.

A more flexible way to dynamically adjust parameters is to use feedback
from the algorithm’s recent performance. This self-correcting, or adaptive ap-
proach to parameter control has been present in Evolutionary Strategies since
their beginning with the 1/5-th rule; however, results concerning this kind of
adjustment have only recently been seen in the theoretical literature for dis-
crete EAs [11, 17, 28]. The advantages of adjusting parameters on the fly in
this way include a reduction in design decisions compared to fitness-dependent
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algorithms, and the ability for the same adaptive scheme to work well for a
wider range of optimisation problems [27].

The adaptive parameter control scheme we consider employs self-adaptation
of the EA’s mutation rates, where mutation rates are encoded into the genome
of individual solutions. With self-adaptation, the mutation rate itself is mu-
tated when an individual undergoes mutation. As far as we know, within the
theory of discrete EAs there are only two existing studies of self-adaptation.
In [8], a self-adapting population using two mutation rates is shown to have
a runtime (expected number of fitness evaluations) of O(nλ log λ + n2) on a
simple peak function, while the same algorithm using any fixed mutation rate
took eΩ(n) evaluations with overwhelming probability. Recently, Doerr et al.
gave an example of a (1, λ) EA using self-adaptation of mutation rates with
expected runtime O(nλ/ log λ + n log n) on OneMax when λ ≥ (lnn)1+ε, an
asymptotic speedup from the classic (1 +λ) EA [21]. However, the former work
optimistically assumes one of the two available mutation rates are appropriate
for the given setting, so that any individual can easily switch to an ideal mu-
tation rate in a single step, and the latter only keeps the mutation rate of the
best individual after each generation, which makes tracking the trajectory of
mutation rates less difficult than if there were multiple parents with different
mutation rates. Therefore, while both these algorithms were effective, these
two results offer only a preliminary theoretical understanding of the full range
of self-adaptive mechanisms. Further, the use of limited mutation rates or a
single parent is unrealistic in many real-world settings (i.e., where cross-over is
frequently used). Thus, it remains an open question whether a population-based
EA can effectively adapt mutation rate without these assumptions.

We answer this question in the affirmative, introducing an extension of the
(µ, λ) EA which uses self-adaptation of mutation rates over a continuous interval
(Algorithm 1). In each generation, a new population of λ individuals is created
by selecting among the µ individuals with highest fitness, ties broken according
to higher mutation rate. Each selected individual then multiplies its current
mutation rate by a factor of either A > 1 or b ∈ (0, 1), effectively increasing or
decreasing its mutation rate, before undergoing bitwise mutation. To evaluate
the capability of the EA to adapt its mutation rate, we choose a problem where
selecting the right mutation rate is critical, and where the correct setting can be
anywhere between a small constant to n/2, where n is the problem instance size.
We show that when optimising LeadingOnesk the self-adaptive algorithm has
an expected runtime of O(k2) so long as λ = O(log n) and k ≥ (log n)2, which
is the same runtime as if k were known. As discussed in more detail in Section
1.2, this is a significant speedup compared to an EA using a static choice of
mutation rate, which can only achieve Θ(nk) on LeadingOnesk. This is also
an asymptotic speedup from the best-known runtime shown in [16], and indeed
is asymptotically optimal among all unary unbiased black-box algorithms [3].
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1.1 Theory of Adaptive Parameter Control

In the following summary of recent results in the theory of parameter control
in EAs, we use the language of Eiben, Hinterding, and Michalewicz [25] to
distinguish between types of parameter control. A parameter control scheme
is called deterministic if it uses time or other predefined, fitness-independent
factors to adjust parameters, and adaptive if it changes parameters according
to feedback from the optimisation process. As further distinguished in [11], a
notable distinction among adaptive algorithms is whether or not they are fitness-
dependent, i.e. whether they directly use a particular fitness function when
choosing parameter settings. Adaptive algorithms which are fitness-independent
are either self-adjusting, where a global parameter is modified according to a
simple rule, or self-adaptive, where the parameter is encoded into the genome
of an individual and modified through mutation.

For a comprehensive survey of the theory of parameter control in discrete
settings, we refer the reader to Doerr and Doerr’s recent review [13]. We now
highlight some themes from the theory of parameter control relevant to this
paper.

Comparison of fitness-independent mechanisms to fitness-dependent ones:
Often, the best parameter settings have a fitness-dependent expression which
depends on the precise fitness value of the search point at that time. While
these settings are typically problem-specific, there is an increasing number of
self-adjusting algorithms which are nearly as efficient, despite not being tailored
to a particular fitness landscape. A common strategy is to first analyse the
fitness-dependent case, followed by a self-adjusting scheme which attempts to
approximate the behaviour of the fitness-dependent one. For example, in [14] a
novel (1+(λ, λ)) GA is shown to need only Θ(n) fitness evaluations on OneMax
when using a fitness-dependent offspring size of λ = Θ(

√
n/(n−OM(x))). This

result is then extended using an adaptive mechanism based on the 1/5th rule,
where a key element to proving the algorithm’s effectiveness is in demonstrating
the adaptive GA’s offspring size λ is quickly attracted to within a constant factor
of the fitness-dependent value [12]. A similar pattern of discovery occurred for
the (1 + λ) EA on OneMax. Badkobeh et al. first showed that a fitness-

dependent mutation rate led to an expected runtime of O
(
nλ

log λ + n log n
)

,

which is asymptotically tight among all λ-parallel mutation-based unbiased
black-box algorithms and a speedup from the static-mutation case [3]. This
was followed by [19], where a self-adjusting (1 + λ) EA is shown to have the
same asymptotic runtime when λ = nO(1), and the aforementioned result for the
self-adaptive (1, λ) EA [21]. Again, it is shown the algorithm is able to quickly
find mutation rates close to the fitness-dependent values. The mutation rates
are shown to stay within this optimal range using occupation bounds.

For LeadingOnes, it was first demonstrated by Böttcher et al. in [4] that
the bitflip probability 1/(LO(x) + 1) led to an improved runtime of roughly
0.68n2 for the (1 + 1) EA on LeadingOnes. Since then, experimental results
for the self-adjusting (1 + 1)α EA suggest the algorithm is able to closely ap-
proximate this value [23, Fig. 3], and hyper-parameters for the algorithm have
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been found to yield the asymptotically optimal bound 0.68n2(1 + o(1)) [17].
Interplay between the mutation rate and selective pressure in non-elitist EAs:

While adaptive parameter control has been studied considerably less in non-
elitist EAs, the critical balance between a non-elitist EA’s mutation rate and
selective pressure (how much the algorithm tends to select the top individuals in
the population) takes on new importance when using self-adaptation of mutation
rates. In [33], the linear-ranking EA is shown to optimise a class of functions in
a sub-exponential number of fitness evaluations only when the selective pressure
is in a narrow interval, proportional to the mutation rate. A more general result
for non-elitist EAs using mutation rate χ/n is found in [29, Corollary 1], where
for a variety of selective mechanisms the lower bound χ > ln(α0) + δ is given,
where α0 is the reproductive rate and δ ∈ (0, 1) is a constant (the reproductive
rate is one measure of the selective pressure on an EA, see Definition 2). If
χ exceeds this bound, with overwhelming probability any algorithm using this
rate will have exponential runtime on any function with a polynomial number of
global optima. This negative result is extended in [8, Theorem 2] to include non-
elitist EAs which choose from a range of m different mutation rates by selecting
mutation rate χi/n with probability qi. Roughly, if

∑m
i=1 qie

−χi ≤ (1 − δ)/α0,
the algorithm will be ineffective.

1.2 Optimisation Against an Adversary

We will analyse the performance of our algorithm on the LeadingOnesk(x)
function, which counts the number of leading 1-bits, but only through the first
k bits and ignores the rest of the bitstring:

Definition 1. For x ∈ {0, 1}n, and 1 ≤ k ≤ n,

LOk(x) :=: LeadingOnesk(x) :=

k∑
i=1

i∏
j=1

xj .

The setting in which we consider this function is referred to as optimisation
against an adversary. This can be viewed as an extension of the traditional
black-box optimisation setting, in which the algorithm does not have access to
the problem data or structure and must learn only through evaluating candidate
solutions. Framing the study of EAs within the context of black-box optimisa-
tion, and its corresponding black-box complexity theory, is of growing interest
to the theoretical community [22]. Optimisation against an adversary adds the
additional constraint that the value k is also unavailable to the algorithm. That
is, prior to each run of the optimisation algorithm, an adversary chooses an inte-
ger k ≤ n and the algorithm must optimise the resulting problem fk. Effectively,
the adversary is able to choose some fk from a class of functions parameterised
by k, and the algorithm could have to solve any problem from this class. Note
that the adversary is not able to actually permute any bits during optimisation,
they only influence the optimisation task through their choice of k. A similar
problem was first analysed by Cathabard et al. in [5], along with an analogous
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OneMaxk function, though here k was sampled from a known distribution.
The setting where k corresponds to an unknown initial number of bits which
impact fitness has become known as the initial segment uncertainty model. The
closely related hidden subset problem, which is analogous to the initial segment
model except the k meaningful bits can be anywhere in the bitstring, has also
been studied for LeadingOnesk and OneMaxk [15, 16, 26]. Since our algo-
rithm always flips all bits with equal probability during mutation, our results
immediately extend to this class of problems. Optimisation against an adver-
sary further generalises this terminology to contain any problem in which an
adversary can control the hidden problem structure through their choice of k.
For example, it includes the SubStringk function introduced in Section 4.

The addition of an adversary can be difficult for EAs with static mutation
rate due to the following phenomenon: consider a (1+1) EA using constant mu-
tation probability p, and suppose we are attempting to optimise LeadingOnesk
against an adversary. If k is far less than n, the traditional choice of p = 1/n
will be far too conservative, and the expected number of function evaluations
until the optimum is found will be Θ(nk). On the other hand, choosing a higher
value of p such that p = ω(1/n) will not work if the adversary chooses a value of
k quite close to n, since in this case the EA will flip the leading 1-bits with too
high probability and have exponential runtime. However, several extensions of
the (1 + 1) EA have been proposed which are more effective for optimisation in
this uncertain environment. In [16], Doerr et al. consider two different variants
of the (1 + 1) EA, one which assigns different flip probabilities to each bit, and
one which samples a new bitflip probability from a distribution Q in each gener-
ation, both of which they show to have an expected runtime of O(k2(log k)1+ε)
on LeadingOnesk. They also show the log1+ε k term can be further reduced
by more carefully choosing the positional bitflip probabilities or the distribu-
tion Q; however, in a follow-up work, it is shown that the upper bound for both
of these algorithms is nearly tight, that is, the expected runtime is ω(k2 log k)
[15]. In [26], a different sort of self-adjusting (1 + 1) EA is introduced for the
hidden subset problem on the class of linear functions. Rather than adjusting
the mutation rate in each generation during the actual search process, the algo-
rithm instead spends O(k) generations approximating the hidden value k, and
then O(k log k) generations actually optimising fk now that k is approximately
known. This algorithm not only improves the bound from O(k(log k)2+ε) in
[16] to Θ(k log k) for OneMaxk under the hidden subset model, but the im-
plicit constants of (1±o(1))en lnn are found as well, matching the performance
of a (1 + 1) EA which knows k in advance. However, it remained to be demon-
strated whether an EA could similarly solve the LeadingOnesk problem at no
extra cost when k was unknown.

1.3 Structure of the Paper

Section 2 introduces notation, a formal description of the self-adaptive algorithm
(Algorithm 1), and the analytical tools we used. Section 3 provides our main
result, that Algorithm 1 optimises LeadingOnesk against an adversary in ex-
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pected time O(k2). Section 4 is an experimental study on theoretical benchmark
functions, first illustrating the evolution of the mutation rate throughout the
optimisation process, then comparing the average runtime during optimisation
against an adversary of the algorithm to some classic EAs and to the adaptive
(1 + 1)α EA [23]. Section 5 concludes the paper.

2 Preliminaries

2.1 General Notation

For any n ∈ N, let [n] := {1, ..., n} and [0..n] := {0}∪ [n]. The natural logarithm
is denoted by ln(.), and the logarithm base 2 by log(.). The Iverson bracket is
denoted by [.], which is equal to 1 if the statement in the brackets is true, and 0
otherwise. The search space throughout this work is X := {0, 1}n, and we refer
to x = (x1, ..., xn) in X as a bitstring of length n. Since we are interested in
searching the space of mutation rates along with the set of bitstrings, it will be
convenient to define an extended search space of

Y := X × [ε, 1/2]. (1)

The parameter ε = c/n, where c < 1 is a small constant with respect to n,
is necessary only for technical reasons in our analysis. The Hamming distance
between two bitstrings x, x′ is denoted by H(x, x′). All asymptotic notation
throughout this work is with respect to n, the size of the problem space. The
runtime of a search process is defined as the number of fitness evaluations before
an optimal search point is found, denoted by T . Generally we are concerned
with the expected runtime, E [T ].

2.2 A Self-adaptive (µ, λ) EA

We consider a non-elitist EA using self-adaptation of mutation rates, outlined
in Algorithm 1. We refer to a population as a vector P ∈ Yλ, where λ ∈ N is
the population size, and where the i-th element P (i) is called the i-th individual.
For an individual (x, χ/n) ∈ Y, we refer to χ/n ∈ [ε, 1/2] as the mutation rate,
and χ as the mutation parameter. In each generation t ∈ N0, Algorithm 1
creates the next population Pt+1 by independently creating λ new individuals
according to a sequence of operations selection, adaptation, and mutation.

2.2.1 Selection

We consider a variant of the standard (µ, λ) selection scheme, where the µ ≤ λ
best individuals are chosen according to fitness, with ties broken according to
the individual with higher mutation rate. More precisely, the population is first
sorted according to the ordering

(x, χ) � (x′, χ′)⇔ f(x) > f(x′) ∨ (f(x) = f(x′) ∧ χ ≥ χ′), (2)
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Algorithm 1 (µ, λ) Self-adaptive EA

Require: Fitness function f : X → R.
Require: Population sizes µ, λ ∈ N, where 1 ≤ µ ≤ λ.
Require: Adaptation parameters A > 1, and b, pinc ∈ (0, 1).
Require: Initial population P0 ∈ Yλ.
1: for t in 0, 1, 2, . . . until termination condition met do
2: Sort Pt st. Pt(1) � · · · � Pt(λ), according to (2).
3: for i in 1, . . . , λ do
4: Set (x, χ/n) := Pt(It(i)), It(i) ∼ Unif([µ]).

5: Set χ′ :=

{
min{Aχ, n/2} with probability pinc

max{bχ, εn} otherwise.

6: Create x′ by independently flipping each bit of x with probability
χ′/n.

7: Set Pt+1(i) := (x′, χ′/n).
8: end for
9: end for

where ties of f(x) = f(x′) and χ = χ′ are broken arbitrarily. Then, each parent
is chosen uniformly from the µ top individuals Pt(1), . . . , Pt(µ).

We quantify the selective pressure of the selection mechanism using the re-
productive rate.

Definition 2 ([29]). The reproductive rate of Algorithm 1 is α0 := max1≤i≤λE [Rt(i)] ,

where Rt(i) :=
∑λ
j=1[It(j) = i].

That is, α0 is the expected number of times per generation an individual
with the highest selection probability is chosen in step 4 of Algorithm 1. A
well-known fact is that the reproductive rate of the standard (µ, λ) EA is λ/µ
(Lemma 7 in [30]). This is also the case for Algorithm 1.

2.2.2 Adaptation

Each chromosome (x, χ/n) carries both a search point x and a mutation pa-
rameter χ. In order for the population to explore different mutation rates, it
must be possible for the offspring to inherit a “mutated” mutation parameter
χ′ different from its parent. For the purpose of the theoretical analysis, we are
looking for the simplest possible update mechanism, which is still capable of
adapting the mutation rates in the population.

We will prove that the following simple multiplicative update scheme suffices:
given a parent with mutation parameter χ, the offspring inherits an increased
mutation parameter Aχ with probability pinc, and a reduced mutation param-
eter bχ with probability 1 − pinc, where A and b are two parameters satisfying
0 < b < 1 < A. We choose the parameter names A and b for consistency with
the adaptive (1 + 1)α EA already introduced in [23], which similarly changes
the mutation rate in this step-wise fashion. However, unlike Algorithm 1, the
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(1 + 1)α EA changes the mutation rate based on whether the offspring is fitter
than the parent.

Our goal is that the evolutionary algorithm adapts the mutation parameter
χ to the problem at hand, so that it is no longer necessary to set the parameter
χ manually. It may seem counter-productive to replace one mutation parame-
ter by introducing three new adaptation mechanism parameters A, b, and pinc.
However, we will show that while the mutation parameter χ must be tuned
for each problem, the same fixed setting of the parameters A, b, pinc is effective
across many problems. We conjecture that the self-adaptive EA will be effective
with other adaptation mechanisms. For example, rather than multiplying by
the constants A and b, we could multiply the mutation parameter by a factor
with log-normal distribution as was originally done in [2]. We suspect that
many adjustment mechanisms which favour taking small steps from the current
mutation rate could be analysed similarly to the analysis presented in this work.

2.2.3 Mutation

The mutation step is when a new candidate solution is actually created by our
algorithm. We consider standard bit-wise mutation, where a parent x ∈ {0, 1}n
with mutation rate χ/n produces an offspring x′ ∈ {0, 1}n by flipping each bit
of x independently with probability χ/n. We adopt the notation from [29], and
consider the offspring x′ a random variable x′ ∼ pmut(x, χ), with distribution

Pr(x′ = pmut(x, χ)) :=
(χ
n

)H(x,x′) (
1− χ

n

)n−H(x,x′)

.

2.3 Level-based Analysis

We analyse the runtime of Algorithm 1 using level-based analysis. Introduced
by Corus et al. [7], the level-based theorem is a general tool for deriving upper
bounds on the expected runtime for non-elitist population-based evolutionary
algorithms, and has been applied to a wide range of algorithms, including to
GAs [7], and EDAs [9].

The theorem can be applied to any population-based stochastic process
(Pt)t∈N, where individuals in Pt+1 are sampled independently from a distribu-
tion D(Pt), where D maps populations to distributions over the search space.
In the case of our algorithm, D is the composition of selection, adaptation,
and mutation. The theorem also assumes a partition (A1, . . . , Am) of the finite
search space into m subsets, also called levels. Usually, this partition is over the
function domain X , but since we are concerned with tracking the evolution of
the population over the 2-dimensional space of bitstrings and mutation rates,
we will rather work with subsets of Y.

Given any subset A ⊆ Y, we slightly abuse notation and let |P ∩ A| :=
|{i ∈ [λ] | P (i) ∈ A}| denote the number of individuals in a population P ∈ Yλ
that belong to the subset A. Given a partition of the search space X into
levels (A1, . . . , Am), we define for notational convenience A≥j :=

⋃m
i=j Ai and

A>j :=
⋃m
i=j+1Ai.
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Theorem 1 ([7]). Given a partition (A1, . . . , Am) of X , define T := min{tλ |
Pt ∩ Am 6= ∅}, where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 1
from [7] in generation t. If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1)
such that for any population P ∈ X λ,

(G1): for each j ∈ [m− 1], if |P ∩A≥j | ≥ γ0λ, then

Pr
y∼D(P )

(y ∈ A≥j+1) ≥ zj ,

(G2): for each j ∈ [m− 2], and all γ ∈ (0, γ0]
if |P ∩A≥j | ≥ γ0λ and |P ∩A≥j+1| ≥ γλ, then

Pr
y∼D(P )

(y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3): the population size λ ∈ N satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
, where z∗ := min

j∈[m−1]
{zj},

then E [T ] ≤
(

8
δ2

)∑m−1
j=1

(
λ ln

(
6δλ

4+zjδλ

)
+ 1

zj

)
.

3 Runtime Analysis on LeadingOnesk

We now introduce our main result, which is an upper bound on the optimisation
time of Algorithm 1 on the LeadingOnesk problem. Note that for population
size λ = c ln(n) and problem parameter k ≥ log(n) log(n), the bound in the
theorem simplifies to O(k2) which is asymptotically optimal among all unary
unbiased black-box algorithms, regardless of whether the parameter k is known
[32].

Theorem 2. Algorithm 1 with λ
µ = α0 ≥ 4, constant parameters A, b, pinc ∈ R

satisfying A > 1, (1+δ)/α0 < pinc < 2/5, and 0 < b < 1/(1+
√

1/(α0(1− pinc)))
for some δ ∈ (0, 1), parent population size µ = Ω(log(n)), and λ ≥ c ln(n) for a
large enough constant c, for any k ∈ N, has expected runtime O(kλ log(nλ)+k2)
on LeadingOnesk.

The proof of Theorem 2 is structured as follows. In Section 3.1, in order
to apply the level-based analysis and track the population’s progress over a
two-dimensional landscape, we begin by defining a partition of Y. Since our
partition is more involved than those usually applied to the level-based theo-
rem, we also verify it is truly a partition. In Section 3.3, we identify a region of
the search space where individuals have a mutation rate which is too high with
respect to their fitness, then show that with overwhelming probability, individ-
uals in this region will not dominate the population. In Section 3.2, the main
technical section, we calculate the probabilities of a parent individual producing
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an offspring in a level at least as good as its own, and of producing an offspring
in a strictly better level. Finally in Section 3.4 we put everything together and
apply Theorem 1 to our partition to obtain an upper bound on the expected
runtime.

3.1 Partitioning the search space into levels

We now partition the two-dimensional search space Y = X×[ε, 1/2] into “levels”,
which is required to apply Theorem 1. The proof of Theorem 1 uses the levels to
measure the progress of the population through the search space. The progress
of Algorithm 1 depends both on the fitness of its individuals, as well as on their
mutation rates. We start by defining a partition on the search space X , into
k + 1 canonical fitness levels, for j ∈ [0..k],

Aj := {x ∈ X | LeadingOnesk(x) = j}.

These fitness levels will be used later to define a partition on the extended search
space Y.

The probability of a “fitness upgrade”, i.e., that a parent produces an off-
spring which is fitter than itself depends on the mutation rate of the parent. If
the fitness of the parent is j, but its mutation rate is significantly lower than
1/j, then the algorithm will lose too much time waiting for a fitness upgrade,
and should rather produce offspring with increased mutation rates. Conversely,
if the mutation rate is significantly higher than 1/j, then the mutation operator
is too likely to destroy the valuable bits of the parent.

To make this intuition precise, we will define for each fitness level j ∈ [0..k−
1], two threshold values θ1(j) and θ2(j). These values will be defined such that
when the mutation rate satisfies χ/n ∈ [ε, θ1(j)), then the mutation rate is
too low for a speedy fitness upgrade, when the mutation rate satisfies χ/n ∈
[θ1(j), θ2(j)], then the mutation rate is ideal for a fitness upgrade, and when the
mutation rate satisfies χ/n ∈ (θ2(j), 1/2], then the mutation rate is too high.
To not distract from our introduction of the levels, we postpone the detailed
derivation of the expressions of the threshold values to Section 3.2, and simply
assert that they satisfy the following conditions for all j ∈ [0..k − 1],

1. ε < θ1(j) < min(1/2, θ2(j))

2. θ1(j) > θ1(j + 1)

3. θ2(j) > θ2(j + 1),

Condition (1) states that [θ1(j), θ2(j)] forms an interval which always over-
laps with the range of mutation rates reachable by Algorithm 1, while (2) and
(3) state that both θ1 and θ2 are monotonically decreasing functions.

To reflect the progress of the population in terms of increasing the mutation
rate towards the “ideal” interval [θ1(j), θ2(j)] within a fitness level j, we par-
tition the extended search space Y into sub-levels A(j,`). The lowest sub-level
A(j,0) corresponds to individuals with fitness j and mutation rate in the interval
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from ε to Aε. If the mutation rate is increased by a factor of A from this level,
one reaches the next sub-level A(j,1). In general, sub-level A(j,`) corresponds to

individuals with fitness j and mutation rates in the interval from A`−1ε to A`ε,
etc. After the mutation rate has been increased a certain number of times, which
we call the “depth” of fitness level j, one reaches the ideal interval [θ1(j), θ2(j)].

Definition 3. For each j ∈ [k − 1], the depth of level j is the unique positive
integer

dj := min
{
` ∈ N | εA` ≥ θ1(j)

}
, (3)

where A is the step-size parameter from Algorithm 1.

Our next step in introducing the levels which build our partition of Y is to
distinguish between two conceptual types of levels, namely, between low levels
and edge levels. The low levels represent regions of Y where individuals have
mutation rate below θ1(j), i.e., can still raise mutation rate while maintaining
fitness with good probability. For each fitness value j ∈ [0..k − 1], there are
dj − 1 low levels.

Edge levels form a region of search points where the mutation rate is neither
too low nor too high with respect to j, i.e., in the ideal interval from θ1(j) to
θ2(j). It is these search points which are best equipped for upgrading from
fitness level j to a strictly better level. At the same time, increasing mutation
further would put these individuals in danger of ruining their fitness. To progress
from an edge level, an individual must strictly increase its fitness.

The final technicality to discuss before defining our partition is where to place
an individual with fitness j and mutation rate χ/n > θ2(j). We avoid placing
such individuals into any of the low or edge levels corresponding to fitness level
j. However, due to the conditions (1) through (3) we imposed on θ2, there exists
some lower fitness value j′ < j such that θ1(j′) ≤ χ/n ≤ θ2(j′). This means
that j′ is the largest number of bits the individual will be able to maintain with
good enough probability. We will therefore add such an individual to a level
corresponding to fitness level j′.

We now define the “low levels” and the “edge levels” on the extended search
space Y = X × [ε, 1/2].

Definition 4. For j ∈ [0..k − 1] and ` ∈ [dj − 1], we define the low levels as

A(j,`) := Aj ×
[
A`−1ε,min

(
A`ε, θ1(j)

))
(4)

and for j ∈ [0..k − 1], we define the edge levels as

A(j,dj) :=Aj ×
[
θ1(j),min

(
1

2
, θ2(j)

)]
∪ (5)

A>j ×
(

min

(
1

2
, θ2(j + 1)

)
,min

(
1

2
, θ2(j)

)]
Additionally, since all search points with LOk(x) ≥ k are globally optimal,

we simply define a new set A(k,1) ∈ Y where

A(k,1) := {(x, χ/n) | LOk(x) = k}. (6)
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Thus, we define our partition of Y to consist of all sets A(j,`) from Def-
inition 4, where j ∈ [0..k − 1] and ` ∈ [dj ], and A(k,1). Hence, there are

m :=
(∑k−1

j=0 dj

)
+ 1 levels.

We now prove that the levels form a partition of the extended search space
Y. To simplify the proof, we first define some upper bounds for the sub-levels.
For all ` ≤ dj , the definition of dj and Lemma 3 (vii) imply that

A`−1ε < θ1(j) < θ2(j + 1),

which leads to the upper bounds

A(j,`) ⊂ A≥j ×
[
A`−1ε,min

(
1

2
, θ2(j)

)]
(7)

⊆ A≥j ×
[
A`−1ε, θ2(j)

]
. (8)

Furthermore, for all v < dj , Eq. 4 gives the trivial upper bound

A(j,v) ⊂ Aj × (−∞, Auε). (9)

Lemma 1 and Lemma 2 imply that we have a partition of the search space.

Lemma 1. For all (u, v) 6= (j, `), it holds A(u,v) ∩A(j,`) = ∅.

Proof. The following three cases use that (X×Y )∩(U×V ) = (X∩U)×(Y ∩V ).
Case 1: u = j. Assuming w.l.o.g. that v < ` ≤ du, the bounds (8) and (9) give

A(u,v) ∩A(j,`) ⊂ Au ×
(
(−∞, Avε) ∩ [A`−1ε,∞)

)
= ∅,

where the last equality follows from Avε ≤ A`−1ε.
Case 2: u+ 1 ≤ j and v < du. In this case, the bounds (8) and (9) give

A(u,v) ∩A(j,`) ⊂ (Au ∩A≥j)× (−∞,∞) = ∅,

where the last equality follows from Au ∩A≥j = ∅.
Case 3: u+ 1 ≤ j and v = du. In this case, the bound (7) and the definition

of A(u,du) in (5) give

A(u,v) ∩A(j,`) ⊂ A(u,du) ∩
(
A≥j ×

(
−∞,min

(
1

2
, θ2(j)

)])
⊂ (A>u ∩A≥j)×((

min

(
1

2
, θ2(u+ 1)

)
,∞
)
,(

−∞,min

(
1

2
, θ2(j)

)])
= ∅,

where the last equality follows from the fact that the function θ2 decreases
monotonically, thus θ2(j) ≤ θ2(u+ 1).
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Lemma 2.
⋃k
j=0

⋃dj
`=1A(j,`) = Y.

Proof. We prove by induction on u ≤ k that

k⋃
j=u

dj⋃
`=1

A(j,`) = A≥u ×
[
ε,min

(
1

2
, θ2(u)

)]
. (10)

For the base step, (10) holds when u = k because by the level definition

dk⋃
`=1

A(k,`) = Ak ×
[
ε,min

(
1

2
, θ2(k)

)]
. (11)

For the inductive step, assume that (10) holds for some u ∈ [k]. We then have

k⋃
j=u−1

dj⋃
`=1

A(j,`) =

 dj⋃
`=1

A(u−1,`)


∪
(
A≥u ×

[
ε,min

(
1

2
, θ2(u)

)])
=

(
Au−1 ×

[
ε,min

(
1

2
, θ2(u− 1)

)])
∪
(
A≥u ×

(
min

(
1

2
, θ2(u)

)
,min

(
1

2
, θ2(u− 1)

)])
∪
(
A≥u ×

[
ε,min

(
1

2
, θ2(u)

)])
= A≥u−1 ×

[
ε,min

(
1

2
, θ2(u− 1)

)]
.

By induction, (10) holds for u = 0. The proof is now complete by noting that
θ2(0) > 1/2 due to Lemma 3 (i).

The level-based theorem assumes that the levels are totally ordered, however
we have introduced two-dimensional levels. We will order the levels using the
lexicographic order � defined for j, j′, `, `′ by

A(j′,`′) � A(j,`) ⇐⇒ (j′ > j) ∨ (j′ = j ∧ `′ ≥ `).

Also, it will be convenient to introduce the notation

A≥(j,`) :=
⋃{

A(j′,`′) | A(j′,`′) � A(j,`)

}
. (12)

3.2 Survival and Upgrade Probabilities

Having partitioned the search space into levels, the next steps in applying the
level-based theorem are to prove that conditions (G1) and (G2) are satisfied.
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Figure 1: A typical lineage of individuals. The population makes progress
keeping its j leading 1-bits and raising mutation rate. Once in the edge region
(grey), it remains in the edge region while increasing or decreasing mutation.
Individuals in the edge region can move to a strictly better level by obtaining
at least j + 1 leading 1-bits and lowering mutation rate.

This amounts to estimating the probability that an offspring does not decrease to
a lower level (condition (G2)), and the probability that it upgrades to a strictly
better level (condition (G1)). It will be convenient to introduce a measure for
the probability of reproducing a bitstring of equal or better fitness by applying
a mutation rate χ/n.

Definition 5. For all j ∈ [0..n] and χ ∈ [εn, n/2], we define the survival
probability as

r(j, χ) := min
x∈Aj

Pr
x′∼pmut(x,χ)

(x′ ∈ A≥j).

For LeadingOnesk, it is straightforward to show that r(j, χ) = (1− χ/n)
j
.

Fig. 1 illustrates a typical lineage of individuals, from fitness level j to fitness
level j+1. Starting from some low mutation rate in fitness level j, the mutation
rate is increased by a factor of A in each generation, until the mutation rate
reaches the interval [θ1(j), θ2(j)], i.e., the edge level. The lineage circulates
within the edge level for some generations, crossing an intermediary value η(j),
before the fitness improves, and fitness level j + 1 is reached.

It is critical to show that with sufficiently high probability, the lineage re-
mains in the edge level before upgrading to fitness level j+1. This is ensured by
the bounds in Lemma 3. Statement (vii) implies that we cannot overshoot the
edge level by increasing the mutation rate. Statement (iv) implies that below
the intermediary mutation rate η(j), the mutation rate can still be increased
by a factor of A. Conversely, statement (v) means that above the intermediary
mutation rate η(j), it is safe to decrease the mutation rate by a factor of b.
Statements (viii) and (ix) ensure that an individual in an edge level can always
either increase or decrease mutation rate for there to be a sufficiently high prob-
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ability of maintaining the individual’s fitness value. Finally, statements (ii) and
(iii) imply that within the edge level, the upgrade probability is Θ(1/j).

Before we can prove these statements, recall that we have delayed formally
defining the functions θ1, η, or θ2. In order to derive the claimed bounds for
Lemma 3, we do this now. For j ≥ 1, let

η(j) :=
1

2A

(
1−

(
1 + δ

α0pinc

)1/j
)

(13)

θ1(j) := bη(j) (14)

θ2(j) := 1− q1/j (15)

where

q :=
1− ζ
α0

, r0 :=
1 + δ

α0(1− pinc)
, and

ζ := 1− α0(r0)1+
√
r0 . (16)

Furthermore, for the special case j = 0, define

η(0) :=
η(1)

A
, θ1(0) := bη(0), and θ2(0) :=

θ2(1)

b
.

Note that these definitions, along with statement (i) of Lemma 3, ensure θ1 and
θ2 satisfy the informal conditions from Section 3.1 for ε small enough.

Lemma 3. Let A > 1, b < 1, and pinc ∈ (0, 1) be constants satisfying the
constraints in Theorem 2. Then there exists a constant δ ∈ (0, 1/10) such that
for all j ∈ [0..k − 1] and χ/n ∈ [ε, 1/2],

(i) θ1(0) < η(0) < 1/2 < θ2(0),

(ii) θ2(j) = Ω(1/j)

(iii) θ1(j) = O(1/j)

(iv) Aη(j) ≤ θ2(j),

(v) bη(j) ≥ θ1(j),

(vi) bθ2(j) < θ2(j + 1),

(vii) Aθ1(j) ≤ θ2(j + 1),

(viii) if χ
n ≤ η(j), then r(j, Aχ) ≥ 1+δ

α0pinc
, and

(ix) if χ
n ≤ θ2(j), then r(j, bχ) ≥ 1+δ

α0(1−pinc) .
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Proof. Before proving statements (i)–(ix), we derive bounds on the three con-
stants q, ζ, and r0. By the assumptions pinc < 2/5 and α0 ≥ 4 from Theorem 2
and δ < 1/10,

r0 <
11

6α0
< 1. (17)

Furthermore, since r0 < 1 and α0 ≥ 4, we have

ζ > 1− α0(r0)2 > 1− 1

α0

(
11

6

)2

≥ 23

144
. (18)

Finally, since δ, ζ, pinc ∈ (0, 1), we have from the definitions of r0 and q that

0 < q < r0. (19)

From the definition of the functions θ1, η, and the constant δ ∈ (0, 1/10), it
follows that

θ1(0) < η(0) < η(1) <
1

2A

(
1− 1

α0pinc

)
<

1

2
.

Also, we have from the definition of q, the constraint α0 ≥ 4 from Theorem 2,
and the bound ζ > 23/144 from (18) that

θ2(0) > θ2(1) > 1− q = 1− 1− ζ
α0

> 1−
1− 23

144

4
=

455

576
.

Thus, we have proven statement (i).
Statement (ii) follows directly from Lemma 7, the definition of θ2 and the

constant q,

θ2(j) = 1− q1/j ≥ ln(1/q)/j = Ω(1/j).

For statement (iii), we define c := 1+δ
α0pinc

< 1, and observe that the inequality
ex ≥ 1 + x implies

θ1(j) < 1− c1/j = 1− e(1/j) ln(c) ≤ −(1/j) ln(c) = O(1/j).

For statement (iv), first note that Eq. (19) and the assumption pinc < 2/5
imply

0 < q < r0 <
1 + δ

α0pinc
.

For j ≥ 1, we therefore have 1/j > 0 and

θ2(j) = 1− q1/j ≥ 1−
(

1 + δ

α0pinc

)1/j

≥ Aη(j).
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For j = 0, the definition of η(0), statement (iv) for the case j = 1 shown above,
and the definition of θ2(0) give

Aη(0) = η(1) ≤ θ2(1)

A
=
bθ2(0)

A
< θ2(0).

Statement (v) follows from the definition of θ1(j).
We now show (vi). The statement is true by definition for j = 0, so assume

that j ≥ 1. We first derive an upper bound on the parameter b in terms of
the constant q. In particular, the constraint on b from Theorem 2 and the
relationship 0 < q < r0 from (19) give

b ≤ 1

1 +
√
r0
<

1

1 +
√
q

=
1−√q
1− q

. (20)

The right hand side of (20) can be further bounded by observing that the func-

tion g(j) := 1−q1/(j+1)

1−q1/j with q > 0 increases monotonically with respect to j.

Thus, for all j ∈ N, we have

b <
1−√q
1− q

≤ 1− q1/(j+1)

1− q1/j
. (21)

This upper bound on parameter b now immediately leads to the desired result

bθ2(j) = b(1− q1/j) ≤ 1− q1/(j+1) = θ2(j + 1). (22)

Statement (vii) follows by applying the previous three statements in the
order (v), (iv), and (vi)

Aθ1(j) ≤ Abη(j) ≤ bθ2(j) ≤ θ2(j + 1).

Next we prove statement (viii). The statement is trivially true for j = 0,
because r(0, Aχ) = 1, so assume that j ≥ 1. By the assumption χ/n ≤ η(j)
and the definition of η(j),

r(j, Aχ) =

(
1− Aχ

n

)j
≥ (1−Aη(j))

j

≥

(
1−

(
1−

(
1 + δ

α0pinc

)1/j
))j

=
1 + δ

α0pinc
.

Finally, we prove statement (ix). Again, the statement is trivially true for
j = 0, because r(0, bχ) = 1, so assume that j ≥ 1. We derive an alternative
upper bound on parameter b in terms of r0 and q. By the constraint on b in
Theorem 2,

b ≤ 1

1 +
√
r0

=
ln(r0)

ln(r0) +
√
r0 ln(r0)

=
ln(r0)

ln
(
r0r
√
r0

0

) =
ln r0

ln q
. (23)
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Furthermore, note that the function h(j) :=
1−r1/j0

1−q1/j decreases monotoni-

cally with respect to j when r0 > q > 0, and has the limit limj→∞ h(j) =
ln(r0)/ ln(q). Using (23), it therefore holds for all j ∈ N that

b ≤ ln r0

ln q
≤ 1− r1/j

0

1− q1/j
. (24)

The assumption χ/n ≤ θ2(j), the definition of θ2(j), and (24) now give

r(j, bχ) =

(
1− bχ

n

)j
≥ (1− bθ2(j))

j

=
(

1− b
(

1− q1/j
))j
≥
(

1−
(

1− r1/j
0

))j
= r0,

which completes the proof of statement (ix).

Using Lemma 3, we are now in a position to prove that the levels satisfy
condition (G2). If the mutation rate χ/n is above the intermediary value η(j),
there is a sufficiently high probability of reducing the mutation rate while main-
taining the fitness. Conversely, if the mutation rate is below the intermediary
value η(j), there is a sufficiently high probability of increasing the mutation rate
while maintaining the fitness.

Lemma 4. Assume that the parameters A, b, and pinc satisfy the constraints
in Theorem 2. Then there exists a constant δ ∈ (0, 1/10) such that for all
j ∈ [0..k−1] and all ` ∈ [dj ], if Algorithm 1 in step 4 selects a parent (x, χ/n) ∈
A(j,`), then the offspring (x′, χ′/n) created in steps 5 and 6 of the algorithm
satisfies

Pr
(
(x′, χ′/n) ∈ A≥(j,`)

)
≥ 1 + δ

α0
.

Proof. We will prove the stronger statement that with probability (1 + δ)/α0,
we have simultaneously

x′ ∈ A≥j and min
{χ
n
, θ1(j)

}
≤ χ′

n
≤ θ2(j). (25)

The event (25) is a subset of the event (x′, χ′/n) ∈ A≥(j,`), because a lower
level A(j,`) may contain search points (x′, χ′/n) with mutation rates χ′/n <
min(χ/n, θ1(j)).

By Definition 4, the parent satisfies x ∈ A≥j and χ/n ≤ θ2(j). We distin-
guish between two cases.

Case 1: χ/n ≤ η(j). By Lemma 3 (i), and the monotonicity of η, we have
η(j) < 1/2. Note that in this case, it is still “safe” to increase the mutation rate.
For a lower bound, we therefore pessimistically only account for offspring where
the mutation parameter is increased from χ < n/2 to min(Aχ, n/2). Note first
that since A > 1, we have

χ′

n
=

min(Aχ, n/2)

n
>
χ

n
.
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Also, Lemma 3 (iv) implies the upper bound

χ′

n
≤ Aχ

n
≤ Aη(j) ≤ θ2(j).

To lower bound the probability that x′ ∈ A≥j , we consider the event where
the mutation rate is increased, and the event that none of the first j bits in
the offspring are mutated with the new mutation parameter min(Aχ, n/2). By
definition of the algorithm and using Lemma 3 (viii), these two events occur
with probability at least

pincr(j, Aχ) ≥ (1 + δ)/α0. (26)

Case 2: η(j) < χ/n ≤ θ2(j). Note that in this case, it may be “unsafe” to
increase the mutation rate. For a lower bound, we pessimistically only con-
sider mutation events where the mutation parameter is decreased from χ to bχ.
Analogously to above, since b < 1, we have

χ′

n
=
bχ

n
<
χ

n
≤ θ2(j). (27)

Furthermore, Lemma 3 (v) implies the lower bound

χ′

n
=
bχ

n
>
bη(j)

n
≥ θ1(j). (28)

To lower bound the probability that x′ ∈ A≥j , we consider the event where
the mutation parameter is decreased from χ to bχ, and the offspring x′ is not
downgraded to a lower level. By definition of the algorithm, r(j, bχ), and using
Lemma 3 (ix), these two events occur with probability

(1− pinc)r(j, bχ) ≥ (1 + δ)/α0. (29)

Hence, we have shown that in both cases, the event in Eq. (25) occurs with
probability at least (1 + δ)/α0, which completes the proof.

We now show that the edge levels satisfy condition (G1) of the level-based
theorem. As we will show later, the upgrade probability for non-edge levels is
constant.

Lemma 5. Assume that the parameters b and pinc satisfy the constraints in
Theorem 2. Then for any j ∈ [0..k − 1], and any search point (x, χ/n) ∈
A(j,dj) selected in step 4 of Algorithm 1 applied to LeadingOnesk, the offspring

(x′, χ′/n) created in steps 5 and 6 satisfies Pr
(
(x′, χ′/n) ∈ A≥(j+1,1)

)
= Ω(1/j).

Proof. By the definition of level A(j,dj), we have θ1(j) ≤ χ/n ≤ θ2(j) and so by
Lemma 3 (vi), we have bχ/n ≤ θ2(j+1). Given the definition of levels A≥(j+1,1),
it suffices for a lower bound to only consider the probability of producing an
offspring (x′, χ′/n) with lowered mutation rate χ′/n = bχ/n ≤ θ2(j + 1) and
fitness LOk(x′) ≥ j + 1.
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We claim that if the mutation rate is lowered, the offspring has fitness
LOk(x′) ≥ j + 1 with probability Ω(1/j). Since the parent belongs to level
A(j,dj), it has fitness LOk(x) ≥ j, so we need to estimate the probability of not
flipping the first j bits, and obtain a 1-bit in position j + 1.

We now estimate the probability of obtaining a 1-bit in position j+1, assum-
ing that the parent x already has a 1-bit in this position, for any j ∈ [0..k − 1].
Using that θ2(j) decreases monotonically in j, the definition of θ2(0), and the
lower bound on the parameter ζ > 23/144 from Eq. (18), the probability of not
mutating bit-position j + 1 with the lowered mutation rate bχ/n is

1− bχ

n
≥ 1− bθ2(j) ≥ 1− bθ2(0)

= 1− θ2(1) = 1− 1− ζ
α0

> 1−
1− 23

144

α0
= Ω(1).

If the parent x does not have a 1-bit in position j + 1, we need to flip this
bit-position. By the definition of θ1(j) in Eq. (14), the probability of this event
is in the case j ≥ 1

bχ

n
≥ bθ1(j) =

b2

2A

(
1−

(
1 + δ

α0pinc

)1/j
)

(30)

≥ b2

2Aj
ln

(
α0pinc

1 + δ

)
= Ω(1/j), (31)

where the last inequality follows from Lemma 7. If j = 0, we use that θ1(j)
decreases monotonically in j and Eqs. (30)–(31) to show that the probability
of flipping bit j + 1 = 1 is

bχ

n
≥ bθ1(0) > bθ1(1) = Ω(1).

The claim that we obtain a 1-bit in position j + 1 with probability Ω(1/j) is
therefore true.

Thus, the probability of lowering the mutation rate to bχ/n, obtaining a 1-
bit in position j+ 1, and not flipping the first j positions is, using the definition
of θ2(j) in (15),

(1− pinc)Ω(1/j)

(
1− bχ

n

)j
> Ω(1/j) (1− θ2(j))

j
= Ω(1/j)

(
1− ζ
α0

)
= Ω(1/j),

which completes the proof.

3.3 Individuals with Too High Mutation Rates

Highly fit individuals with incorrect parameter settings can cause problems for
self-adaptive EAs. If there are too many such “bad” individuals in the popula-
tion, they may dominate the population, propagate bad parameter settings, and
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thus impede progress. In this section, we therefore bound the number of such
bad individuals. We define a region B ⊂ Y containing search points with a mu-
tation rate that is too high relative to their fitness. For the constant ζ ∈ (0, 1)
defined in Eq. (16), let

B :=
{

(x, χ/n) ∈ Aj × [ε, 1/2] | (32)

j ∈ N0 ∧ ∀y ∈ X Pr
x′∼pmut(y,χ)

(x′ ∈ A≥j) <
1− ζ
α0

}
.

Note that by the definition of the function θ2(j), it holds for all y ∈ X that the
statement Prx′∼pmut(y,χ)(x

′ ∈ A≥j) = (1 − χ/n)j < (1 − ζ)/α0 is analogous to
χ/n > θ2(j). Therefore, the region B can also be expressed as

B =

k−1⋃
j=0

A>j ×
(

min

(
1

2
, θ2(j + 1)

)
,min

(
1

2
, θ2(j)

)]
. (33)

An individual (x, χ/n) ∈ B is said to have too high mutation rate. To see
why, recall that the number of offspring of (x, χ/n) is never more than α0. Since
the probability an offspring has fitness as least as good as fk(x) is less than 1/α0,
in expectation less than one offspring maintains the fitness, making it unlikely
a lineage of (x, χ/n) will be able to make progress towards the optimum. This
corresponds to the “error threshold” discussed in [29]; by Corollary 1 in [29], the
probability that a group of individuals of size poly(k) staying in B will optimise
LOk in sub-exponential time is e−Ω(k).

The levels given by Definition 4 are not disjoint from the region B defined
above. This is an important departure from the approach used in [8], where
B is effectively removed from the search space and the level-based theorem is
applied to a partition over Y \ B. This is not effective in our setting, since
an individual can have a sudden increase in fitness but can not significantly
decrease mutation rate. Such an individual may have too high mutation rate
with respect to its new fitness, but we still depend on this individual having
correctly tuned mutation with respect to the old fitness value. Therefore, an
individual in some A(j,`) may mutate in and out of B before its mutation rate
has been adapted to maintain a fitness higher than j. While individuals may
occasionally jump into the bad region, if too many individuals are in B at a
given time this may destroy the progress of the algorithm. In particular, if
|Pt ∩ B| > µ, then assuming all individuals in B have strictly better fitness
and higher mutation rate than those not in B, only individuals from B will be
selected for mutation and the next generation will consist only of individuals
with very high mutation rate. Therefore, it is critical that for any generation
t ∈ N, the number of individuals in B will be less than µ with overwhelmingly
high probability. We prove this with the following lemma, which is similar to
Lemma 2 from [8], but with the notable difference that the size of B can be
controlled within a single generation, regardless the configuration of Pt−1.
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Lemma 6. Let B ⊆ Y be as defined in Eq. (32) for a constant ζ ∈ (0, 1). Then
for any generation t ∈ N of Algorithm 1 applied to LeadingOnesk,

Pr(|B ∩ Pt| ≥ (1− ζ/2)µ) ≤ e−Ω(µ).

Proof. Consider some parent (x, χ/n) selected in generation t− 1 ≥ 0 and step
4 of Algorithm 1. Referring to steps 5 and 6, first a new mutation parameter
χ′ is chosen, then a new bitstring x′ is obtained from x using bitwise mutation
with mutation parameter χ′. To obtain an upper bound on the probability that
(x′, χ′/n) is in B, we proceed in cases based on the outcome of sampling χ′,
namely, whether the chromosome (x, χ′/n) is in B.

If (x, χ′/n) ∈ B: then it follows immediately from the definition of B that
independently of the chosen parent x, it holds

Pr ((x′, χ′/n) ∈ B) <
1− ζ
α0

. (34)

If (x, χ′/n) 6∈ B: then for (x′, χ′/n) to end up in B, by Eq. (33) it is necessary

that x′ ∈ A≥u for some u > j, where x ∈ Aj and r(u, χ′) < (1 − ζ)/α0. Since
χ′/n < 1/2, the probability of obtaining x′ ∈ A≥u is no more than(

1− χ′

n

)u−1(
χ′

n

)
<

(
1− χ′

n

)u
<

1− ζ
α0

. (35)

Since each of the λ individuals in population Pt are sampled independently
and identically, Eqs. (34) and (35) imply |B∩Pt| is stochastically dominated by a
binomially distributed random variable Z ∼ Bin(λ, 1−ζ

α0
) which has expectation

µ(1− ζ). By a Chernoff bound,

Pr (|B ∩ Pt| ≥ µ(1− ζ/2)) ≤ Pr (Z ≥ µ(1− ζ/2))

= Pr
(
Z ≥ E [Z]

(
1 + 1

2(1−ζ)

))
= e−Ω(µ).

3.4 Applying the Level-based Theorem

We now combine the results of Sections 3.1, 3.2, and 3.3 to prove Theorem 2
using Theorem 1.

Proof (of Theorem 2). We partition the search space Y into the sets A(j,`) from
Definition 4, where j ∈ [0..k − 1] and ` ∈ [dj ], along with A(k,1), and define
A≥(j,`) as in (12).

We say that a generation t is “failed” if the population Pt contains more than
(1− ζ/2)µ individuals in region B. First, we will optimistically assume that no
generations fail. Under this assumption, we will prove that the conditions of
Theorem 1 hold, leading to an upper bound on the expected number of function
evaluations t0(k) until a search point in A(k,1) is created (i.e. a global optimum
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is found). Then in the end we will use a restart argument to account for failed
generations.

Let γ0 := (ζ/2)(µ/λ). In the following arguments, we will make consistent
use of the important fact that for γ ∈ (0, γ0], if there are γλ individuals in levels
A≥(j,`) for some j ∈ {0, . . . , k−1} and ` ∈ [dj ], then the probability of selecting
an individual from A≥(j,`) is γα0. To see this, we note that individuals in A≥(j,`)

are guaranteed to be ranked above those in Y \
(
A≥(j,`) ∪B

)
in line 2 of Algo-

rithm 1, since individuals in Y \
(
A≥(j,`) ∪B

)
must have fitness either strictly

less than j, or equal to j, and hence have mutation rate too low to be contained
in A≥(j,`). Recalling that |Pt ∩B| ≤ (1− ζ/2)µ, it follows that all γλ ≤ (ζ/2)µ
individuals of A≥(j,`) are among the µ fittest in the population. Therefore, the
probability of selecting an individual from A≥(j,`) indeed is γλ/µ = γα0.

We now show that conditions (G1) and (G2) of Theorem 1 hold for each level
A(j,`) where j ∈ [0..k − 1] and ` ∈ [dj ]. We assume that the current population
has at least γ0λ individuals in levels A≥(j,`). We distinguish between the case
` < dj , i.e., when it suffices to increase the mutation rate to upgrade to the next
level, and the case ` = dj , i.e., when it may be necessary to increase the fitness
to reach the next level.

` < dj : To verify condition (G2), we must estimate the probability of pro-
ducing an offspring in levels A≥(j,`+1), assuming that there are at least γλ
individuals in levels A≥(j,`+1), for any γ ∈ (0, γ0]. To produce an offspring in
levels A≥(j,`+1), it suffices to first select a parent (x, χ/n) from A≥(j,`+1), and
secondly create an offspring (x′, χ′/n) in levels A≥(j,`+1). The probability of
selecting such a parent is at least γα0. Assuming that the parent is in level
A(u,v) ⊆ A≥(j,`+1), and applying Lemma 4 to level A(u,v), the probability that
the offspring (x′, χ′/n) is in levels A≥(u,v) ⊆ A≥(j,`+1) is (1 + δ)/α0 for some
δ ∈ (0, 1). Thus the probability of selecting a parent in levels A≥(j,`+1), then

producing an offspring in levels A≥(j,`+1), is at least γα0

(
1+δ
α0

)
= γ(1 + δ), so

condition (G2) is satisfied.
To verify condition (G1), we estimate the probability of producing an off-

spring in levels A≥(j,`+1). If the parent is in levels A≥(j,`+1), then again by
Lemma 4, the offspring is in levels A≥(j,`+1) with probability at least (1+δ)/α0.

On the other hand, if the parent (x, χ/n) is in level A(j,`), then we consider
the probability of producing an offspring (x′, χ′/n) ∈ A≥(j,`+1) by increasing
the mutation rate from χ to Aχ, and maintaining the fitness x′ ∈ A≥j . By
assumption, ` < dj , so the level-definition implies that the parent has mutation
rate χ/n < θ1(j) < η(j). Hence, by Lemma 3 (viii), the probability of increasing
the mutation parameter to Aχ and maintaining at least j leading one-bits is at
least pincr(j, Aχ) ≥ (1 + δ)/α0.

Taking into account that the probability of selecting a parent in A≥(j,`) is
at least α0γ0, the probability of producing an offspring in A≥(j,`+1) is at least

γ0α0

(
1 + δ

α0

)
= (1 + δ)γ0 =: z(j,`). (36)

` = dj : To show (G2) we assume that there are at least γλ individuals in

24



levelsA≥(j+1,1), for γ ∈ (0, γ0]. We again apply Lemma 4 to show the probability
of selecting an individual from A≥(j+1,1) and producing a new individual also
in A≥(j+1,1) is at least γ(1 + δ), showing (G2) is satisfied.

For condition (G1), we only consider parents selected from levels A≥(j+1,1).
If the parent (x, χ/n) is in A(j,dj), then by Lemma 5 the offspring (x′, χ′/n) is
in levels A≥(j+1,1) with probability at least Ω(1/j). Otherwise, if the parent is
already in levels A≥(j+1,1), then by Lemma 4, the offspring is in levels A≥(j+1,1)

with probability at least (1 + δ)/α0 = Ω(1). In both cases, the probability of
selecting a parent from A≥(j,dj) and producing an offspring in levels A≥(j+1,1)

is at least

γ0α0Ω(1/j) = Ω(1/j) =: z(j,dj). (37)

To verify that λ ≥ c ln(n) is large enough to satisfy condition (G3), we
first must calculate m, the total number of sub-levels. Referring to Defini-
tion 3 and using θ1(j) < 1/2, the depth of each level j is no more than dj <
dlogA

(
1
2ε

)
e = O(log(n)) for all j ∈ {0, . . . , k − 1}. Therefore, m = O(k log(n))

and so λ ≥ c ln(n) satisfies (G3) for c > 1 large enough. Thus we have found
parameters z(0,1), z(0,2), . . . , z(k−1,dk−1), δ, and γ0, such that all three conditions
of Theorem 1 are satisfied. Assuming no failure, the expected time to reach the
last level is no more than

t0(k) ≤
(

8

δ2

) k−1∑
j=0

dj∑
`=1

(
λ log

(
6δλ

4 + z(j,`)δλ

)
+

1

z(j,`)

)

=

k−1∑
j=0

dj−1∑
`=1

O

(
λ log

(
1

z(j,`)

)
+

1

z(j,`)

)

+

k−1∑
j=0

O

(
λ log(λ) +

1

z(j,dj)

)
= O(kλ log(n) + kλ log(λ) + k2),

using that z(j,`) = Ω(1) for all ` < dj , and z(j,dj) = Ω(1/j).
Finally, we account for “failed” generations where our assumption that there

are less than (1 − ζ/2)µ individuals in region B does not hold. We refer to
a sequence of 2t0(k)/λ generations as a phase, and call a phase good if for
2t0(k)/λ consecutive generations there are fewer than (1 − ζ/2)µ individuals
in B. By Lemma 6 and a union bound, a phase is good with probability
1 − 2t0(k)/λe−Ω(µ) = Ω(1), for µ = Ω(log(n)). By Markov’s inequality, the
probability of reaching a global optimum in a good phase is at least 1/2. Hence,
the expected number of phases required, each costing 2t0(k) function evalua-
tions, is O(1).
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4 Experiments

The theoretical analysis of the (µ, λ) self-adaptive EA is complemented by some
experiments on a wider variety of problems. In addition to the standard One-
Max function, we consider

Jumpk(x) :=


OM(x) + k if OM(x) < n− k
OM(x)− k if n− k ≤ OM(x) < n

n+ 1 if OM(x) = n.

SubStringk(x) := max
1≤i≤n

i ·
∏i
j=max{i−k+1,1} xj .

The SubStringk function is similar to the function in [6] of the same name.
The value of SubStringk is the maximal position of the substring 1k, if such
a substring exists, otherwise it is just the number of leading 1-bits. While the
function in [6] has a unique global optimum at the point 1n, all strings of the
form {0, 1}n−k1k are optimal for our SubStringk function.

In a first set of experiments, we examined how Algorithm 1 adjusts mutation
rates relative to fitness on several contrasting fitness landscapes. In each run,
we chose the parameter settings λ = 8 ln(n), µ = λ/15, A = 1.5, b = 0.7, and
pinc = 0.25, where λ and µ are rounded to the nearest integer. For the functions
LeadingOnes, SubString√n, OneMax, and Jump3, we recorded the fitness
and mutation rate χ/n of the top-ranked individual in each generation. In
a second set of experiments, we compared Algorithm 1 to other algorithms
on LeadingOnesk, SubStringk, and a version of OneMax in which only
an unknown selection of k bits contribute to fitness (OneMaxk). For these
experiments, we chose the parameters λ = 16 ln(n), µ = λ/8, A = 1.2, b =
0.7, pinc = 0.25 for Algorithm 1. The change in parameter settings was not
particularly motivated, although note that both respect the conditions imposed
by Theorems 2, since pinc = 0.25 satisfies 1/16 < 1/15 < 1/4 < 2/5, and b = 0.7
satisfies 7/10 < 1/(1 +

√
4/45) ≈ 0.78.

The results from the first set of experiments are summarised in Fig. 2. We
set n = 500 for LeadingOnes, SubString√n, and OneMax, while for Jump3

we set n = 100, and performed 100 trials for each function. At the beginning
of a trial, all individuals were given a starting mutation strength of χ = 1. For
each function, we plotted the median mutation rate χ/n per fitness value in
blue, with the 95th percentile shaded in grey. Finally, to aid interpretation we
plotted in red the “error threshold”, i.e. the value of χ/n such that the expected
number of offspring with fitness at least as good as the parent’s is only 1 [29].
For LeadingOnes, the error threshold is thus approximately the θ2 function
introduced in Section 3.1.

Fig. 2 shows that Algorithm 1 tuned the mutation rate of the top-ranked
individual very differently depending on the fitness landscape. For Leadin-
gOnes, we see the top individual’s mutation rate quickly rose to a small factor
below θ2, then gradually lowered mutation rate as fitness increased. This sup-
ports our theoretical analysis of LeadingOnesk, in which we argued that the
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Figure 2: Fitness and mutation rate of the most fit individual per generation
of Algorithm 1 with λ = 8 ln(n), µ = λ/15, A = 1.5, b = 0.7, and pinc = 0.25.
Median mutation rate is the blue line, while the 95-th percentile is shaded grey.
Top: the dashed red line indicates the error threshold, past which mutation
rates will be ineffective for the given fitness. Bottom: the dashed green line
shows the drift-maximising mutation rate.

mutation rate rises to an “edge region” comprising of mutation rates just below
the error threshold. We found similar behaviour for SubString√n, where again
the algorithm quickly rose to a close approximation below the error threshold.
However, the results for OneMax and Jump3 are less conclusive. First, we were
unable to derive an exact expression for the error threshold for these functions,
which makes the trajectory of the mutation rates more difficult to interpret.
Instead we include in green the mutation rate for a single individual to max-
imise the expected difference in its fitness before and after mutation, in order
to provide some context for interpreting the effectiveness of mutation rates. For
OneMax, it is known this drift-maximising rate is Θ(1/n) when OM(x) ≥ 2n/3
[18], while for Jump3, the ideal rate is 3/n for jumping the gap. In terms of the
trajectory of mutation rates, on OneMax the algorithm correctly increased its
mutation rate at first, but also seems to have kept mutation rate well above 1/n
for much of the search process. This could explain its relative inefficiency on
OneMaxk in the next set of experiments. The behaviour is similar for Jump3,
except that mutation rate increased toward the ideal rate while at the edge of
the gap, and occasionally reached even higher values. The tendency for muta-
tion rate to dramatically increase during lack of progress is reassuring, since a
common difficulty in self-adaptation of mutation rates is that mutation rates
may indefinitely decrease when it is difficult to increase fitness [35].

In the second set of experiments, summarised in Fig. 3, we compared the self-
adaptive EA to the (1+1) EA, the (µ, λ) EA, as well as to the (1+1)α EA from
[23] with the parameter settings A = 1.2 and b = 0.85 (for the (1+ 1)α EA). On
each of the functions LeadingOnesk, SubStringk, and OneMaxk, we tested
the algorithms on a range of possible choices for the adversary by performing
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Figure 3: Runtime as a function of k for fixed n = 2000, normalised to
show impact of adaptation. Points show the median runtime, with error
bars extending beyond the interquartile range as ±1.5 · IQR. Parameter set-
tings: Algorithm 1 with λ = 16 ln(n), µ = 2 ln(n), adaptation parameters
A = 1.2, b = 0.7, pinc = 0.25. (1 + 1) EA with mutation rate 1/n. (1 + 1)
EAα with A = 1.2 and b = 0.85. (µ, λ) EA with λ = 16 ln(n), µ = 2 ln(n)
mutation rate 2/(5n).

100 runs of each algorithm for values of k between 100 and n = 2000. The
y-axes in Fig. 3 show the runtime divided by the asymptotic running time of
a (1 + 1) EA which knows the value k beforehand. The effect of this rescaling
is that algorithms which successfully adapt to the parameter k should remain
relatively constant along the y-axis as k changes.

On all three functions, the two adaptive algorithms had runtimes propor-
tional to an EA which knew k beforehand. However, while both also drasti-
cally outperformed the static algorithms for smaller k on LeadingOnesk and
SubStringk, on OneMaxk, Algorithm 1 performed comparably to the static
(1 + 1) EA only for small k, and did worse than the (1 + 1) EA as k grew
larger. This is somewhat expected, since it is known that the (1 + 1) EA eas-
ily outperforms many population-based algorithms on OneMax. It is possible
that the benefits of adaptation will not overcome the penalty of maintaining a
population except for much larger values of n.

5 Conclusion

Effective parameter control is one of the central challenges in evolutionary com-
putation. There is empirical evidence that self-adaptation – where parameters
are encoded in the chromosome of individuals – can be a successful control mech-
anism in evolutionary strategies. However, self-adaptation is rarely employed in
discrete EAs [1, 36]. The theoretical understanding of self-adaptation is lacking.

This paper demonstrates both theoretically and empirically that adopting a
self-adaptation mechanism in a discrete, non-elitist EA can lead to significant
speedups. We analysed the expected runtime of the (µ, λ) EA with self-adaptive
mutation rates on LeadingOnesk in the context of an adversarial choice of a
hidden problem parameter k that determines the problem structure. We gave
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parameter settings for which the algorithm optimises LeadingOnesk in ex-
pected time O(k2), which is asymptotically optimal among any unary unbiased
black box algorithm which knows the hidden value k. This is a significant
speedup compared to, e.g., the (1+1) EA using any choice of static mutation
rate. In fact, the algorithm even has an asymptotic speedup compared with the
state-of-the art parameter control mechanism for this problem [16]. Future work
should extend the analysis to more general classes of problems, such as linear
functions and multi-modal problems. We expect that applying the level-based
theorem over a two-dimensional level-structure will lead to further results about
self-adaptive EAs.
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6 Appendix

Lemma 7. For all c > 0 and j > 0, 1− c1/j ≥ ln(1/c)/j.

Proof. − 1
j ln(1/c) = ln

(
c1/j

)
≤ c1/j − 1.
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