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Abstract

We study the hypergeometric functions associated to five one-parameter deformations
of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their
Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this
in terms of finite-field hypergeometric sums; then we match up each differential
equation to a factor of the zeta function, and we write this in terms of global
L-functions. This computation gives a complete, explicit description of the motives for
these pencils in terms of hypergeometric motives.

1 Introduction
1.1 Motivation

There is a rich history of explicit computation of hypergeometric functions associated
to certain pencils of algebraic varieties. Famously, in the 1950s, Igusa [29] studied the
Legendre family of elliptic curves and found a spectacular relation between the 2F1-
hypergeometric Picard–Fuchs differential equation satisfied by the holomorphic period
and the trace of Frobenius. More generally, the link between the study of Picard–Fuchs
equations and point counts via hypergeometric functions has intriguedmanymathemati-
cians. Clemens [11] referred to this phenomenon as “Manin’s unity of mathematics.”
Dwork studied the now-eponymous Dwork pencil [20, §6j, p. 73], and Candelas–de la
Ossa–Rodríguez-Villegas considered the factorization of the zeta function for the Dwork
pencil of Calabi–Yau threefolds in [9,10], linking physical and mathematical approaches.
More recently, given a finite-field hypergeometric function defined over Q, Beukers–
Cohen–Mellit [3] construct a variety whose trace of Frobenius is equal to the finite-field
hypergeometric sum up to certain trivial factors.

1.2 Our context

In this paper, we provide a complete factorization of the zeta function andmore generally
a factorization of the L-series for some pencils of Calabi–Yau varieties, namely families of
K3 surfaces. We study certain Delsarte quartic pencils in P3 (also called invertible pencils)
which arise naturally in the context of mirror symmetry, listed in (1.2.1). Associated to
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each family, we have a discrete group of symmetries acting symplectically (i.e., fixing the
holomorphic form).Ourmain theorem (Theorem1.4.1 below) shows that hypergeometric
functions are naturally associated to this collection of Delsarte hypersurface pencils in
two ways: as Picard–Fuchs differential equations and as traces of Frobenius yielding point
counts over finite fields.

Pencil Equation H p bad

F4 x40 + x41 + x42 + x43 − 4ψx0x1x2x3 μ4 × μ4 2
F1L3 x40 + x31x2 + x32x3 + x33x1 − 4ψx0x1x2x3 μ7 2, 7
F2L2 x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3 μ8 2
L2L2 x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3 μ4 × μ2 2
L4 x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3 μ5 2, 5

(1.2.1)

Here, we write μn for the group of roots of unity and H is a designated subgroup of
symmetries of the family. The labels F and L stand for “Fermat” and “loop,” respectively.
In previous work [18], we showed that these five pencils share a common factor in

their zeta functions, a polynomial of degree 3 associated to the hypergeometric Picard–
Fuchs differential equation satisfied by the holomorphic form—see also recent work of
Kloosterman [36]. Also of note is that the pencils are also related in that one can take a
finite group quotient of each family and find that they are then birational to one another
[7]. However, these pencils (and their zeta functions) are not the same! In this article, we
investigate the remaining factors explicitly (again recovering the common factor). In fact,
we show that each pencil is associated with a distinct and beautiful collection of auxiliary
hypergeometric functions.

1.3 Notation

We use the symbol � ∈ F = {F4 , F2L2, F1L3, L2L2, L4} to signify one of the five K3 pencils
in (1.2.1). Let ψ ∈ Q�{0, 1}. Let S = S(�,ψ) be the set of bad primes in (1.2.1) together
with the primes dividing the numerator or denominator of either ψ4 or ψ4 − 1. Then for
p /∈ S, the K3 surface X�,ψ has good reduction at p, and for q = pr we let

P�,ψ ,q (T ) := det
(
1 − Frobrp T |H2

ét,prim
(
X�,ψ ,Q�

)) ∈ 1 + TZ[T ] (1.3.1)

be the characteristic polynomial of the q-power Frobenius acting on primitive second-
degree étale cohomology for � �= p, which is independent of �. (Recall that the primitive
cohomology of a hypersurface in Pn is orthogonal to the hyperplane class.) Accordingly,
the zeta function of X�,ψ over Fq is
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Zq(X�,ψ , T ) = 1
(1 − T )(1 − qT )P�,ψ ,q(T )(1 − q2T )

. (1.3.2)

TheHodge numbers ofX�,ψ imply that the polynomial P�,ψ ,q(T ) has degree 21. Packaging
these together, we define the (incomplete) L-series

LS(X�,ψ , s) :=
∏
p/∈S

P�,ψ ,p(p−s)−1 (1.3.3)

convergent for s ∈ C in a right half-plane.
Our main theorem explicitly identifies the Dirichlet series LS(X�,ψ , s) as a product of

hypergeometric L-series. To state this precisely, we now introduce a bit more notation.
Let α = {α1, . . . ,αd} and β = {β1, . . . ,βd} be multisets with αi,βi ∈ Q≥0 that modulo
Z are disjoint. We associate a field of definition Kα,β to α,β, which is an explicitly given
finite abelian extension of Q. For certain prime powers q and t ∈ Fq , there is a finite-field
hypergeometric sumHq(α;β | t) ∈ Kα,β defined by Katz [31] as a finite-field analogue of the
complex hypergeometric function, normalized by McCarthy [39], extended by Beukers–
Cohen–Mellit [3], and pursued by many authors: See section 3.1 for the definition and
further discussion, and Sect. 3.2 for an extension of this definition. We package together
the exponential generating series associated to these hypergeometric sums into anL-series
LS(H (α;β | t), s): see Sect. 4.1 for further notation.

1.4 Results

Our main theorem is as follows.

Main Theorem 1.4.1 The following equalities hold with t = ψ−4 and S = S(�,ψ).

(a) For the Dwork pencil F4 ,

LS
(
XF4 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)3

· LS
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, s − 1,φ√−1

)6
,

where

φ−1(p) :=
(−1

p

)
= (−1)(p−1)/2 is associated to Q(

√−1) | Q, and

φ√−1(p) :=
(√−1

p

)
= (−1)(Nm(p)−1)/4 is associated to Q(ζ8) | Q(

√−1).

(1.4.2)

(b) For the Klein–Mukai pencil F1L3,

LS
(
XF1L3 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t−1) ,Q (ζ7) , s − 1

)
,
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where

LS
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t−1) , s) = LS

(
H
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t−1

)
, s
)

are defined over K = Q(
√−7).

(c) For the pencil F2L2,

LS
(
XF2L2 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS (Q (ζ8) | Q, s − 1)2 LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)

· LS
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, s − 1,φ√−1

)

· LS
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
,Q (ζ8) , s − 1,φ√

2

)
,

where

LS
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
, s
)

= LS
(
H
( 3
8 ,

7
8 ; 0,

3
4 | t−1) , s)

are defined over K = Q(
√−1),

φ√
2 (p) :=

(√
2
p

)
≡ 2(Nm(p)−1)/4 (mod p) is associated to Q

(
ζ8,

4√2
)

| Q (ζ8) ,

(1.4.3)

and L(Q(ζ8) | Q, s) := ζQ(ζ8)(s)/ζQ(s) is the ratio of the Dedekind zeta function of
Q(ζ8) and the Riemann zeta function.

(d) For the pencil L2L2,

LS
(
XL2L2 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· ζQ(
√−1) (s − 1)4 LS

(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)

· LS
(
H
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
,Q
(√−1

)
, s − 1,φ√−1φψ

)
,

where

φψ (p) :=
(

ψ

p

)
is associated to Q(

√
ψ) | Q. (1.4.4)

(e) For the pencil L4 ,

LS
(
XL4 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· ζ (s − 1)2 LS
(
H
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) ,Q (ζ5) , s − 1

)
.

We summarize Theorem 1.4.1 for each of our five pencils in (1.4.5):We list the degree of
the L-factor, the hypergeometric parameters, and the base field indicating when it arises
from base change. A Dedekind (or Riemann) zeta function factor has factors denoted by-.
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Pencil Degree α β Base Field

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

F4 2 · 3 = 6 1
4 ,

3
4 0, 12 Q

2 · 6 = 12 1
2 0 Q(

√−1), from Q

F1L3
3 1

4 ,
1
2 ,

3
4 0, 0, 0 Q

18 1
14 ,

9
14 ,

11
14 0, 14 ,

3
4 Q(ζ7), from Q(

√−7)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

3 · 2 = 6 – – Q(ζ8), from Q

F2L2
2 1

4 ,
3
4 0, 12 Q

2 1
2 0 Q(

√−1), from Q

8 1
8 ,

5
8 0, 14 Q(ζ8), from Q(

√−1)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L2L2
2 · 4 = 8 – – Q(

√−1), from Q

2 1
4 ,

3
4 0, 12 Q

8 1
8 ,

3
8 ,

5
8 ,

7
8 0, 14 ,

1
2 ,

3
4 Q(

√−1), from Q

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L4 1 · 2 = 2 – – Q

16 1
5 ,

2
5 ,

3
5 ,

4
5 0, 14 ,

1
2 ,

3
4 Q(ζ5), from Q

(1.4.5)

We extensively checked the equality of Euler factors inMainTheorem1.4.1 in numerical
cases (for many primes and values of the parameter ψ): For K3 surfaces, we used code
writtenbyCosta [14], and for thefinite-fieldhypergeometric sumsweused code inPari/GP
and Magma [8], the latter available for download [49]. See also Example 4.8.3.
Additionally, each pencil has the common factor LS(H ( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s), giving

another proof of a result in previous work [18]: We have a factorization over Q[T ]

P�,ψ ,p(T ) = Q�,ψ ,p(T )Rψ ,p(T ) (1.4.6)

with Rψ ,p(T ) of degree 3 independent of � ∈ F . The common factor Rψ ,p(T ) is given
by the action of Frobenius on the transcendental part in cohomology, and the associated
completed L-function L(H ( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s) is automorphic by Elkies–Schütt [21] (or

see our summary [18, §5.2]): It arises from a family of classical modular forms onGL2 over
Q, and in particular, it has analytic continuation and functional equation. See also recent
work of Naskręcki [43].
The remaining factors in each pencil in Main Theorem 1.4.1 yield a factorization of

Q�,ψ ,p(T ), corresponding to the algebraic part in cohomology (i.e., the Galois action on
the Néron–Severi group). In particular, the polynomial Q�,ψ ,p(T ) has reciprocal roots of
the form p times a root of unity. The associated hypergeometric functions are algebraic
by the criterion of Beukers–Heckman [4], and the associated L-functions can be explicitly
identified as Artin L-functions: See Sect. 4.7. The algebraic L-series can also be explicitly
computed when they are defined over Q [13,44]. For example, if we look at the Artin L-
series associated to the Dwork pencil F4, Cohen has given the following L-series relations
(see Proposition 4.7.2):
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LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) , s,φ−1

) = LS
(
s,φ1−ψ2

)
LS
(
s,φ−1−ψ2

)

LS(H
(
1
2 ; 0 |ψ−4 ,Q

(√−1
)
, s,φ√−1

)
= LS

(
s,φ2(1−ψ4)

)
LS
(
s,φ−2(1−ψ4)

)
.
(1.4.7)

In particular, it follows that the minimal field of definition of the Néron–Severi group
of XF4 ,ψ is Q(ζ8,

√
1 − ψ2,

√
1 + ψ2). The expressions (1.4.7), combined with Main The-

orem 1.4.1(a), resolve a conjecture of Duan [19]. (For geometric constructions of the
Néron–Severi group of XF4 ,ψ , see Bini–Garbagnati [6] and Kloosterman [36]; the latter
also provides an approach to explicitly construct generators of the Néron–Severi group
for four of the five families studied here, with the stubborn case F1L3 still unresolved.) Our
theorem yields an explicit factorization of Q�,ψ ,q(T ) for the Dwork pencil over Fq for any
odd q (see Corollary 4.7.4). As a final application, Corollary 4.8.1 shows how the algebraic
hypergeometric functions imply the existence of a factorization of Q�,ψ ,p(T ) over Q[T ]
depending only on q for all families.

Remark 1.4.8 Our main theorem can be rephrased as saying that the motive associated
to primitive middle-dimensional cohomology for each pencil of K3 surfaces decomposes
into the direct sum of hypergeometric motives as constructed by Katz [31]. Thesemotives
then govern both the arithmetic and geometric features of these highly symmetric pencils.
Absent a reference, we do not invoke the theory of hypergeometric motives in our proof.

1.5 Contribution and relation to previous work

Our main result gives a complete decomposition of the cohomology for the five K3 pen-
cils into hypergeometric factors. We provide formulas for each pencil and for all prime
powers q, giving an understanding of the pencil over Q. Addressing these subtleties, and
consequently giving a result for the global L-function, is unique to our treatment. Our
point of view is computational and explicit; we expect that our methods will generalize
and perhaps provide an algorithmic approach to the hypergeometric decomposition for
other pencils.
As mentioned above, the study of the hypergeometricity of periods and point counts

enjoys a long-standing tradition. Using his p-adic cohomology theory, Dwork [20, §6j,
p. 73] showed for the family F4 that middle-dimensional cohomology decomposes into
pieces according to three types of differential equations. Kadir in her Ph.D. thesis [30,
§6.1] recorded a factorization of the zeta function for F4, a computation due to de la Ossa.
Building on the work of Koblitz [37], Salerno [45, §4.2.1–4.2.2] used Gauss sums in her
study of the Dwork pencil in arbitrary dimension; under certain restrictions on q, she
gave a formula for the number of points modulo p in terms of truncated hypergeometric
functions as defined byKatz [31] aswell as an explicit formula [46, §5.4] for the point count
for the family F4. Goodson [26, Theorems 1.1–1.3] looked again at F4 and proved a similar
formula for the point counts over Fq for all primes q = p and prime powers q ≡ 1(mod4).
In [23], Fuselier et al. define an alternate finite field hypergeometric function (which
differs from those by Katz, McCarthy, and Beukers–Cohen–Mellit) that makes it possible
to prove identities that are analogous to well-known ones for classical hypergeometric
functions. They then use these formulas to compute the number of points of certain
hypergeometric varieties.
Several authors have also studied the role of hypergeometric functions over finite fields

for the Dwork pencil in arbitrary dimension, which for K3 surfaces is the family F4 given
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in Main Theorem 1.4.1. McCarthy [41] extended the definition of p-adic hypergeometric
functions to provide a formula for thenumber ofFp points on theDworkpencil in arbitrary
dimension for all odd primes p, extending his results [38] for the quintic threefold pencil.
Goodson [25, Theorem 1.2] then used McCarthy’s formalism to rewrite the formula for
the point count for the Dwork family in arbitrary dimension in terms of hypergeometric
functions when (n + 1) | (q − 1) and n is even. See also Katz [32], who took another look
at the Dwork family.
Miyatani [42, Theorem 3.2.1] has given a general formula that applies to each of the

five families, but with hypotheses on the congruence class of q. It is not clear that one can
derive our decomposition from the theorem of Miyatani.
A different line of research has been used to describe the factorization structure of the

zeta function for pencils of K3 surfaces or Calabi–Yau varieties that can recover part of
Main Theorem 1.4.1. Kloosterman [34,35] has shown that one can use a group action
to describe the distinct factors of the zeta function for any one-parameter monomial
deformation of a diagonal hypersurface in weighted projective space. He then applied this
approach [36] to study the K3 pencils above and generalize our work on the common
factor. His approach is different from both that work and the present one: He uses the
Shioda map [47] to provide a dominant rational map from a monomial deformation of a
diagonal (Fermat) hypersurface to the K3 pencils. The Shioda map has been used in the
past [7] to recover the result of Doran–Greene–Judes matching Picard–Fuchs equations
for the quintic threefold examples, and itwas generalized tohypersurfaces of fakeweighted
projective spaces and BHK mirrors [5,33]. Kloosterman also provides some information
about the other factors in some cases.

1.6 Proof strategy and plan of paper

The proof of Main Theorem 1.4.1 is an involved calculation. Roughly speaking, we use
the action of the group of symmetries to calculate hypergeometric periods and then use
this decomposition to guide an explicit decomposition of the point count into finite-field
hypergeometric sums.
Our proof follows three steps. First, in Sect. 2, we find all Picard–Fuchs equations via

the diagrammatic method developed by Candelas–de la Ossa–Rodríguez-Villegas [9,10]
and Doran–Greene–Judes [17] for the Dwork pencil of quintic threefolds. For each of our
five families, we give the Picard–Fuchs equations in a convenient hypergeometric form.
Second, in Sect. 3, we carry out the core calculations by counting points over Fq for the

corresponding pencils using Gauss sums. This technique begins with the original method
of Weil [50], extended by Delsarte and Furtado Gomida, and fully explained by Koblitz
[37].We then take these formulas and, using thehypergeometric equations found in Sect. 2
and careful manipulation, link these counts to finite-field hypergeometric functions. The
equations computed in Sect. 2 do not enter directly into the proof of the theorem, but
they give an answer that can then be verified by some comparatively straightforward
manipulations. These calculations confirm the match predicted by Manin’s “unity” (see
[11]).
Finally, in Sect. 4, we use the point counts from Sect. 3 to explicitly describe the L-series

for each pencil, and prove Main Theorem 1.4.1. We conclude by relating the L-series to
factors of the zeta function for each pencil.
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2 Picard–Fuchs equations
In this section, we compute the Picard–Fuchs equations associated to all primitive coho-
mology for our five symmetric pencils of K3 surfaces defined in (1.2.1). Since we are
working with pencils in projective space, we are able to represent 21 of the h2(Xψ ) = 22
dimensions of the second-degree cohomology as elements in the Jacobian ring, that is,
the primitive cohomology of degree two for the quartic pencils in P3. We employ a more
efficient version of the Griffiths–Dwork technique which exploits discrete symmetries.
This method was previously used by Candelas–de la Ossa–Rodríguez-Villegas [9,10] and
Doran-Greene–Judes [17]. Gährs [24] used a similar combinatorial technique to study
Picard–Fuchs equations for holomorphic forms on invertible pencils. After explaining
the Griffiths–Dwork technique for symmetric pencils in projective space, we carry out
the computation for two examples in thorough detail, and then state the results of the
computation for three others.

2.1 Setup

We briefly review the computational technique of Griffiths–Dwork [9,10,17], and we
begin with the setup in some generality.
Let X ⊂ Pn be a smooth projective hypersurface over C defined by the vanishing of

F (x0, . . . , xn) ∈ C[x0, . . . , xn] homogeneous of degree d. Let Ai(X) be the space of rational
i-forms on Pn with polar locus contained in X , or equivalently regular i-forms on Pn \ X .
By Griffiths [28, Corollary 2.1], any ϕ ∈ An(X) can be written as

ϕ = Q(x0, . . . , xn)
F (x0, . . . , xn)k

	0, (2.1.1)

where k ≥ 0 and Q ∈ C[x0, . . . , xn] is homogeneous of degree degQ = k deg F − (n + 1)
and

	0 :=
n∑

i=0
(−1)ixi dx0 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn. (2.1.2)

We define the de Rham cohomology groups

Hi(X) := Ai(X)
dAi−1(X)

. (2.1.3)

There is a residuemap

Res : Hn(X) → Hn−1(X,C)

made famous by seminal work of Griffiths [28], mapping into the middle-dimensional
Betti cohomology of the hypersurface X . Given ϕ ∈ An(X), we choose an (n − 1)-cycle γ

in X and T (γ ) a circle bundle over γ with an embedding into the complement Pn \X that
encloses γ , and define Res(ϕ) to be the (n − 1)-cocycle such that

1
2π

√−1

∫

T (γ )
ϕ =

∫

γ

Res(ϕ) (2.1.4)

is well-defined for ϕ ∈ Hn(X). Two circle bundles T (γ ) with small enough radius are
homologous in Hn(Pn \ X,Z), so the class Res(ϕ) ∈ Hn−1(X,C) is well-defined.
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There is a filtration onHn(X) by an upper bound on the order of the pole along X :

Hn
1(X) ⊆ Hn

2(X) ⊆ . . . ⊆ Hn
n(X) = Hn(X).

This filtration on Hn(X) is compatible with the Hodge filtration on Hn−1(X,C): If we
define

Fk (X) := Hn−1,0(X,C) ⊕ . . . ⊕ Hk,n−k−1(X,C),

then the residue map restricts to Res : Hn
k (X) → Fn−k (X).

In certain circumstances, we may be able to reduce the order of the pole [28, Formula
4.5]: We have

	0

F (xi)k+1

n∑
j=0

Qj(xi)
∂F (xi)
∂xj

= 1
k

	0

F (xi)k

n∑
j=0

∂Qj(xi)
∂xj

+ ω, (2.1.5)

where ω is an exact rational form. In fact, Eq. (2.1.5) implies that the order of a form ϕ

can be lowered (up to an exact form) if and only if the polynomial Q is in the Jacobian
ideal J (F ), that is, the (homogeneous) ideal generated by all partial derivatives of F . So for
k ≥ 1, we have a natural identification

Hn
k (X)

Hn
k−1(X)

∼−→
(

C[x0, . . . , xn]
J (F )

)

k deg F−(n+1)
, (2.1.6)

which by the residue map induces an identification

(
C[x0, . . . , xn]

J (F )

)

k deg F−(n+1)
→ Hn−k,k−1(X), (2.1.7)

whose image is the primitive cohomology group Hn−k,k−1
prim (X), which we know is the

cohomology orthogonal to the hyperplane class since X is a hypersurface in Pn.

Example 2.1.8 For X a quartic hypersurface in P3, the identification (2.1.7) reads

C[x0, x1, x2, x3]4k
J (F )

� H2−k,k
prim (X). (2.1.9)

In this case, the Hodge numbers are given by h2,0 = 1, h1,1 = 35 − 4 · 4 = 19, and
h0,2 = 165 − 4 · 56 + 6 · 10 = 1.

2.2 Griffiths–Dwork technique

Now, suppose that Xψ is a pencil of hypersurfaces in the parameter ψ , defined by Fψ = 0.
Let {γj}j be a basis for Hn−1(Xψ ,C) with cardinality hn−1 := dimC Hn−1(Xψ ,C).

Remark 2.2.1 There is a subtle detail about taking a parallel transport using anEhresmann
connection to obtain a (locally) unique horizontal family of homology classes [17, §2.3].
This detail does not affect our computations.

We then choose a basis of (possibly ψ-dependent) (n − 1)-forms 	Xψ ,i ∈ Hn−1(X,C)
so that each of the forms 	Xψ ,i ∈ Hn−1(X,C) has fixed bidegree (p, q) which provides a
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basis for the Hodge decomposition Hn−1(X,C) = ⊕
p+q=n−1Hp,q(X) for each fixed ψ .

We now examine the period integrals
∫

γj

	Xψ ,i

for 1 ≤ i, j ≤ hn−1.
We want to understand how these integrals vary with respect to the pencil parameter

ψ . To do so, we simply differentiate with respect to ψ , or equivalently integrate on the
complement of Xψ in Pn as outlined above. Using the residue relation (2.1.4), we rewrite

∫

γj

	Xψ ,i =
∫

T (γj)

Qi

Fk
ψ

	0, (2.2.2)

for some Qi ∈ C[x0, . . . , xn]k deg Fψ−(n+1) and k ∈ Z≥0 (and circle bundle T (γj) with
sufficiently small radius as above). By viewing Fψ as a function F : C → C[x0, . . . , xn]
with parameter ψ , we can differentiate F (ψ) with respect to ψ and study how this period
integral varies:

d
dψ

∫

T (γj)

Qi

F (ψ)k
	0 = −k

∫

T (γj)

Qi

F (ψ)k+1
dF
dψ

	0. (2.2.3)

Note that the right-hand side of (2.2.3) gives us a new (n − 1)-form.
We know that we will find a linear relation if we differentiate dimC Hn−1(Xψ ,C) times,

giving us a single-variable ordinary differential equation called the Picard–Fuchs equation
for the period

∫
γj

	Xψ ,i. In practice, fewer derivatives may be necessary.
For simplicity, we suppose that Fψ is linear in the variable ψ . Then the Griffiths–Dwork

technique for finding the Picard–Fuchs equation is the following procedure (see [15] or
[17] for a more detailed exposition):

1. Differentiate the period b times, 1 ≤ b ≤ hn−1. We obtain the equation
(

d
dψ

)b ∫

T (γj)

Qi

F (ψ)k
	0 = (k + b − 1)!

(k − 1)!

∫

T (γj)

Qi

F (ψ)k+b

(
− dF
dψ

)b
	0.

2. Write

Qi

(
− dF
dψ

)b
=

hn−1∑
j=1

αjQj + J, (2.2.4)

where αk ∈ C(ψ) and J is in the Jacobian ideal, so we may write J =∑i Ai
∂Fψ

∂xi
with

Ai ∈ C(ψ)[x0, . . . , xn] for all i.
3. Use (2.1.5) to reduce the order of the pole of

J
F (ψ)k

	0. We obtain a new numerator

polynomial of lower degree.
4. Repeat steps 2 and 3 for the new numerator polynomials, until the bth derivative is

expressed in terms of the chosen basis for cohomology.
5. Use linear algebra to find a C(ψ)-linear relationship between the derivatives.

While algorithmic and assured to work, this method can be quite tedious to perform.
Moreover, the structure of the resulting differential equationmay not be readily apparent.
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2.3 A diagrammatic Griffiths–Dwork method

In this section, we give a computational technique that uses discrete symmetries of pen-
cils of Calabi–Yau hypersurfaces introduced by Candelas–de la Ossa–Rodríguez-Villegas
[9,10]. To focus on the case at hand,we specialize to the case of quartic surfaces and explain
this method so their diagrammatic and effective adaptation of the Griffiths–Dwork tech-
nique can be performed for the five pencils that we want to study.
Let xv := xv00 xv11 xv22 xv33 , and let k(v) := 1

4
∑

i vi; for a monomial arising from (2.1.9), we
have k(v) ∈ Z≥0. Fix a cycle γ , and consider the periods

(v0, v1, v2, v3) :=
∫

T (γ )

xv

Fk(v)+1
ψ

	0. (2.3.1)

Consider the relation

∂i

⎛
⎝ xixv

Fk(v)+1
ψ

⎞
⎠ = xv

Fk(v)+1
ψ

(1 + vi) − (k(v) + 1)
xv

Fk(v)+2
ψ

xi∂iFψ . (2.3.2)

We can use (2.3.2) in order to simplify the computation of the Picard–Fuchs equation:
Integrating over T (γ ), the left-hand side vanishes, so we can solve for (v0, v1, v2, v3):

(1 + vi)(v0, v1, v2, v3) :=
∫

T (γ )

xv

Fk(v)+1
ψ

	0 = (k(v) + 1)
∫

T (γ )

xvxi∂iFψ

Fk(v)+2
ψ

	0. (2.3.3)

Example 2.3.4 Consider the Dwork pencil F4, the pencil defined by the vanishing of

Fψ = x40 + x41 + x42 + x43 − 4ψx0x1x2x3.

Simplifying the right-hand side of (2.3.3) gives us the relation of periods:

(1 + vi)(v0, v1, v2, v3) = 4(k(v) + 1) ((v0, . . . , vi + 4, . . . , v3)

−ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1))

or in a more useful form

(v0, . . . , vi + 4, . . . , v3) = 1 + vi
4(k(v) + 1)

(v0, v1, v2, v3) + ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1)

(2.3.5)

for i = 0, 1, 2, 3.

Recall we can also find a relation between various (v0, v1, v2, v3) by differentiating with
respect to ψ . Rewriting (2.2.3) in the current notation, we obtain

d
dψ

(v0, v1, v2, v3) = (4(k(v) + 1))(v0 + 1, v1 + 1, v2 + 1, v3 + 1), (2.3.6)

yielding a dependence of the monomials with respect to the successive derivatives with
respect to ψ .
Using the relations (2.3.3) and (2.3.6), we will compute the Picard–Fuchs equations

associated to periods that come from primitive cohomology. The key observation is that
these two operations respect the symplectic symmetry group.
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Restricting now to our situation, let � ∈ {F4 , F2L2, F1L3, L2L2, L4} signify one of the five
K3 families in (1.2.1) defined by F�,ψ and having symmetry group H = H� as in (1.2.1).
Then H acts on the 19-dimensional C-vector space

V := (C[x0, x1, x2, x3]/J (Fψ ))4 (2.3.7)

giving a representation H → GL(V ). As H is abelian, we may decompose V = ⊕
χ Wχ

where H acts on Wχ by a (one-dimensional) character χ : H → C×. Conveniently, each
subspaceWχ has amonomial basis.Moreover, the relations from the Jacobian ideal (2.3.3)
and (2.3.6) respect the action ofH , so we can apply the Griffiths–Dwork technique to the
smaller subspacesWχ .

2.4 Hypergeometric differential equations

In fact, we will find that all of our Picard–Fuchs differential equations are hypergeometric.
In this section, we briefly recall the definitions [48].

Definition 2.4.1 Let n,m ∈ Z, let α1, . . . ,αn ∈ Q and β1, . . . ,βm ∈ Q>0, and write
α = {αj}j and β = {βj}j as multisets. The (generalized) hypergeometric function is the
formal series

F (α;β | z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βm)k

zk ∈ Q[[z]], (2.4.2)

where (x)k is the rising factorial (or Pochhammer symbol)

(x)k := x(x + 1) · · · (x + k − 1) = �(x + k)
�(x)

and (x)0 := 1. We call α the numerator parameters and β the denominator parameters.

We consider the differential operator

θ := z
d
dz

and define the hypergeometric differential operator

D(α;β | z) := (θ + β1 − 1) · · · (θ + βm − 1) − z(θ + α1) · · · (θ + αn). (2.4.3)

When β1 = 1, the hypergeometric function F (α;β | z) is annihilated by D(α;β | z).

2.5 The Dwork pencil F4
Wenowproceed to calculate Picard–Fuchs equations for our five pencils.We begin in this
section with the Dwork pencil F4, the one-parameter family of projective hypersurfaces
Xψ ⊂ P4 defined by the vanishing of the polynomial

Fψ := x40 + x41 + x42 + x43 − 4ψx0x1x2x3.

The differential equations associated to this pencil were studied by Dwork [20, §6j]; our
approach is a bit more detailed and explicit, and this case is a goodwarmup as the simplest
of the five cases we will consider.
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There is a H = (Z/4Z)2 symmetry of this family generated by the automorphisms

g1(x0 : x1 : x2 : x3) = (−√−1x0 :
√−1x1 : x2 : x3),

g2(x0 : x1 : x2 : x3) = (−√−1x0 : x1 :
√−1x2 : x3).

(2.5.1)

A character χ : H → C× is determined by χ (g1),χ (g2) ∈ 〈√−1〉, and we write χ(a1 ,a2) for
the character with χ(a1 ,a2)(gi) = √−1ai with ai ∈ Z/4Z for i = 1, 2, totaling 16 characters.
We then decompose V defined in (2.3.7) into irreducible subspaces with a monomial
basis. We cluster these subspaces into three types up to the permutation action by S4 on
coordinates:

(i) (a1, a2) = (0, 0) (the H-invariant subspace), spanned by x0x1x2x3;
(ii) (a1, a2) both even but not both zero, e.g., the subspacewith (a1, a2) = (0, 2) spanned

by x20x
2
1 , x

2
2x

2
3; and

(iii) (a1, a2) not both even, e.g., the subspace with (a1, a2) = (2, 1), spanned by x30x1.

Up to permutation of coordinates, there are 1, 3, 12 subspaces of types (i),(ii),(iii), respec-
tively. By symmetry, we just need to compute the Picard–Fuchs equations associated to
one subspace of each of these types. In otherwords,we only need to find equations satisfied
by the monomials x0x1x2x3, x20x

2
1 , x

2
2x

2
3 , and x30x1, corresponding to (1, 1, 1, 1), (2, 2, 0, 0),

(0, 0, 2, 2), and (3, 1, 0, 0), respectively.
The main result for this subsection is as follows.

Proposition 2.5.2 The primitive middle-dimensional cohomology group H2
prim(XF4 ,ψ ,C)

has 21 periods whose Picard–Fuchs equations are hypergeometric differential equations as
follows:

3 periods are annihilated byD
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

6 periods are annihilated byD
( 1
4 ,

3
4 ; 1,

1
2 |ψ−4) , and

12 periods are annihilated byD
( 1
2 ; 1 |ψ−4) .

By the interlacing criterion [4, Theorem 4.8], the latter two hypergeometric equations
have algebraic solutions.
We state and prove each case of Proposition 2.5.2 with an individual lemma.

Lemma 2.5.3 The Picard–Fuchs equation associated to the period ψ(0, 0, 0, 0) is the
hypergeometric differential equation D( 14 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4).

Proof We recall Eqs. (2.3.5) and (2.3.6):

(v0, . . . , vi + 4, . . . , v3) = 1 + vi
4(k(v) + 1)

(v0, v1, v2, v3)+ ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1);

(2.5.4)

d
dψ

(v0, v1, v2, v3) = (4(k(v) + 1))(v0 + 1, v1 + 1, v2 + 1, v3 + 1). (2.5.5)

These equations imply a dependence among the terms

(v0, v1, v2, v3), (v0 + 1, v1 + 1, v2 + 1, v3 + 1), and (v0, . . . , vi + 4, . . . , v3)
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denoted in the following diagram:

(v0, v1, v2, v3) (v0 + 1, v1 + 1, v2 + 1, v3 + 1)

(v0, . . . , vi + 4, . . . , v3)

In order to use these dependences, we build up a larger diagram:

(0, 0, 0, 0) (1, 1, 1, 1) (2, 2, 2, 2) (3, 3, 3, 3)

(4, 0, 0, 0) (5, 1, 1, 1) (6, 2, 2, 2)

(4, 4, 0, 0) (5, 5, 1, 1)

(3, 3, 3,−1) (4, 4, 4, 0)

(3, 3, 3, 3)
(2.5.6)

Itmaybeuseful topoint out that the sameperiodmust appear in twoplacesby simple linear
algebra: The vectors (4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4) and (1, 1, 1, 1) are linearly
dependent.

Using (2.3.5) and (2.3.6) and letting η := ψ
d
dψ

, we see that

(0, 0, 0, 0) = 1
4
(η + 1)(4, 0, 0, 0),

(4, 0, 0, 0) = 1
8
(η + 1)(4, 4, 0, 0),

(4, 4, 0, 0) = 1
12

(η + 1)(4, 4, 4, 0),

ψ(4, 4, 4, 0) = (3, 3, 3, 3).

(2.5.7)

Now, we can use the fact that (η − a)ψa = ψaη for a ∈ Z to great effect:

η(0, 0, 0, 0) = 4ψ(1, 1, 1, 1),

(η − 1)η(0, 0, 0, 0) = 4ψη(1, 1, 1, 1) = 8 · 4ψ2(2, 2, 2, 2),

(η − 2)(η − 1)η(0, 0, 0, 0) = 12 · 8 · 4ψ2η(2, 2, 2, 2) = 12 · 8 · 4ψ3(3, 3, 3, 3)

= 12 · 8 · 4ψ4(4, 4, 4, 0)

= 8 · 4ψ4(η + 1)(4, 4, 0, 0)

= 4ψ4(η + 1)2(4, 0, 0, 0)

= ψ4(η + 1)3(0, 0, 0, 0).

(2.5.8)



C. F. Doran et al. Res Math Sci             (2020) 7:7 Page 15 of 81     7 

We conclude that

[
(η − 2)(η − 1)η − ψ4(η + 1)3

]
(0, 0, 0, 0) = 0. (2.5.9)

We then multiply by ψ to obtain

[
ψ(η − 2)(η − 1)η − ψ4ψ(η + 1)3

]
(0, 0, 0, 0) = 0,

[
(η − 3)(η − 2)(η − 1) − ψ4(η)3

]
ψ(0, 0, 0, 0) = 0.

Finally, substitute t := ψ−4 and let θ := t
d
dt

= −η/4 to see that

[
(−4θ − 3) (−4θ − 2) (−4θ − 1) − t−1 (−4θ )3

]
ψ (0, 0, 0, 0) = 0,

[−t
(
θ + 3

4
) (

θ + 1
2
) (

θ + 1
4
)+ θ3

]
ψ (0, 0, 0, 0) = 0,

[
θ3 − t

(
θ + 1

4
) (

θ + 1
2
) (

θ + 3
4
)]

ψ (0, 0, 0, 0) = 0,

(2.5.10)

which is the differential equation D( 14 ,
1
2 ,

3
4 ; 1, 1, 1 | t).

Lemma 2.5.11 ThePicard–Fuchs equation associated to bothψ(2, 2, 0, 0)andψ(0, 0, 2, 2)
is D( 14 ,

3
4 ; 1,

1
2 |ψ−4).

Proof By iterating the use of (2.3.5), we can construct a diagram including both (2, 2, 0, 0)
and (0, 0, 2, 2):

(0, 0, 2, 2) (1, 1, 3, 3)

(3,−1, 1, 1) (4, 0, 2, 2)

(2, 2, 0, 0) (3, 3, 1, 1)

(1, 1, 3,−1) (2, 2, 4, 0)

(1, 1, 3, 3)
(2.5.12)

We then obtain the following relations:

η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2),

η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0).
(2.5.13)

We then can use these relations tomake a Picard–Fuchs equation associated to the period
(2, 2, 0, 0):
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(η − 2)η(2, 2, 0, 0) = ψ2(η + 1)η(0, 0, 2, 2)

= ψ2(η + 1)
(
ψ2(η + 1)(2, 2, 0, 0)

)

= 2ψ4(η + 1)(2, 2, 0, 0) + ψ4(η + 1)η(2, 2, 0, 0)

+ ψ4(η + 1)(2, 2, 0, 0)

= ψ4(η2 + 4η + 3)(2, 2, 0, 0)

= ψ4(η + 1)(η + 3)(2, 2, 0, 0).

(2.5.14)

By symmetry, we get the same equation for the period (0, 0, 2, 2), so we have

[
(η − 2)η − ψ4(η + 1)(η + 3)

]
(2, 2, 0, 0) = 0,

[
(η − 2)η − ψ4(η + 1)(η + 3)

]
(0, 0, 2, 2) = 0.

(2.5.15)

Nowmultiply by ψ and then change variables to t := ψ−4 with θ := t d
dt = −4η to obtain

[
ψ (η − 2) η − ψψ4 (η + 1) (η + 3)

]
(2, 2, 0, 0) = 0,

[
(η − 3) (η − 1) − ψ4η (η + 2)

]
ψ (2, 2, 0, 0) = 0,

[
(−4θ − 3) (−4θ − 1) − t−1 (−4θ ) (−4θ + 2)

]
ψ (2, 2, 0, 0) = 0,

[
t
(
θ + 3

4
) (

θ + 1
4
)− θ

(
θ − 1

2
)]

ψ (2, 2, 0, 0) = 0,
[
θ
(
θ − 1

2
)− t

(
θ + 1

4
) (

θ + 3
4
)]

ψ (2, 2, 0, 0) = 0.

This Picard–Fuchs equation is D( 14 ,
3
4 ; 1,

1
2 |ψ−4).

Lemma 2.5.16 The Picard–Fuchs equation associated to ψ(3, 1, 0, 0) is D( 12 ; 1 |ψ−4).

Proof Our strategy again is to use (2.3.5) and (2.3.6) in the order represented by the
diagram below to study the period (3, 1, 0, 0):

(2, 0,−1, 3) (3, 1, 0, 4)

(1,−1, 2, 2) (2, 0, 3, 3)

(−1, 1, 0, 0) (0, 2, 1, 1) (1, 3, 2, 2)

(3, 1, 0, 0) (4, 2, 1, 1)

(3, 1, 0, 4)
(2.5.17)

Using (2.3.5) iteratively in the upper part of the diagram, we see that

(1, 3, 2, 2) = ψ2(3, 1, 0, 4). (2.5.18)
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Then using (2.3.6), we then have that

η(0, 2, 1, 1) = 8ψ(1, 3, 2, 2) = 8ψ3(3, 1, 0, 4). (2.5.19)

Now, using (2.3.5) again, we have that (3, 1, 0, 0) = ψ(0, 2, 1, 1) and we can then compute:

(η − 1)(3, 1, 0, 0) = ψη(0, 2, 1, 1)

= 8ψ4(3, 1, 0, 4)

= 8ψ4
[
1
8
(3, 1, 0, 0) + ψ(4, 2, 1, 1)

]

= 8ψ4
[
1
8
(3, 1, 0, 0) + 1

8
η(3, 1, 0, 0)

]

= ψ4(η + 1)(3, 1, 0, 0).

(2.5.20)

We then get the Picard–Fuchs equation associated to the period (3, 1, 0, 0):

[
(η − 1) − ψ4(η + 1)

]
(3, 1, 0, 0) = 0. (2.5.21)

We now will multiply by ψ and then change variables to t = ψ−4 as in the previous
lemma to obtain:

[
ψ (η − 1) − ψψ4 (η + 1)

]
(3, 1, 0, 0) = 0,

[
(η − 2) − ψ4η

]
ψ (3, 1, 0, 0) = 0,

[
(−4θ − 2) − t−1 (−4θ )

]
ψ (3, 1, 0, 0) = 0,

[
θ − t

(
θ + 1

2
)]

ψ (3, 1, 0, 0) = 0,

giving rise to the hypergeometric differential equation D( 12 ; 1 |ψ−4).

We now conclude this section with the proof of the main result.

Proof of Proposition 2.5.2 We combine Lemmas 2.5.3, 2.5.11, and 2.5.16 with the consid-
eration of the number of subspaces of each type described above.

2.6 The Klein–Mukai pencil F1L3
Wenowconsider theKlein–Mukai pencil F1L3, the one-parameter family of hypersurfaces
Xψ ⊂ P4 defined by the vanishing of

Fψ := x30x1 + x31x2 + x32x0 + x43 − 4ψx0x1x2x3.

The polynomial Fψ is related to the defining polynomial (1.2.1) by a change in the order
of variables.
There is a H = Z/7Z scaling symmetry of this family generated by the automorphism

(xi) by the element

g(x0 : x1 : x2 : x3) = (ξx0 : ξ4x1 : ξ2x2 : x3),

where ξ is a seventh root of unity. There are seven characters χk : H → C× defined by
χk (g) = ξ k for k ∈ Z/7Z. Note that the monomial bases for the subspacesWχ1 ,Wχ2 , and
Wχ4 are cyclic permutations of one another under the variables x0, x1, and x2. Analogously,
so are subspacesWχ3 ,Wχ5 , andWχ6 . So we have three types of clusters:
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(i) Wχ0 has the monomial basis {x0x1x2x3};
(ii) Wχ1 has the monomial basis {x21x23 , x20x1x2, x22x1x3}; and
(iii) Wχ3 has the monomial basis {x32x1, x21x2x3, x23x0x2}.
There is one cluster of type (i) and three clusters each of types (ii) and (iii), so h1,1 is

decomposed as 19 = 1 + 3 · 3 + 3 · 3.
Proposition 2.6.1 The group H2

prim(XF1L3 ,ψ ) has 21 periods whose Picard–Fuchs equa-
tions are hypergeometric differential equations, with 3 periods annihilated by

D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4)

and 3 periods each annihilated by the following 6 operators:

D
( 1
14 ,

9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ4) , D (−3

14 ,
1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ4) , D

(−5
14 ,

−3
14 ,

1
14 ;

−1
4 , 0, 14 |ψ4

)
,

D
(

3
14 ,

5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ4

)
, D
(−1

14 ,
3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ4

)
, D
(−11

14 , −1
14 ,

5
14 ;

−1
4 , 0, 14 |ψ4

)
.

Again, the latter 6 operators have an algebraic solution. To prove Proposition 2.6.1, we
again use the diagrammatic method outlined above, but in this case we have different
periods that are related. Notice that we have the following differentials ∂i multiplied by xi:

x0∂0Fψ = 3x30x1 + x32x0 − 4ψx0x1x2x3,

x1∂1Fψ = 3x31x2 + x30x1 − 4ψx0x1x2x3,

x2∂2Fψ = 3x32x0 + x31x2 − 4ψx0x1x2x3,

x3∂3Fψ = 4x44 − 4ψx0x1x2x3.

(2.6.2)

We can make linear combinations of these equations so that the right-hand side is just a
linear combination of two monomials, for example,

(9x0∂0 + x1∂1 − 3x2∂2)Fψ = 28(x30x1 − ψx0x1x2x3). (2.6.3)

Now using (2.3.3), we obtain the following period relations analogous to (2.3.5), written
in multi-index notation:

v + (3, 1, 0, 0) = f0(v)
28(k(v) + 1)

v + ψ(v + (1, 1, 1, 1)),

v + (0, 3, 1, 0) = f1(v)
28(k(v) + 1)

v + ψ(v + (1, 1, 1, 1)),

v + (0, 0, 3, 1) = f2(v)
28(k(v) + 1)

v + ψ(v + (1, 1, 1, 1)), and

v + (0, 0, 0, 4) = 1 + v3
4(k(v) + 1)

v + ψ(v + (1, 1, 1, 1)),

(2.6.4)

where

f0(v) := 9(v0 + 1) + (v1 + 1) − 3(v2 + 1),

f1(v) := −3(v0 + 1) + 9(v1 + 1) + (v2 + 1), and

f2(v) := (v0 + 1) − 3(v1 + 1) + 9(v2 + 1).

(2.6.5)
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Lemma 2.6.6 Let t = ψ−4 . The Picard–Fuchs equation associated to the period
ψ(0, 0, 0, 0) is the hypergeometric differential equation D( 14 ,

1
2 ,

3
4 ; 1, 1, 1 | t).

Proof We build the following diagram using (2.6.4) and (2.3.6):

(0, 0, 0, 0) (1, 1, 1, 1) (2, 2, 2, 2) (3, 3, 3, 3)

(3, 1, 0, 0) (4, 2, 1, 1) (5, 3, 2, 2)

(3, 4, 1, 0) (4, 5, 2, 1)

(3, 3, 3,−1) (4, 4, 4, 0)

(3, 3, 3, 3)

When one runs through this computation, one can see that we get the same Picard–Fuchs
equation for the invariant period as we did with the Fermat:

[
(η − 2)(η − 1)η − ψ4(η + 1)3

]
(0, 0, 0, 0) = 0. (2.6.7)

By multiplying by ψ and changing variables to t = ψ−4 and θ = t
d
dt

, we can see by
following through the computation seen in (2.5.10) that

[
θ3 − t

(
θ + 3

4
) (

θ + 1
2
) (

θ + 1
4
)]

ψ (0, 0, 0, 0) = 0,

which is the differential equation D( 14 ,
1
2 ,

3
4 ; 1, 1, 1 | t).

Lemma 2.6.8 For the Klein–Mukai family Xψ ,

the period (0, 1, 2, 1) is annihilated by D
( 1
14 ,

9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ4) ,

the period ψ (0, 2, 0, 2) is annihilated by D
(−3
14 ,

1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ4) , and

the period ψ3 (2, 1, 1, 0) is annihilated by D
(−5

14 ,
−3
14 ,

1
14 ;

−1
4 , 0, 14 |ψ4

)
.

Proof For the characterχ1(g) = ξ associated to 1 ∈ Z/7Z, we have the following diagram:

(0, 1, 2, 1) (1, 2, 3, 2)

(2, 1, 1, 0) (3, 2, 2, 1)

(1, 3, 1,−1) (2, 4, 2, 0)

(0, 2, 0, 2) (1, 3, 1, 3)

(1, 2, 3, 2)
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We then have the following relations:

η(0, 2, 0, 2) = 11
7

ψ2 + ψ2η(2, 1, 1, 0),

η(2, 1, 1, 0) = 2
7
ψ(0, 1, 2, 1) + ψη(0, 1, 2, 1),

η(0, 1, 2, 1) = 1
7
ψ(0, 2, 0, 2) + ψη(0, 2, 0, 2).

(2.6.9)

Now, we can use these relations to compute the Picard–Fuchs equations associated to
(2, 1, 1, 0), (0, 2, 0, 2), and (0, 1, 2, 1). We first do this for the period (0, 1, 2, 1):

η(0, 1, 2, 1) = 1
7
ψ(0, 2, 0, 2)ψη(0, 2, 0, 2),

(η − 1)η(0, 1, 2, 1) = 165
49

ψ3(2, 1, 1, 0) + 26
7

ψ3η(2, 1, 1, 0) + ψ3η2(2, 1, 1, 0),

(η − 3)(η − 1)η(0, 1, 2, 1) = ψ4 (η + 2
7
) (

η + 18
7
) (

η + 22
7
)
. (2.6.10)

This gives us the Picard–Fuchs equation for the period (0, 1, 2, 1):
[
(η − 3)(η − 1)η − ψ4 (η + 2

7
) (

η + 18
7
) (

η + 22
7
)]
(0, 1, 2, 1) = 0. (2.6.11)

Letting u = ψ4 and σ = u
d
du

, we get the following hypergeometric form:

[
(4σ − 3)(4σ − 1)4σ − u

(
4σ + 2

7
) (
4σ + 18

7
) (
4σ + 22

7
)]
(0, 1, 2, 1) = 0,

[(
σ − 3

4
) (

σ − 1
4
)
σ − u

(
σ + 1

14
) (

σ + 9
14
) (

σ + 11
14
)]
(0, 1, 2, 1) = 0,

which is the hypergeometric differential equation D( 1
14 ,

9
14 ,

11
14 ; 1,

1
4 ,

3
4 |u).

We then do the same for (0, 2, 0, 2):

η(0, 2, 0, 2) = 11
7

ψ2 + ψ2η(2, 1, 1, 0),

(η − 2)η(0, 2, 0, 2) = 36
49

ψ3(0, 1, 2, 1) + 20
7

ψ3η(0, 1, 2, 1) + ψ3η2(0, 1, 2, 1),

(η − 3)(η − 2)η(0, 2, 0, 2) = ψ4 (η + 1
7
) (

η + 9
7
) (

η + 25
7

)
(0, 2, 0, 2). (2.6.12)

This gives us the Picard–Fuchs equation for the period (0, 2, 0, 2):
[
(η − 3)(η − 2)η − ψ4 (η + 1

7
) (

η + 9
7
) (

η + 25
7

)]
(0, 2, 0, 2) = 0. (2.6.13)

By multiplying by ψ and changing variables to u = ψ4 and σ = u
d
du

, we get

ψ
[
(η − 3)(η − 2)η − ψ4 (η + 1

7
) (

η + 9
7
) (

η + 25
7

)]
(0, 2, 0, 2) = 0,

[
(η − 4)(η − 3)(η − 1) − ψ4

(
η − 6

7

) (
η + 2

7
) (

η + 18
7
)]

ψ(0, 2, 0, 2) = 0,
[
(4σ − 4)(4σ − 3)(4σ − 1) − u

(
4σ − 6

7

) (
4σ + 2

7
) (
4σ + 18

7
)]

ψ(0, 2, 0, 2) = 0,
[
(σ − 1)

(
σ − 3

4
) (

σ − 1
4
)− u

(
σ − 3

14
) (

σ + 1
14
) (

σ + 9
14
)]

ψ(0, 2, 0, 2) = 0,

which is the hypergeometric differential equation D( 1
14 ,

9
14 ,

−3
14 ; 0,

1
4 ,

3
4 |u).
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We finally look at (2, 1, 1, 0):

η(2, 1, 1, 0) = 2
7
ψ(0, 1, 2, 1) + ψη(0, 1, 2, 1)

(η − 1)η(2, 1, 1, 0) = 2
7
ψη(0, 1, 2, 1) + ψη2(0, 1, 2, 1),

= 9
49

ψ2(0, 2, 0, 2) + 10
7

ψ2η(0, 2, 0, 2) + ψ2η2(0, 2, 0, 2)

(η − 2)(η − 1)η(2, 1, 1, 0) = 9
49

ψ2η(0, 2, 0, 2) + 10
7

ψ2η2(0, 2, 0, 2) + ψ2η3(0, 2, 0, 2),

= ψ4 (η + 11
7
) (

η + 15
7

) (
η + 23

7
)
(2, 1, 1, 0).

(2.6.14)

This gives us the Picard-Fuchs equation for the period (2, 1, 1, 0):
[
(η − 2)(η − 1)η − ψ4 (η + 11

7
) (

η + 15
7

) (
η + 23

7
)]

(2, 1, 1, 0) = 0. (2.6.15)

By multiplying by ψ3 and again changing variables, we get:

ψ3
[
(η − 2) (η − 1) η − ψ4 (η + 11

7
) (

η + 15
7

) (
η + 23

7
)]

(2, 1, 1, 0) = 0,
[
(η − 5) (η − 4) (η − 3) − ψ4 (η − 10

7
) (

η − 6
7

) (
η + 2

7
)]

ψ3 (2, 1, 1, 0) = 0,
[
(4σ − 5) (4σ − 4) (4σ − 3) − u

(
4σ − 10

7
) (

4σ − 6
7

) (
4σ + 2

7
)]

ψ3 (2, 1, 1, 0) = 0,
[(

σ − 5
4

)
(σ − 1)

(
σ − 3

4
)− u

(
σ − 5

14

) (
σ − 3

14
) (

σ + 1
14
)]

ψ3 (2, 1, 1, 0) = 0.

At last, we have the hypergeometric differential equation D( 1
14 ,

−5
14 ,

−3
14 ; 0,

−1
4 , 14 |u).

Lemma 2.6.16 For the Klein–Mukai family Xψ ,

the period (0, 2, 1, 1) is annihilated by D
(

3
14 ,

5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ4

)
,

the period ψ (1, 0, 1, 2) is annihilated by D
(−1

14 ,
3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ4

)
, and

the period ψ3 (0, 1, 3, 0) is annihilated by D
(−11

14 , −1
14 ,

5
14 ;

−1
4 , 0, 14 |ψ4

)
.

Proof We use the following diagram:

(0, 1, 3, 0) (1, 2, 4, 1)

(2, 1, 2,−1) (3, 2, 3, 0)

(1, 0, 1, 2) (2, 1, 3, 3)

(0, 2, 1, 1) (1, 3, 2, 2)

(1, 2, 4, 1)
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and then compute the following period relations:

η(0, 1, 3, 0) = 10
7

ψ(0, 2, 1, 1) + ψη(0, 2, 1, 1),

η(0, 2, 1, 1) = 5
7
ψ(1, 0, 1, 2) + ψη(1, 0, 1, 2),

η(1, 0, 1, 2) = −1
7

ψ2(0, 1, 3, 0) + ψ2η(0, 1, 3, 0).

(2.6.17)

By cyclically using these relations, we get the following Picard–Fuchs equations:

[
(η − 3)(η − 1)η − ψ4

(
η + 6

7

) (
η + 10

7
) (

η + 26
7

)]
(0, 2, 1, 1) = 0,

[
(η − 3)(η − 2)η − ψ4

(
η + 5

7

) (
η + 13

7
) (

η + 17
7
)]

(1, 0, 1, 2) = 0,
[
(η − 2)(η − 1)η − ψ4 (η − 1

7
) (

η + 19
7
) (

η + 31
7
)]
(0, 1, 3, 0) = 0.

(2.6.18)

We then multiply these equations above by 1,ψ , and ψ3, respectively, and then change

coordinates to u = ψ4 and σ = u
d
du

to obtain the following:

[(
σ − 3

4
) (

σ − 1
4
)
σ − u

(
σ + 3

14
) (

σ + 5
14

) (
σ + 13

14
)]

(0, 2, 1, 1) = 0,
[
(σ − 1)

(
σ − 3

4
) (

σ − 1
4
)− u

(
σ − 1

14
) (

σ + 3
14
) (

σ + 5
14

)]
ψ (1, 0, 1, 2) = 0,

[(
σ − 5

4

)
(σ − 1)

(
σ − 3

4
)− u

(
σ − 11

14
) (

σ − 1
14
) (

σ + 5
14

)]
ψ3 (0, 1, 3, 0) = 0,

which areD( 3
14 ,

5
14 ,

13
14 ; 1,

1
4 ,

3
4 |u),D( 3

14 ,
5
14 ,

−1
14 ; 0,

1
4 ,

3
4 |u), andD(−11

14 , 5
14 ,

−1
14 ; 0,

1
4 ,

−1
4 |u),

respectively.

We conclude this section by combining these results.

Proof of Proposition 2.6.1 Combine Lemmas 2.6.6, 2.6.8, and 2.6.16.

2.7 Remaining pencils

For the remaining three pencils F2L2, L2L2, and L4, the Picard–Fuchs equations can be
derived in a similar manner. The details can be found in Appendix A; we state here only
the results.

Proposition 2.7.1 The group H2
prim(XF2L2 ,ψ ,C) has 15 periods whose Picard–Fuchs equa-

tions are hypergeometric differential equations as follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

2 periods are annihilated by D
( 1
4 ,

3
4 ; 1,

1
2 |ψ−4) ,

2 periods are annihilated by D
( 1
2 ; 1 |ψ4) ,

4 periods are annihilated by D
(
1
8 ,

5
8 ; 1,

1
4 |ψ4

)
, and

4 periods are annihilated by D
( 1
8 ,

−3
8 ; 0, 14 |ψ4) .

Proof See Proposition A.1.2.
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Proposition 2.7.2 The group H2
prim(XL2L2 ,ψ ,C) has 13 periods whose Picard–Fuchs equa-

tions are hypergeometric differential equations as follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

8 periods are annihilated by D
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4

)
, and

2 periods are annihilated by D
( 1
4 ,

3
4 ; 1,

1
2 |ψ4) .

Proof See Proposition A.2.2.

Proposition 2.7.3 The group H2
prim(XL4 ,ψ ,C) has 19 periods whose Picard–Fuchs equa-

tions are hypergeometric differential equations as follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

4 periods are annihilated by D
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 1,

1
4 ,

1
2 ,

3
4 |ψ4) ,

4 periods are annihilated by D
(−1

5 , 15 ,
2
5 ,

3
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) ,

4 periods are annihilated by D
(−2

5 , −1
5 , 15 ,

2
5 ;

−1
4 , 0, 14 ,

1
2 |ψ4) , and

4 periods are annihilated by D
(−3

5 , −2
5 , −1

5 , 15 ; 0,
1
4 ,

−1
2 , −1

4 |ψ4) .

Proof See Proposition A.3.2.

3 Explicit formulas for the number of points
In this section, we derive explicit formulas for the number of points and identify the
hypergeometric periods according to the action of the group of symmetries, matching the
Picard–Fuchs equations computed in Sect. 2.

3.1 Hypergeometric functions over finite fields

We begin by defining the finite-field analogue of the generalized hypergeometric function
(defined in Sect. 2.4); we follow Beukers–Cohen–Mellit [3].
Let q = pr be a prime power. We use the convenient abbreviation

q× := q − 1.

Let ω : F×
q → C× be a generator of the character group on F×

q . Let � : Fq → C× be
a nontrivial (additive) character, defined as follows: let ζp ∈ C be a primitive pth root of
unity, and define �(x) = ζ

TrFq |Fp (x)
p . Form ∈ Z, we define the Gauss sum

g(m) :=
∑

x∈F×
q

ω(x)m�(x). (3.1.1)

We suppress the dependence on q in the notation, and note that g(m) depends only on
m ∈ Z/q×Z (and the choice of ω and ζp).

Remark 3.1.2 Every generator of the character group on F×
q is of the form ωk (x) := ω(x)k

for k ∈ (Z/q×Z)×, and
∑

x∈F×
q

ωk (x)m�(x) = g(km).
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Similarly, every additive character of Fq is of the form �k (x) := ζ
k Tr(x)
p for k ∈ (Z/pZ)×,

and
∑

x∈F×
q

ω(x)m�k (x) = ω(k)−mg(m)

(see, e.g., Berndt [1, Theorem 1.1.3]). Accordingly, we will see below that our definition
of finite-field hypergeometric functions will not depend on these choices.

We will need four basic identities for Gauss sums.

Lemma 3.1.3 The following relations hold:

(a) g(0) = −1.
(b) g(m)g(−m) = (−1)mq for every m �≡ 0 (mod q×), and in particular

g
(
q×
2

)2 = (−1)q
×/2q.

(c) For every N | q× with N > 0, we have

g(Nm) = −ω(N )Nm
N−1∏
j=0

g(m + jq×/N )
g(jq×/N )

. (3.1.4)

(d) g(pm) = g(m) for all m ∈ Z.

Proof For parts (a)–(c), see Cohen [12, Lemma 2.5.8, Proposition 2.5.9, Theorem 3.7.3].
For (d), we replace x by xp in the definition and use the fact that�(xp) = �(x) as it factors
through the trace.

Remark 3.1.5 Lemma 3.1.3(c) is due originally to Hasse and Davenport, and is called the
Hasse–Davenport product relation.

We now build our hypergeometric sums. Let α = {α1, . . . ,αd} and β = {β1, . . . ,βd}
be multisets of d rational numbers. Suppose that α and β are disjoint modulo Z, i.e.,
αi − βj /∈ Z for all i, j = 1, . . . , d.
Based on work of Greene [27], Katz [31, p. 258], but normalized following McCarthy

[40, Definition 3.2] and Beukers–Cohen–Mellit [3, Definition 1.1], we make the following
definition.

Definition 3.1.6 Suppose that

q×αi, q×βi ∈ Z (3.1.7)

for all i = 1, . . . , d. For t ∈ F×
q , we define the finite-field hypergeometric sum by

Hq(α,β | t) := − 1
q×

q−2∑
m=0

ω((−1)dt)mG(m + αq×,−m − βq×), (3.1.8)
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where

G(m + αq×,−m − βq×) :=
d∏
i=1

g(m + αiq×)g(−m − βiq×)
g(αiq×)g(−βiq×)

(3.1.9)

form ∈ Z.

In this definition (and the related ones to follow), the sum Hq(α,β | t) only depends on
the classes in Q/Z of the elements of α and β. Moreover, the sum is independent of the
choice of charactersω and� by a straightforward application of Remark 3.1.2. Hypothesis
(3.1.7) is unfortunately rather restrictive—but it is necessary for the definition to make
sense as written. Fortunately, Beukers–Cohen–Mellit [3] provided an alternate definition
that allows all, but finitely many q under a different hypothesis, as follows.

Definition 3.1.10 The field of definition Kα,β ⊂ C associated to α,β is the field generated
by the coefficients of the polynomials

d∏
j=1

(
x − e2π

√−1αj
)

and
d∏
j=1

(
x − e2π

√−1βj
)
. (3.1.11)

Visibly, the number field Kα,β is an abelian extension of Q.
Suppose thatα,β is definedoverQ, i.e.,Kα,β = Q. Thenby a straightforward verification,

there exist p1, . . . , pr , q1, . . . , qs ∈ Z≥1 such that

d∏
j=1

(x − e2π
√−1αj )

(x − e2π
√−1βj )

=
∏r

j=1 xpj − 1∏s
j=1 xqj − 1

. (3.1.12)

Recall we require the α,β to be disjoint, which implies that the sets {p1, . . . , pr} and
{q1, . . . , qs} are also disjoint.
Let D(x) := gcd(

∏r
j=1(xpj − 1),

∏s
j=1(xqj − 1)) and M := (∏r

j=1 p
pj
j
)(∏s

j=1 q
−qj
j
)
. Let

ε := (−1)
∑s

j=1 qj , and let s(m) ∈ Z≥0 be the multiplicity of the root e2π
√−1m/q× in D(x).

Finally, abbreviate

g(pm,−qm) := g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm). (3.1.13)

For brevity,we say thatq isgood forα,β ifq is coprime to the least commondenominator
of α ∪ β.

Definition 3.1.14 Suppose that α,β are defined overQ and q is good for α,β. For t ∈ F×
q ,

define

Hq(α,β | t) = (−1)r+s

1 − q

q−2∑
m=0

q−s(0)+s(m)g(pm,−qm)ω(εM−1t)m. (3.1.15)

Again, the hypergeometric sumHq(α,β | t) is independent of the choice of characters ω

and �. The independence on ω is just as with the previous definition, and in this case the
independence from� comes from the fact that every root of unity has its conjugate, and so
again any additional factors from changing additive characters cancel out. The apparently
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conflicting notation is justified by the following result, showing that Definition 3.1.14 is
more general.

Proposition 3.1.16 (Beukers–Cohen–Mellit [3, Theorem 1.3]) Suppose that α,β are
defined over Q and that (3.1.7) holds. Then Definitions 3.1.6 and 3.1.14 agree.

3.2 A hybrid sum

We will need a slightly more general hypothesis than allowed in the previous section. We
do not pursue the most general case as it is rather combinatorially involved, poses some
issues of algebraicity, and anyway is not needed here; see Beukers [2] for some work in
this direction. Instead, we isolate a natural case, where the indices are not defined over Q

but neither does (3.1.7) hold, which is sufficient for our purposes.

Definition 3.2.1 We say that q is splittable for α,β if there exist partitions

α = α0 � α′ and β = β0 � β′, (3.2.2)

where α0,β0 are defined over Q and

q×α′
i , q

×β ′
j ∈ Z

for all α′
i ∈ α′ and all β ′

j ∈ β′.

Example 3.2.3 If (3.1.7) holds, then q is splittable for α,β taking α = α′ and β = β′ and
α0 = β0 = ∅. Likewise, if α,β is defined over Q, then q is splittable for α,β for all q.

Example 3.2.4 A splittable case that arises for us (up to a Galois action) in Proposi-
tion 3.5.1 is as follows. Let α = { 1

14 ,
9
14 ,

11
14 } and β = {0, 14 , 34 }. We cannot use Defini-

tion 3.1.14 since (x − e2π
√−1/14)(x − e18π i/14)(x − e22π

√−1/14) /∈ Q[x]. When q ≡ 1
(mod 28), we may use Definition 3.1.6; otherwise we may not. However, when q ≡ 1
(mod 7) is odd, then q is splittable for α,β: We may take α0 = ∅, α′ = α and β0 = β,
β′ = ∅.

It is now a bit notationally painful but otherwise straightforward to generalize the defi-
nition for splittable q, providing a uniform description in all cases we consider. Suppose
that q is splittable for α,β. Let α0 be the union of all submultisets of α that are defined
over Q; then α0 is defined over Q. Repeat this for β0. Let p1, . . . , pr , q1, . . . , qs be such that

∏
α0j∈α0 (x − e2π

√−1α0j )
∏

β0j∈β0
(x − e2π

√−1β0j )
=
∏r

j=1(xpj − 1)∏s
j=1(xqj − 1)

.

As before, let

D(x) := gcd(
∏r

j=1xpj − 1,
∏s

j=1xqj − 1) and M :=
∏r

j=1p
pj
j∏s

j=1q
qj
j

and let s(m) be the multiplicity of the root e2π
√−1m/q× in D(x). Finally, let δ := degD(x).

We again abbreviate

g(pm,−qm) :=
r∏

i=1
g(pim)

s∏
i=1

g(−qim) (3.2.5)
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form ∈ Z and

G(m + α′q×,−m − β′q×) :=
∏

α′
i∈α′

g(m + α′
iq

×)
g(αiq×)

∏

β ′
i∈β′

g(−m − β ′
iq

×)
g(−βiq×)

. (3.2.6)

Definition 3.2.7 Suppose that q is good and splittable for α,β. For t ∈ F×
q , with the

notation above we define the finite-field hypergeometric sum

Hq(α,β | t) := (−1)r+s

1 − q

q−2∑
m=0

q−s(0)+s(m)G(m + α′q×,−m − β′q×)

·g(pm,−qm)ω((−1)d+δMt)m.

The following proposition then shows that our definition encompasses the previous
ones.

Proposition 3.2.8 Suppose that q is good and splittable for α,β. Then the following state-
ments hold.

(a) The hypergeometric sum Hq(α,β | t) in Definition 3.2.7 is independent of the choice
of characters ω and �.

(b) If αiq×,βiq× ∈ Z for all i = 1, . . . , d, then Definitions 3.1.6 and 3.2.7 agree.
(c) If α,β are defined over Q, then Definitions 3.1.14 and 3.2.7 agree.

Proof Part (c) follows directly from α0 = α and β0 = β (and α′ = β′ = ∅), so the
definitions in fact coincide. Part (a) follows directly from the independence from � and
ω of each part of the hybrid sum.
Part (b) follows by the same argument (due to Beukers–Cohen–Mellit) as in Proposi-

tion 3.1.16; for completeness, we give a proof in Lemma B.1.1.

Suppose that q is good and splittable for α,β and let t ∈ F×
q . Then by construction

Hq(α,β | t) ∈ Q(ζq× , ζp). Since gcd(p, q×) = 1, we have

Gal(Q(ζq× , ζp) | Q) � Gal(Q(ζq× ) | Q) × Gal(Q(ζp) | Q).

We now descend the hypergeometric sum to its field of definition, in two steps.

Lemma 3.2.9 We have Hq(α,β | t) ∈ Q(ζq× ).

Proof The action of Gal(Q(ζp) | Q) � (Z/pZ)× by ζp �→ ζ k
p changes only the additive

character�. By Proposition 3.2.8, the sum is independent of this choice, so it descends by
Galois theory.

The group Gal(Q(ζq× ) | Q) � (Z/q×Z)× by σk (ζq× ) = ζ(q×)k for k ∈ (Z/q×Z)× acts on
the finite-field hypergeometric sums as follows.

Lemma 3.2.10 The following statements hold.

(a) Let k ∈ Z be coprime to q×. Then σk (Hq(α,β | t)) = Hq(kα, kβ | t).
(b) We have Hq(α,β | t) ∈ Kα,β.
(c) We have Hq(pα, pβ | t) = Hq(α,β | tp).
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Proof To prove (a), note σk (ω(x)) = ωk (x) since ω takes values in μq× ; therefore,
σk (g(m)) = g(km), and we have both

σk (g(pm,−qm)) = g(pkm,−qkm)

and

σk (G(m + α′q×,−m − β′q×)) = G(km + kα′q×,−km − kβ′q×)).

We have s(km) = s(m) since D(x) ∈ Q[x]. Moreover, kα0 = α0 and the same with β,
so the values pi, qi remain the same when computed for kα, kβ. Now, plug these into the
definition of Hq(α,β | t) and just reindex the sum by km ← m to obtain the result.
Part (b) follows frompart (a): The field of definitionKα,β is precisely the fixed field under

the subgroup of k ∈ (Z/q×Z)× such that kα, kβ are equivalent to α,β as multisets inQ/Z.
Finally, part (c). Starting with the left-hand side, we reindex m ← pm then substitute

using Lemma 3.1.3(d)’s implication that g(pm) = g(m) to get

G(pm + pα′q×,−pm − pβ′q×) = G(m + α′q×,−m − β′q×) and
g(p(pm), q(pm)) = g(pm, qm),

noting that the quantities p and q do not change, as pα0 = α0 and pβ0 = β0 modulo Z

(as they are defined over Q). Noting that ((−1)d+δM)p = (−1)d+δM ∈ Fp ⊆ Fq , we then
obtain the result.

Before concluding this primer on finite-field hypergeometric functions, we combine the
Gauss sum identities and our hybrid definition to expand one essential example; this gives
a flavor of what is to come. First, we prove a new identity.

Lemma 3.2.11 We have the following identity of Gauss sums:

g
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)
= g

(
q×
2

)3 = (−1)q
×/2 qg

(
q×
2

)
.

Proof Since q is odd, we use the Hasse–Davenport product relation (Lemma 3.1.3(c)) for
N = 2 andm = q×

14 ,
9q×
14 , 11q

×
14 , solving for g( q

×
14 ), g(

9q×
14 ), g( 11q

×
14 ), respectively, to find:

g
(
q×
14

)
=

g
(
q×
7

)
, g
(
q×
2

)

g
(
11q×
7

) ω (2)−q×/7

g
(
9q×
14

)
=

g
(
9q×
7

)
, g
(
q×
2

)

g
(
q×
7

) ω (2)−9q×/7

g
(
11q×
14

)
=

g
(
11q×
7

)
.g
(
q×
2

)

g
(
9q×
7

) ω (2)−11q×/7 .

Multiply all of these together, divide by g( q
×
2 ), and cancel to obtain

g
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)

g
(
q×
2

) = g
(
q×
2

)2
ω (2)−3q× = (−1)q

×/2 q (3.2.12)

applying Lemma 3.1.3(b) in the last step.
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Next, we consider our example.

Example 3.2.13 Going back to Example 3.2.4, in the case where q ≡ 1 (mod 7) and q
odd, we have α = { 1

14 ,
9
14 ,

11
14 } and β = {0, 14 , 34 }. Then α0 = ∅ and β0 = β. Thus,

∏
α0j∈α0 (x − e2π

√−1α0j )
∏

β0j∈β0
(x − e2π

√−1β0j )
= 1

(x − 1)(x2 + 1)
= (x2 − 1)

(x − 1)(x4 − 1)
.

Thus, D(x) = x2 − 1 and M = 43; and s(m) = 1 if m = 0, q
×
2 and s(m) = 0 otherwise.

Therefore, Definition 3.2.7 and simplification using Lemma 3.1.3(a)–(b) give

Hq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

= −1
1 − q

q−2∑
m=0

qs(m)−1 g
(
m + 1

14q
×) g (m + 9

14q
×) g (m + 11

14q
×)

g
( 1
14q×) g ( 9

14q×) g ( 1114q×)

· g (2m) g (−m) g (−4m)ω
(−43t

)m .

When m = 0, the summand is just (−1)(−1)3/(1 − q) = 1/q×. When m = q×
2 , applying

Lemma 3.2.11 we obtain

−g
(
4q×
7

)
g
(
q×
7

)
g
(
2q×
7

)

q×g
(

1
14 q×

)
g
(

9
14 q×

)
g
(
11
14 q×

)g
(
q×
2

)
ω
(−43t

)q×/2

= −1
qq× g

(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
ω (t)q

×/2 .

Therefore,

Hq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

= 1
q× − 1

qq× g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
ω (t)q

×/2

+ 1
qq×

q−2∑
m=1

m�=q×/2

g
(
m + 1

14q
×) g (m + 9

14q
×) g (m + 11

14q
×)

g
( 1
14q×) g ( 9

14q×) g ( 1114q×)

· g (2m) g (−m) g (−4m)ω
(−43t

)m .

(3.2.14)

3.3 Counting points

Following the work of Delsarte [16] and Furtado Gomida [22], Koblitz [37] gave a formula
for the number of points onmonomial deformations of diagonal hypersurfaces (going back
to Weil [50]). In this subsection, we outline their approach for creating closed formulas
that compute the number of points for hypersurfaces in projective space in terms of Gauss
sums.
Let X ⊆ Pn be the projective hypersurface over Fq defined by the vanishing of the

nonzero polynomial
r∑

i=1
aixνi0

0 · · · xνin
n ∈ Fq[x0, . . . , xn]

so that ai ∈ Fq and νij ∈ Z≥0 for i = 1, . . . , r and j = 0, . . . , n. Suppose that q× := q − 1
does not divide any of the νij . LetU be the intersection ofX with the torusGn+1

m /Gm ⊆ Pn,
so that the points of U are the points of X with all nonzero coordinates.
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Let S be the set of s = (s1, . . . , sr) ∈ (Z/q×Z)r such that the following condition holds:
∑r

i=1si ≡ 0 (mod q×) and
∑r

i=1 νijsi ≡ 0 (mod q×) for all j = 1, . . . , n. (3.3.1)

Let μ×
q be the group of q×-th roots of unity. Any element s = (s1, . . . , sr) ∈ S corresponds

to a multiplicative character

χs : μ(q×)r → C×

χs(x1, . . . , xr) = ω(�r
i=1x

si
i ).

Given s ∈ S, we define

cs := (q×)n−r+1

q

r∏
i=1

g(si) (3.3.2)

if s �= 0 and

c0 := (q×)n−r+1 (q×)r−1 − (−1)r−1

q
.

With this notation, we have the following result of Koblitz, rewritten in terms of Gauss
sums so that we can apply it in our context.

Theorem 3.3.3 (Koblitz)We have

#U (Fq) =
∑
s∈S

ω(a)−scs, (3.3.4)

where ω(a)−s := ω(a−s1
1 · · · a−sr

r ).

Proof We unpack and repack a bit of notation. Koblitz [37, Theorem 1] proves that

#U (Fq) =
∑
s

ω(a)−sc′s,

where the sum is over all characters of μ(q×)r/� where � is the diagonal—this set is in
natural bijection with the set S—and where for s �= 0

c′s = −1
q
(q×)n−r+1J (s1, . . . , sr),

where J (s1, . . . , sr) is the Jacobi sum and where c′0 = c0 as in (3.3.2). It only remains to
show that c′s = cs for s �= 0. If si �= 0 for all i, then [37, (2.5)]

J (s1, . . . , sr) = g(s1) · · · g(sr)
g(s1 + . . . + sr)

= −g(s1) · · · g(sr),
so c′s = cs by definition. If r > 1 and si = 0 for some i, then [37, below (2.5)]

J (s1, . . . , sr) = −J (s1, . . . , si−1, si+1, . . . , sr),

so iterating and using Lemma 3.1.3(a),

J (s1, . . . , sr) = −
∏

i=1,...,r
si=0

(−1)
∏

i=1,...,r
si �=0

g(si) = −
∏

i=1,...,r
si=0

g(0)
∏

i=1,...,r
si �=0

g(si) = −
r∏

i=1
g(si).

(3.3.5)

In the remaining sections, we apply the preceding formulas to each of our five pencils.
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3.4 The Dwork pencil F4
In this subsection, we will give a closed formula in terms of finite field hypergeometric
sums for the number of points in a given member of the Dwork family. Throughout this
section, we suppose that q is odd.

Proposition 3.4.1 For ψ ∈ F×
q , the following statements hold.

(a) If q ≡ 3 (mod 4), then

#XF4 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(b) If q ≡ 1 (mod 4), then

#XF4 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 12 (−1)(q−1)/4 qHq
( 1
2 ; 0 |ψ−4) .

Proposition 3.4.1 has several equivalent formulations and has seen many proofs: See
Sect. 1.5 in the introduction for further references. We present another proof for com-
pleteness and to illustrate the method we will apply to all five families in this well-studied
case.

Remark 3.4.2 Quite beautifully, the point counts in Proposition 3.4.1 in terms of finite-
field hypergeometric sums match (up to twisting factors) the indices with multiplicity in
the Picard–Fuchs equations computed in Proposition 2.5.2. Although we are not able to
use this matching directly, it guides the decomposition of the sums by means of lemmas
that can be proven in a technical, but direct manner.

We prove Proposition 3.4.1 in four steps:

1. We compute the relevant characters and cluster them.
2. We use Theorem 3.3.3 to count points where no coordinate is zero and rewrite the

sums into hypergeometric functions.
3. We count points where at least one coordinate is zero.
4. We combine steps 2 and 3 to finally prove Proposition 3.4.1.

The calculations are somewhat involved, but we know how to cluster the characters in
step 1 and which hypergeometric functions we need to isolate for step 2: Indeed, the
parameters of the finite-field hypergeometric sums are given by the calculation of the
Picard–Fuchs equations for the Dwork pencil given by Proposition 2.5.2.

Step 1: Computing and clustering the characters

In order to use Theorem 3.3.3, we must compute the subset S ⊂ (Z/q×Z)r given by the
constraints in (3.3.1). This is equivalent to solving the system of congruences:

⎛
⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 1
0 4 0 0 1
0 0 4 0 1
0 0 0 4 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
s5

⎞
⎟⎟⎟⎟⎟⎟⎠

≡ 0 (mod q×). (3.4.3)
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If q ≡ 3 (mod 4), then by linear algebra over Z we obtain

S =
{
(1, 1, 1, 1,−4)k1 + q×

2 (0, 0, 1,−1, 0)k2 + q×
2 (0, 1, 0,−1, 0)k3 : ki ∈ Z/q×Z

}
.

These solutions can be clustered in an analogous way as done in Sect. 2.5:

(i) S1 := {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) S2 := {k(1, 1, 1, 1,−4) + q×

2 (0, 1, 1, 0, 0) : k ∈ Z/q×Z},
(iii) S3 := {k(1, 1, 1, 1,−4) + q×

2 (0, 1, 0, 1, 0) : k ∈ Z/q×Z}, and
(iv) S4 := {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
The last three (ii)–(iv) all behave in the same way, due to the evident symmetry.
If instead q ≡ 1 (mod 4), then

S =
{
(1, 1, 1, 1,−4)k1 + q×

4 (0, 1, 0,−1, 0)k2 + q×
4 (0, 0, 1,−1, 0)k3 : ki ∈ Z/q×Z

}
;

we cluster again, getting the four clusters above but now togetherwith twelve newclusters:

(v) three sets of the form S5 := {k(1, 1, 1, 1,−4) + q×
4 (0, 1, 2, 1, 0) : k ∈ Z/q×Z},

(vi) three sets of the form S6 := {k(1, 1, 1, 1,−4) − q×
4 (0, 1, 2, 1, 0) : k ∈ Z/q×Z}, and

(vii) six sets of the form S7 := {k(1, 1, 1, 1,−4) + q×
4 (0, 0, 1, 3, 0) : k ∈ Z/q×Z},

where the number of sets is given by the number of distinct permutations of the middle
three coordinates.

Step 2: Counting points on the open subset with nonzero coordinates

We now give a formula for #UF4 ,ψ (Fq) for the number of points, applying Theorem 3.3.3.
We go through each cluster Si, linking each to a hypergeometric function.

Lemma 3.4.4 For all odd q,

∑
s∈S1

ω(a)−scs = q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (3.4.5)

Proof By Definition 3.1.14,

Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) = 1

q×
q−2∑
m=0

q−s(0)+s(m)g(4m)g(−m)4ω(4ψ)−4m

= −1
q× +

−q−1g
(
q×
2

)4

q×

+ 1
q×

q−2∑
m=1

m�=q×/2

q−1g(4m)g(−m)4ω(4ψ)−4m

= − 1
q× −

g
(
q×
2

)4

qq× + 1
qq×

q−2∑
k=1

k �=q×/2

g(−4k)g(k)4ω(4ψ)4k
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the latter by substituting k = −m. Now, we expand to match terms:

∑
s∈S1

ω(a)−scs = c(0,0,0,0,0) + c(q×/2)(1,1,1,1,0) +
q−2∑
k=1

k �=q×/2

ω(−4ψ)4kc(k,k,k,k,−4k)

= (q×)4 − (−1)4

qq× − 1
qq× g

(
q×
2

)4 + 1
qq×

q−2∑
k=1

k �=q×/2

ω(4ψ)4kg(k)4g(−4k)

= q3 − 4q2 + 6q − 4
q× −

g
(
q×
2

)4

qq× + 1
qq×

q−2∑

k=1,k �= q×
2

ω(4ψ)4kg(k)4g(−4k)

= q2 − 3q+3+Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (3.4.6)

Lemma 3.4.7 For i = 2, 3, 4,
∑
s∈Si

ω(a)−scs = (−1)q
×/2(2 + qHq( 14 ,

3
4 ; 0,

1
2 |ψ−4)

)
. (3.4.8)

Proof By definition,

Hq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) = 1

q×
q−2∑
m=0

q−s(0)+s(m)g(4m)g(−2m)2ω(2ψ)−4m

= −2
q× + 1

q×
q−2∑
m=1

m�=q×/2

q−1g(4m)g(−2m)2ω(2ψ)−4m
(3.4.9)

using s(m) = 1 ifm = 0, q
×
2 and s(m) = 0 otherwise.

By symmetry,∑
s∈S2

ω(a)−scs =
∑
s∈S3

ω(a)−scs =
∑
s∈S4

ω(a)−scs.

So we only need to consider i = 2. Then:
∑
s∈S2

ω (a)−s cs = c(q×/2)(0,1,1,0,0) + c(q×/2)(1,0,0,1,0)

+
q−2∑
k=1

k �=q×/2

ω (−4ψ)4k c(k(1,1,1,1,−4)+(q×/2)(0,1,1,0,0))

= −2
g
(
q×
2

)2

qq× + 1
qq×

q−2∑
k=1

k �=q×/2

ω (−4ψ)4k g (k)2 g
(
k + q×

2

)2
g (−4k) .

(3.4.10)

Next, we use the Hasse–Davenport product relation (Lemma 3.1.3(c)) with N = 2 | q×

to get

g(2k) = −ω(2)2k
g(k)
g(0)

g
(
k + q×

2

)

g
(
q×
2

) ,
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which rearranges using g(0) = −1 to

g(k)g
(
k + q×

2

)
= ω(2)−2kg(2k)g

(
q×
2

)
. (3.4.11)

Using Lemma3.1.3(b) gives g( q
×
2 )2 = (−1)q×/2q; substituting this and (3.4.11) into (3.4.10)

simplifies to

∑
s∈S2

ω(a)−scs = −2
(−1)q×/2

q× + 1
qq×

q−2∑
k=1

k �=q×/2

ω(−4ψ)4k (ω(2)−2kg(2k)g( q
×
2 ))2g(−4k)

= −2
(−1)q×/2

q× + 1
q×

q−2∑
k=1

k �=q×/2

(−1)q
×/2ω(−2ψ)4kg(2k)2g(−4k)

= (−1)q
×/2

⎛
⎜⎜⎝− 2

q× + 1
q×

q−2∑
k=1

k �=q×/2

ω(−2ψ)4kg(2k)2g(−4k)

⎞
⎟⎟⎠ .

Looking back at (3.4.9), we rearrange and insert a factor q to find the hypergeometric sum:

(−1)q
×/2∑

s∈S2
ω(a)−scs = 2q − 2

q× − 2q
q× + q

q×
q−2∑
m=1

m�=q×/2

q−1ω(2ψ)−4mg(−2m)2g(4m)

= 2 + qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

as claimed.

Lemma 3.4.12 Suppose q ≡ 1 (mod 4). Then

∑
s∈S5

ω(a)−scs = (−1)q
×/4qHq

( 1
2 ; 0 |ψ−4)+ (−1)q

×/4 −
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) .

Proof Plugging into the definition of the finite-field hypergeometric sum and then pulling
out termsm = jq×/4 with j = 0, 1, 2, 3, we get

Hq
( 1
2 ; 0 |ψ−4) = 1

q×
q−2∑
m=0

ω
(−ψ−4)m g

(
m + q×

2

)
g (−m)

g
(
q×
2

)

= − 2
q× + (−1)q

×/4

q×g
(
q×
2

)
(
g
(
q×
4

)2 + g
(
3q×
4

)2)

+ 1
q×

q−2∑
m=0
q×�4m

ω
(−ψ−4)m g

(
m + q×

2

)
g (−m)

g
(
q×
2

) .

(3.4.13)

Hasse–Davenport (Lemma 3.1.3(c)) implies

g(4m) = −ω(4)4m
g(m)g

(
m + q×

4

)
g
(
m + q×

2

)
g
(
m + 3q×

4

)

g(0)g
(
q×
4

)
g
(
q×
2

)
g
(
3q×
4

) . (3.4.14)
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Form �= j q
×
4 , multiplying (3.4.14) by g(−m − 3q×

4 )g(−4m) and simplifying, we get

(−1)4m qg
(
−m − 3q×

4

)
= ω (4)4m (−1)m

g (m) g
(
m + q×

4

)
g
(
m + q×

2

)
g (−4m)

g
(
q×
2

) ,

g (m) g
(
m + q×

4

)
g
(
m + q×

2

)
g (−4m) = (−1)−m ω (4)−4m qg

(
q×
2

)
g
(
−m − 3q×

4

)
.

(3.4.15)

Now, we look at the point count. First, we take the definition

∑
s∈S5

ω(a)−scs = 1
qq×

q−2∑
k=0

ω(−4ψ)4kg(k)g
(
k + q×

4

)2
g
(
k + q×

2

)
g(−4k). (3.4.16)

We then tease out the four terms with k = jq×/4. The cases k = 0, q
×
2 give

1
qq× g

(
q×
4

)2
g
(
q×
2

)
+ 1

qq× g
(
q×
2

)
g
(
3q×
4

)2 =
g
(
q×
4

)2 + g
(
3q×
4

)2

q×g
(
q×
2

) (3.4.17)

because g( q
×
2 )2 = q as q ≡ 1 (mod 4). The terms with k = q×

4 , 3q
×
4 are

− 1
qq× g

(
q×
4

)
g
(
q×
2

)2
g
(
3q×
4

)
− 1

qq× g
(
3q×
4

)
g
(
q×
4

)

= − (−1)q
×/4 q + 1

q× = (−1)q
×/4
(
1 − 2q

q×

)
. (3.4.18)

using Lemma 3.1.3(b) withm = q×
4 to get g( q

×
4 )g( 3q

×
4 ) = (−1)q×/4q.

For the remaining terms in the sum, we plug in (3.4.15) to get

1
qq×

q−2∑
k=0
q×�4k

ω (−4ψ)4k g (k) g
(
k + q×

4

)2
g
(
k + q×

2

)
g (−4k)

= 1
qq×

q−2∑
k=0
q×�4k

ω (−4ψ)4k g
(
k + q×

4

)
(−1)−k ω (4)−4k qg

(
q×
2

)
g
(
−k − 3q×

4

)

= q
q×

q−2∑
k=0
q×�4k

ω
(−ψ4)k g

(
k + q×

4

)
g
(
−k − 3q×

4

)

g
(
q×
2

) .

(3.4.19)

Next, we reindex this summation with the substitutionm = −k − q×
4 to obtain

q
q×

q−2∑
m=0
q×�4m

ω
(−ψ4)−m−q×/4 g (−m) g

(
m + q×

2

)

g
(
q×
2

)
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= (−1)q
×/4 q

q×
q−2∑
m=0
q×�4m

ω
(−ψ−4)m g

(
m + q×

2

)
g (−m)

g
(
q×
2

) . (3.4.20)

Taking (3.4.16), expanding and substituting (3.4.17), (3.4.18), and (3.4.20) then give

(−1)q
×/4∑

s∈S5
ω (a)−s cs

= (−1)q
×/4

g
(
q×
4

)2 + g
(
3q×
4

)2

q×g
(
q×
2

) + 1 − 2q
q×

+ q
q×

q−2∑
m=0
q×�4m

ω
(−ψ−4)m g

(
m + q×

2

)
g (−m)

g
(
q×
2

) .

We are quite close to (3.4.13), but the first term is off by a factor q. Adding and subtracting
give

(−1)q
×/4∑

s∈S5
ω (a)−s cs = 1 + qHq

( 1
2 ; 0 |ψ−4)− (−1)q

×/4
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

as claimed.

Lemma 3.4.21 If q ≡ 1 (mod 4), then
∑
s∈S5

ω(a)−scs =
∑
s∈S6

ω(a)−scs =
∑
s∈S7

ω(a)−scs.

Proof We start with (3.4.16) and reindex withm = k + q×
2 :

∑
s∈S5

ω (a)−s cs = 1
qq×

q−2∑
k=0

ω (−4ψ)4k g (k) g
(
k + q×

4

)2
g
(
k + q×

2

)
g (−4k)

= 1
qq×

q−2∑
m=0

ω (−4ψ)4m g
(
m + q×

2

)
g
(
m + 3q×

4

)2
g (m) g (−4m)

=
∑
s∈S6

ω (a)−s cs.

The equality for S7 holds reindexing withm = k + q×
4 .

We now put these pieces together to give the point count for the toric hypersurface.

Proposition 3.4.22 Let ψ ∈ F×
q .

(a) If q ≡ 3 (mod 4), then

#UF4 ,ψ
(
Fq
) = q2 − 3q − 3+Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)).
(3.4.23)
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(b) If q ≡ 1 (mod 4), then

#UF4 ,ψ
(
Fq
) = q2 − 3q + 9 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 12

⎛
⎜⎝(−1)q

×/4 qHq
( 1
2 ; 0 |ψ−4)+ (−1)q

×/4 −
g
(
q×
4

)2+g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ .

(3.4.24)

Proof For q ≡ 3 (mod 4), we have from Lemmas 3.4.4 and 3.4.7:

#UF4 ,ψ
(
Fq
) =

4∑
i=1

∑
s∈Si

ω (a)−s cs

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | ψ−4)+ 3

(−2 − qHq
( 1
4 ,

3
4 ; 0,

1
2 | ψ−4))

= q2 − 3q − 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | ψ−4)− 3qHq

( 1
4 ,

3
4 ; 0,

1
2 | ψ−4))

(3.4.25)

For q ≡ 1 (mod 4), we have from Lemmas 3.4.4, 3.4.7, 3.4.12, and 3.4.21, we have that:

#UF4 ,ψ
(
Fq
) =

4∑
i=1

∑
s∈Si

ω (a)−s cs + 12
∑
s∈S5

ω (a)−s cs

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | ψ−4)

+ 3
(
2 + qHq

( 1
4 ,

3
4 ; 0,

1
2 | ψ−4))

+ 12

⎛
⎜⎝(−1)q

×/4 qHq
( 1
2 ; 0 | ψ−4)+ (−1)q

×/4 −
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ ,

(3.4.26)

which simplifies to the result.

Step 3: Count points when at least one coordinate is zero

Lemma 3.4.27 If q ≡ 3 (mod 4), then

#XF4 ,ψ (Fq) − #UF4 ,ψ (Fq) = 4q + 4.

Proof First, we compute the number of points when x3 = 0 and x0x1x2 �= 0, i.e., count
points on the Fermat quartic curve V : x40 + x41 + x42 = 0 with coordinates in the torus.
All points in V (Fq) lie on the torus: If, e.g., x0 = 0 and x1 �= 0, then −1 = (x2/x1)4, but
−1 /∈ F×2

q since q ≡ 3 (mod 4). We claim that #V (Fq) = q + 1; this can be proven in
many ways. First, we sketch an elementary argument, working affinely on x40 + x41 = −1.
The map (x0, x1) �→ (x20 , x

2
1) gives a map to the affine curve defined by C : w2

0 + w2
1 = −1.

The number of points on this curve over Fq is q + 1 (the projective closure is a smooth
conic with no points at infinity), and again all such solutions have w0, w1 ∈ F×

q . Since
q ≡ 3 (mod 4), the squaring map F×2

q → F×4
q is bijective. Therefore, for the four points

(±w0,±w1) with w2
0 + w2

1 = −1, there are exactly four points (±x0,±x1) with x4i = w2
i

for i = 0, 1. Thus, #V (Fq) = #C(Fq) = q + 1. (Alternatively, the map (x0, x1) �→ (x20 , x1)
is bijective, with image a supersingular genus 1 curve over Fq).
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Second, and for consistency, we again apply the formula of Koblitz! For the characters,
we solve

⎛
⎜⎜⎜⎝

4 0 0
0 4 0
0 0 4
1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎝
s1
s2
s3

⎞
⎟⎠ ≡ 0 (mod q×). (3.4.28)

There are exactly four solutions when q ≡ 3 (mod 4):

S =
{
(0, 0, 0), q

×
2 (1, 1, 0), q

×
2 (1, 0, 1), q

×
2 (0, 1, 1)

}
.

Then by Theorem 3.3.3,

#V (Fq) = c(0,0,0) + c(q×/2)(1,1,0) + c(q×/2)(1,0,1) + c(q×/2)(0,1,1)

= (q − 1)2 − (−1)2

q
+ 3(−1)2

1
q
g
(
q×
2

)2
g
(
q×
2

)
g(0)

= q2 − 2q
q

+ 3 = q + 1.

(3.4.29)

By symmetry, repeating in each of the four coordinate hyperplanes, we obtain
#XF4 ,ψ (Fq) − #UF4 ,ψ (Fq) = 4(q + 1) = 4q + 4.

Lemma 3.4.30 If q ≡ 1 (mod 4), then

#XF4 ,ψ (Fq) − #UF4 ,ψ (Fq) = 4q − 8 − 12(−1)q
×/4 + 12

g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) .

Proof We repeat the argument in the preceding lemma. We cluster solutions to (3.4.28)
and count the number of solutions in the following way:

#V
(
Fq
) = c(0,0,0) + 6c(q×/4)(1,3,0) + 3c(q×/4)(2,2,0) + 3c(q×/4)(1,1,2) + 3c(q×/4)(3,3,2)

= q − 2 − 6 (−1)q
×/4 − 3 + 3

q
g
(
q×
4

)2
g
(
q×
2

)
+ 3

q
g
(
3q×
4

)2
g
(
q×
2

)

= q − 5 − 6 (−1)q
×/4 + 3

g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) .

(3.4.31)

There are 2 solutions to x40 + x41 = 0 with x0x1 �= 0 if q ≡ 1 (mod 8) and zero otherwise,
so 2 + 2(−1)q×/4 solutions in either case. Adding up, we get

#XF4 ,ψ
(
Fq
)− #UF4 ,ψ

(
Fq
) = 4#V

(
Fq
)+ 6

(
2 + 2 (−1)q

×/4
)

= 4q − 8 − 12 (−1)q
×/4 + 12

1
q
g
(
q×
4

)2
g
(
q×
2

)

+ 12
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) .
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Step 4: Conclude

We now conclude the proof.

Proof of Proposition 3.4.1 Wecombine Proposition 3.4.22with Lemmas 3.4.27 and 3.4.30.
If q ≡ 3 (mod 4), then

#XF4 ,ψ
(
Fq
) = #UF4 ,ψ

(
Fq
)+ (#XF4 ,ψ

(
Fq
)− #UF4 ,ψ

(
Fq
))

= (q2 − 3q − 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

− 3qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4))+ (4q + 4)

= q2 + q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

If q ≡ 1 (mod 4), then the ugly terms cancel, and we have simply

#XF4 ,ψ
(
Fq
) = #UF4 ,ψ

(
Fq
)+ (#XF4 ,ψ

(
Fq
)− #UF4 ,ψ

(
Fq
))

= (q2 − 3q + 9 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+12 (−1)q
×/4 qHq

( 1
2 ; 0 |ψ−4))+ (4q − 8)

= q2 + q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ 3qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 12 (−1)q
×/4 qHq

( 1
2 ; 0 |ψ−4) .

3.5 The Klein–Mukai pencil F1L3
In this section, we repeat the steps of the previous section but for the Klein–Mukai pencil
F1L3. We suppose throughout this section that q is coprime to 14. Our main result is as
follows.

Proposition 3.5.1 For q coprime to 14 and ψ ∈ F×
q , the following statements hold.

(a) If q �≡ 1 (mod 7), then

#XF1L3 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) .

(b) If q ≡ 1 (mod 7), then

#XF1L3 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ 3qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)

+ 3qHq
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ4

)
.

Remark 3.5.2 The new parameters 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 and 3

14 ,
5
14 ,

13
14 ; 0,

1
4 ,

3
4 match the

Picard–Fuchs equations in Proposition 2.6.1 as elements of Q/Z, with the same mul-
tiplicity.

Step 1: Computing and clustering the characters

As before, we first have to compute the solutions to the system of congruences:⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 1 0 1
1 3 0 0 1
0 1 3 0 1
0 0 0 4 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

w1
w2
w3
w4
w5

⎞
⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(mod q×).
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By linear algebra over Z, we compute that if q �≡ 1 (mod 7), then the set of solutions is

S = {(1, 1, 1, 1,−4)w : w ∈ Z/q×Z}.
On the other hand if q ≡ 1 (mod 7), then the set splits into three classes:

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) three sets of the form S8 =

{
k(1, 1, 1, 1,−4) + q×

7 (1, 4, 2, 0, 0) : k ∈ Z/q×Z

}
, and

(iii) three sets of the form S9 =
{
k(1, 1, 1, 1,−4) + q×

7 (3, 5, 6, 0, 0) : k ∈ Z/q×Z

}
.

The multiplicity of the latter two sets corresponds to cyclic permutations yielding the
same product of Gauss sums.

Step 2: Counting points on the open subset with nonzero coordinates

As in the previous section, the hard work is in counting points in the toric hypersurface.
We now proceed with each cluster.

Lemma 3.5.3 If q ≡ 1 (mod 7), then

∑
s∈S8

ω (a)−s cs = qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)− 1

q
g
(
q×
7

)
g
(
4q×
7

)
g
(
2q×
7

)
. (3.5.4)

Proof Recall our hybrid hypergeometric sum (3.2.14) from Example 3.2.13, plugging in
t = ψ4:

Hq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)

= 1
q× − 1

qq× g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)

+ 1
qq×

q−2∑
m=1

m�=q×/2

g
(
m + 1

14q
×) g (m + 9

14q
×) g (m + 11

14q
×)

g
( 1
14q×) g ( 9

14q×) g ( 1114q×)

· g (2m) g (−m) g (−4m)ω
(−43ψ4)m .

(3.5.5)

Our point count formula expands to

∑
s∈S8

ω (a)−s cs= 1
qq× g

(
q×
7

)
g
(
4q×
7

)
g
(
2q×
7

)
− 1
qq× g

(
9q×
14

)
g
(
q×
14

)
g
(
11q×
14

)
g
(
q×
2

)

+ 1
qq×

q−2∑
k=0
q×�2k

ω (−4ψ)4k g
(
k + q×

7

)

· g
(
k + 4q×

7

)
g
(
k + 2q×

7

)
g (k) g (−4k) .

We work on the sum. Changing indices tom = k + q×
2 , using the identity

g
(
m + q×

2

)
= ω (4)−m (−1)m q−1g

(
q×
2

)
g (−m) g (2m)

found by using Hasse–Davenport for N = 2, and applying Lemma 3.2.11, gives us the
summand
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ω (−4ψ)4m g
(
m + 9q×

14

)
g
(
m + q×

14

)
g
(
m + 11q×

14

)
g
(
m + q×

2

)
g (−4m)

= ω (−4ψ)4m g
(
m + q×

14

)
g
(
m + 9q×

14

)
g
(
m + 11q×

14

)

· ω (4)−m (−1)m q−1g
(
q×
2

)
g (−m) g (2m) g (−4m)

= ω
(−43ψ4)m g

(
m + q×

14

)
g
(
m + 9q×

14

)
g
(
m + 11q×

14

)

g
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)

· q−1g
(
q×
2

)4
g (2m) g (−m) g (−4m)

= qω
(−43ψ4)m g

(
m + q×

14

)
g
(
m + 9q×

14

)
g
(
m + 11q×

14

)

qg
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

) g (2m) g (−m) g (−4m) .

Plugging back in, we can relate this to hypergeometric function (3.5.5):

∑
s∈S8

ω (a)−s cs= 1
qq× g

(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
− 1
qq× g

(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)
g
(
q×
2

)

+ 1
qq×

q−2∑
m=0
q×�2m

qω
(−43ψ4)m g

(
m + q×

14

)
g
(
m + 9q×

14

)
g
(
m + 11q×

14

)

g
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)

· g (2m) g (−m) g (−4m)

= 1
qq× g

(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
− 1

qq× g
(
q×
14

)
g
(
9q×
14

)
g
(
11q×
14

)
g
(
q×
2

)

+ qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)+ q

q× − 1
q× g

(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)

= qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)− 1

q
g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
.

Lemma 3.5.6 If q ≡ 1 (mod 7), then

∑
s∈S9

ω (a)−s cs = qHq
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ4

)
− 1

q
g
(
3q×
7

)
g
(
5q×
7

)
g
(
6q×
7

)
. (3.5.7)

Proof Apply complex conjugation to Lemma 3.5.3; the effect is to negate indices, as in
Proposition 3.2.8.

We now put the pieces together to prove the main result in this step.

Proposition 3.5.8 Suppose ψ ∈ F×
q .

(a) If q �≡ 1 (mod 7), then

#UF1L3 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (3.5.9)

(b) If q ≡ 1 (mod 7), then

#UF1L3 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ 3qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)+ 3qHq

(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ4

)
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− 3
q

(
g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
+ g

(
3q×
7

)
g
(
5q×
7

)
g
(
6q×
7

))
.

(3.5.10)

Proof When q �≡ 1 (mod 7), there is only one cluster of characters, S1. By Lemma 3.4.4,
we know that

#UF1L3 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs = q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (3.4.11)

When q ≡ 1 (mod 7), we have three clusters of characters, the latter two (S8 and S9) with
multiplicity 3. By Lemmas 3.4.4, 3.5.3, and 3.5.6, these sum to the result.

Step 3: Count points when at least one coordinate is zero.

Recall that q is coprime to 14.

Lemma 3.5.12 Let ψ ∈ F×
q .

(a) If q �≡ 1 (mod 7), then

#XF1L3 ,ψ (Fq) − #UF1L3 ,ψ (Fq) = 4q − 2.

(b) If q ≡ 1 (mod 7), then

#XF1L3 ,ψ
(
Fq
)− #UF1L3,ψ

(
Fq
) = 4q − 2 + 3

q (g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)

+g
(
3q×
7 g

(
5q×
7

)
g
(
6q×
7

))
.

Proof We count solutions with at least one coordinate zero. If x3 = 0 but x0x1x2 �= 0, we
count points on x40 + x31x2 = 0: solving for x2, we see there are q − 1 solutions; repeating
this for the cases x1 = 0 or x2 = 0, we get 3q − 3 points.
Now, suppose x0 = 0 but x1x2x3 �= 0, we look at the equation x31x2 + x32x3 + x33x1 = 0

defining the Klein quartic. Applying Theorem 3.3.3 again, we find that

⎛
⎜⎜⎜⎝

3 1 0
0 3 1
1 0 3
1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎝
s1
s2
s3

⎞
⎟⎠ ≡ 0 (mod q×). (3.5.13)

If q �≡ 1 (mod 7), then only (0, 0, 0) is a solution and c(0,0,0) = q − 2. If q ≡ 1 (mod 7),
then the solutions are

{
k( q

×
7 , 4q

×
7 , 2q

×
7 ) : k ∈ Z/7Z

}
which gives the point count

q − 2 + 3
q
g
(
q×
7

)
g
(
2q×
7

)
g
(
4q×
7

)
+ 3

q
g
(
3q×
7

)
g
(
5q×
7

)
g
(
6q×
7

)
.

If now at least two of the variables among {x1, x2, x3} are zero, then the equation is just
x40 = 0; hence, the last one is also zero and there is only one such point. If x0 = x1 = 0, then
the equation is x32x3 = 0; hence, another of the first three variables is zero. Consequently,
there are exactly 3 such points. Totaling up gives the result.
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Step 4: Conclude

We now prove Proposition 3.5.1.

Proof of Proposition 3.5.1 By Proposition 3.5.8 and Lemma 3.5.12, if q �≡ 1 (mod 7), then

#XF1L3 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ (4q − 2)

= q2 + q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) .

(3.4.14)

If q ≡ 1 (mod 7), then the ugly terms cancel and we get

#XF1L3 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+

+ 3qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)+ 3qHq

(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ4

)

− 3 1
q g
(
q×
7

)
g
(
4q×
7

)
g
(
2q×
7

)
+ (4q − 2)

= q2 + q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ 3qHq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ4)+ 3qHq

(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ4

)

(3.4.15)

as desired.

3.6 Remaining pencils

For the remaining three pencils F2L2, L2L2, and L4, the formula for the point counts can
be derived in a similar manner. The details can be found in Appendix 4.8; we state here
only the results.

Proposition 3.6.1 For q odd and ψ ∈ F×
q , the following statements hold.

(a) If q ≡ 3 (mod 4), then

#XF2L2 ,ψ
(
Fq
) = q2 − q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(b) If q ≡ 5 (mod 8), then

#XF2L2 ,ψ
(
Fq
) = q2 − q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)− 2qHq

( 1
2 ; 0 |ψ−4) .

(c) If q ≡ 1 (mod 8), then

#XF2L2 ,ψ
(
Fq
) = q2 + 7q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4) .

Proof See Proposition B.2.1.

Proposition 3.6.2 For q odd and ψ ∈ F×
q , the following statements hold.
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(a) If q ≡ 3 (mod 4), then

#XL2L2 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(b) If q ≡ 1 (mod 4), then

#XL2L2 ,ψ
(
Fq
) = q2 + 9q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
.

Proof See Proposition B.3.1.

Proposition 3.6.3 For q coprime to 10 and ψ ∈ F×
q , the following statements hold.

(a) If q �≡ 1 (mod 5), then

#XL4 ,ψ
(
Fq
) = q2 + 3q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) .

(b) If q ≡ 1 (mod 5), then

#XL4 ,ψ
(
Fq
) = q2 + 3q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ 4qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) .

Proof See Proposition B.4.1.

4 Proof of themain theorem and applications
In this section, we prove Main Theorem 1.4.1 by converting the hypergeometric point
count formulas in the previous section into a global L-series. We conclude with some
discussion and applications.

4.1 From point counts to L-series

In this section, we define L-series of K3 surfaces and hypergeometric functions, setting up
the notation we will use in the proof of our main theorem.
WebeginwithL-series ofK3 surfaces. Letψ ∈ Q�{0, 1}. Let� ∈ {F4 , F2L2, F1L3, L2L2, L4}

signify one of the five K3 families in (1.2.1). Let S = S(�,ψ) be the set of bad primes in
(1.2.1) together with the primes dividing the numerator or denominator of either ψ4 or
ψ4 − 1.

Lemma 4.1.1 For p /∈ S(�,ψ), the surface X�,ψ has good reduction at p.

Proof Straightforward calculation.

Let p /∈ S(�,ψ). The zeta function of X�,ψ over Fp is of the form

Zp(X�,ψ , T ) = 1
(1 − T )(1 − pT )P�,ψ ,p(T )(1 − p2T )

(4.1.2)

where P�,ψ ,p(T ) ∈ 1 + TZ[T ]. The Hodge numbers of X�,ψ imply that the polynomial
P�,ψ ,p(T ) has degree 21. Equivalently, we have that

P�,ψ ,p(T ) = det(1 − Frob−1
p T |H2

ét,prim(X�,ψ ,Q�)) (4.1.3)



C. F. Doran et al. Res Math Sci             (2020) 7:7 Page 45 of 81     7 

is the characteristic polynomial of the Frobenius automorphism acting on primitive
second-degree étale cohomology for � �= p (and independent of �). We then define the
(incomplete) L-series

LS(X�,ψ , s) :=
∏
p/∈S

P�,ψ ,p(p−s)−1, (4.1.4)

convergent for s ∈ C in a right half-plane by elementary estimates.
We now turn to hypergeometric L-series, recalling the definitions made in Sects. 3.1–

3.2. Let α,β bemultisets of rational numbers that are disjoint moduloZ. Let t ∈ Q�{0, 1},
and let S(α,β, t) be the set of primes dividing a denominator in α ∪ β together with the
primes dividing the numerator or denominator of either t or t − 1.
Recall Definition 3.2.7 of the finite-field hypergeometric sums Hq(α;β | t) ∈ Kα,β ⊆ C.

For a prime power q such that α,β is splittable, we define the formal series

Lq(H (α,β | t), T ) := exp
(

−
∞∑
r=1

Hqr (α;β | t)T
r

r

)
∈ 1 + TKα,β[[T ]] (4.1.5)

using Lemma 3.2.10(b). (Note the negative sign; below, this normalization will yield poly-
nomials instead of inverse polynomials.)
For a number field M, a prime of M is a nonzero prime ideal of the ring of integers

ZM of M. We call a prime p of M good (with respect to α,β,ψ) if p lies above a prime
p /∈ S(α,β,ψ). Now, letM be an abelian extension of Q containing the field of definition
K := Kα,β with the following property:

for all good primes p ofM, we have q = Nm(p) splittable for α,β. (4.1.6)

For example, if m is the least common multiple of all denominators in α ∪ β, then we
may take M = Q(ζm). We will soon see that we will need to take M to be nontrivial
extensions of K in Proposition 4.3.1 to deal with the splittable hypergeometric function
given in Example 3.2.4. Letm be the conductor ofM, i.e., theminimal positive integer such
that M ⊆ Q(ζm). Under the canonical identification (Z/mZ)× ∼−→ Gal(Q(ζm) | Q) where
k �→ σk and σk (ζm) = ζ k

m, let HM ≤ (Z/mZ)× be such that Gal(M | Q) � (Z/mZ)×/HM .
Now, let p /∈ S(α,β,ψ). Let p1, . . . , pr be the primes above p in M, and let q = pf =

Nm(pi) for any i. Recall (by class field theory forQ) that f is the order of p in (Z/mZ)×/HM ,
and rf = [M : Q]. Moreover, the set of primes {pi}i arise as pi = σki (p1) where ki ∈ Z are
representatives of the quotient (Z/mZ)×/〈HM, p〉 of (Z/mZ)× by the subgroup generated
by HM and p. We then define

Lp(H (α,β | t),M, T ) :=
r∏

i=1
Lq(H (kiα, kiβ | t), T f )

=
∏

ki∈(Z/mZ)×/〈HM,p〉
Lq(H (kiα, kiβ | t), T f ) ∈ 1 + TK [[T ]].

(4.1.7)

This product is well-defined up to choice of representatives ki of the cosets in
(Z/mZ)×/〈HM, p〉. Indeed, by Lemma 3.2.10: part (c) gives

Lq(H (pkα, pkβ | t), T f ) = Lq(H (kα, kβ | tp), T f ) = Lq(H (kα, kβ | t), T f ) (4.1.8)
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for all k ∈ (Z/mZ)× and all good primes p, since tp = t ∈ Fp ⊆ Fq ; and similarly part (a)
implies it is well-defined for k ∈ (Z/mZ)×/HM as HM ≤ HK .

Lemma 4.1.9 The following statements hold:

(a) We have

Lp(H (α;β | t),M, T ) ∈ 1 + TQ[[T ]] (4.1.10)

and

Lp(H (α;β | t),M, T ) = Lp(H (kα; kβ | t),M, T ) (4.1.11)

for all k ∈ Z coprime to p and m.
(b) Let HK ≤ (Z/mZ)× correspond to Gal(K | Q) as above, and let

r(M|K, p) := [〈HK , p〉 : 〈HM, p〉]. (4.1.12)

Then r(M|K, p) is the number of primes in M above a prime in K above p, and

Lp(H (α,β | t),M, T ) =
∏

ki∈(Z/mZ)×/〈HK ,p〉
Lq(H (kiα, kiβ | t), T f )r(M|K,p). (4.1.13)

Proof For part (a), the descent toQ follows fromGalois theory andLemma3.2.10; equality
(4.1.11) follows as multiplication by k permutes the indices ki in (Z/mZ)×/〈HM, p〉. For
part (b), the fact that r(M|K, p) counts the number of primes follows again from class field
theory; to get (4.1.13), use Lemma 3.2.10 and the fact that the field of definition of α,β is
K = Kα,β.

We again package these together in an L-series:

LS(H (α;β | t),M, s) :=
∏
p/∈S

Lp(H (α;β | t),M, p−s)−1. (4.1.14)

We may expand (4.1.14) as a Dirichlet series

LS(H (α;β | t),M, s) =
∑

n⊆ZM
n �=(0)

an
Nm(n)s

(4.1.15)

with an ∈ K = Kα,β ⊂ C, and again the series converges for s ∈ C in a right half-plane. If
M = Kα,β, we suppress the notationM and write just LS(H (α;β | t), s), etc.
Finally, for a finite-order Dirichlet character χ over M, we let LS(H (α;β | t),M, s,χ )

denote the twist by χ , defined by

LS(H (α;β | t),M, s,χ ) :=
∑

n⊆ZM
n �=(0)

χ (n)an
Nm(n)s

. (4.1.16)
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4.2 The Dwork pencil F4
In the remaining sections, we continue with the same notation: Let t = ψ−4 and let
S = S(�,ψ) be the set of bad primes in (1.2.1) together with the set of primes dividing the
numerator or denominator of t or t − 1. We now prove Main Theorem 1.4.1(a).

Proposition 4.2.1 Let ψ ∈ Q�{0, 1}, and let t = ψ−4 . Then

LS
(
XF4 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)3

· LS
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, s − 1,φ√−1

)6
,

where

φ−1 (p) =
(−1

p

)
= (−1)(p−1)/2 is associated to Q

(√−1
)

| Q, and

φ√−1 (p) =
(√−1

p

)
= (−1)(Nm(p)−1)/4 is associated to Q (ζ8) | Q

(√−1
)
.

(4.2.2)

Proof Recall Proposition 3.4.1, where we wrote the number of Fq points on F4 in terms
of the finite-field hypergeometric functions. We rewrite these for convenience:

#XF4 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)+ φ−1 (q) 3qHq

( 1
4 ,

3
4 ; 0,

1
2 | t)

+ δ[q ≡ 1 (mod 4)]12φ√−1 (q) qHq
( 1
2 ; 0 | t) ,

(4.2.3)

where δ[P] = 1, 0 according as if P holds or not.
Each summand in (4.2.3) corresponds to a multiplicative term in the exponential gen-

erating series. The summand q2 + q + 1 gives the factor (1 − T )(1 − qT )(1 − q2T ) in
the denominator of (4.1.2), so LS(XF4 ,ψ , s) represents the rest of the sum. The summand
Hq( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t) yields LS(H ( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s) by definition.

Next, we consider the summand φ−1(q)3qHq( 14 ,
3
4 ; 0,

1
2 | t): For each p /∈ S, we have

exp
(

−
∞∑
r=1

φ−1 (pr) 3prHpr
( 1
4 ,

3
4 ; 0,

1
2 | t)

(
p−s)r
r

)

= exp
(

−
∞∑
r=1

φ−1 (pr)Hpr
( 1
4 ,

3
4 ; 0,

1
2 | t) p

(1−s)r

r

)3

= Lp
(
Hp
( 1
4 ,

3
4 ; 0,

1
2 | t) , p1−s,φ−1

)3 .

(4.2.4)

Combining these for all p /∈ S then gives the L-series LS(H ( 14 ,
3
4 ; 0,

1
2 | t), s − 1,φ−1)3.

We conclude with the final term 12φ√−1(q)qHq( 12 ; 0 | t) which exists only when q ≡ 1
(mod 4).We accordingly consider two cases. First, if p ≡ 1 (mod 4), then in Z[

√−1], the
two primes p1, p2 above p have norm p. We compute
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exp
(

−
∞∑
r=1

12φ√−1 (p
r) prHpr

( 1
2 ; 0 | t)

(
p−s)r
r

)

= Lp
(
H
( 1
2 ; 0 | t) , p1−s,φ√−1

)12

= Lp
(
H
( 1
2 ; 0 | t) , p1−s,φ√−1

)6
Lp
(
H
(− 1

2 ; 0 | t) , p1−s,φ√−1

)6
,

= Lp
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, p1−s,φ√−1

)6

(4.2.5)

where the second equality holds because the definition of the hypergeometric sum only
depends on parameters modulo Z and the final equality is using Definition (4.1.7) and
using that Gal(M | Q) whenM = Q(

√−1) is generated by complex conjugation.
Second, if p ≡ 3 (mod 4), then there is a unique prime ideal p above p with norm

Nm(p) = p2, and

exp
(

−
∞∑
r=1

12φ√−1
(
p2r
)
p2rHp2r

( 1
2 ; 0 | t)

(
p−s)2r
2r

)

= Lp2
(
H
( 1
2 ; 0 | t) , p2(1−s),φ√−1

)6

= Lp
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, p1−s,φ√−1

)6
.

(4.2.6)

Taking the product of (4.2.5) and (4.2.6) over all prescribed p, we obtain the last L-series
factor.

4.3 The Klein–Mukai pencil F1L3
We now prove Theorem 1.4.1(b).

Proposition 4.3.1 For the Klein–Mukai pencil F1L3,

LS
(
XF1L3 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t−1) ,Q (ζ7) , s − 1

)

where for α,β = { 1
14 ,

9
14 ,

11
14 }, {0, 14 , 34 } we have field of definition Kα,β = Q(

√−7).

Remark 4.3.2 By Lemma 4.1.9, we have

LS
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t−1) , s) = LS

(
H
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t−1

)
, s
)
.

Proof Recall that by Proposition 3.5.1, we have

#XF1L3 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)

+ 3qδ[q ≡ 1 (mod 7)]
(
Hq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t−1)

+Hq
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t−1

))
.

Wecompute that the field of definition (seeDefinition 3.1.10) associated to the parameters
α,β = { 1

14 ,
9
14 ,

11
14 }, {0, 14 , 34 } and to α,β = { 3

14 ,
5
14 ,

13
14 }, {0, 14 , 34 } is Q(

√−7). We take M =
Q(ζ7) and consider a prime p of M, and let q = Nm(p). Then q ≡ 1 (mod 7), and in
Example 3.2.4, we have seen that q is splittable for α,β.
We proceed in two cases, according to the splitting behavior of p in K = Kα,β =

Q(
√−7). First, suppose that p ≡ 1, 2, 4 (mod 7), or equivalently p splits in K . We
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have 2r(M|K, p)f = 6 so r(M|K, p) = 3. We then apply Lemma 4.1.9(b), with
(Z/mZ)×/〈HK , p〉 = {±1}, to obtain

exp
(

−
∞∑
r=1

3pfrHpfr
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

(
p−s)fr
fr

−3pfrHpfr
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr

)

= Lpf
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) , p1−s)3/f Lpf

(
H
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
)
, p1−s

)3/f

=
∏

ki∈(Z/mZ)×/〈HK ,p〉
Lp
(
H
( 1
14ki,

9
14ki,

11
14ki; 0,

1
4ki,

3
4ki | t

)
, p1−s)r(M|K,p)

= Lp
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) ,Q (ζ7) , p1−s) . (4.3.3)

To conclude, suppose p ≡ 3, 5, 6 (mod 7), i.e., p is inert inK . Now, (Z/mZ)×/〈HK , p〉 =
{1} and 6 = r(M|K, p)f . By Lemma 3.2.10(c), for all q ≡ 1 (mod 7), we have that

Hq
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) = Hq

( 1
14p,

9
14p,

11
14p; 0,− 1

4 ,− 3
4 | tp)

= Hq
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
)
. (4.3.4)

Using the previous line and Lemma 4.1.9(b),

exp
(

−
∞∑
r=1

3pfrHpfr
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

(
p−s)fr
fr

+3pfrHpfr
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr

)

= exp
(

−
∞∑
r=1

6Hpfr
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

(
p1−s)fr
fr

)

= Lpf
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) , p1−s)6/f

= Lpf
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) , p1−s)r(M|K,p)

= Lp
(
H
( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) ,Q (ζ7) , p1−s) . (4.3.5)

4.4 The pencil F2L2
We now prove Theorem 1.4.1(c):

Proposition 4.4.1 For the pencil F2L2,

LS
(
XF2L2 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· LS (Q (ζ8) | Q, s − 1)2

· LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)

· LS
(
H
( 1
2 ; 0 | t) ,Q

(√−1
)
, s − 1,φ√−1

)

· LS
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
,Q (ζ8) , s − 1,φ√

2

)
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where

• the character φ√−1 is defined in (4.2.2),
• for α,β = { 18 , 58 }, {0, 14 } we have the field of definition Kα,β = Q(

√−1), M = Q(ζ8),
and

φ√
2(p) :=

(√
2
p

)
≡ 2(Nm(p)−1)/4 (mod p) is associated to Q(ζ8,

4√2) | Q(ζ8), and

• L(Q(ζ8) | Q, s) = ζQ(ζ8)(s)/ζ (s), where ζQ(ζ8)(s) is the Dedekind zeta function of Q(ζ8)
and ζ (s) = ζQ(s) the Riemann zeta function.

Proof We now appeal to Proposition 3.6.1, which we summarize as:

#XF2L2 ,ψ
(
Fq
) = q2 + q + 1 + 2q ·

⎧⎨
⎩
3 if q ≡ 1 (mod 8)

−1 if q �≡ 1 (mod 8)

+ Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)+ φ−1 (q) qHq

( 1
4 ,

3
4 ; 0,

1
2 | t)

+ 2φ√−1 (q) qδ[q ≡ 1 (mod 4)]Hq
( 1
2 ; 0 | t)

+ 2φ√
2 (q) qδ[q ≡ 1 (mod 8)]

(
Hq
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)

+Hq
( 3
8 ,

7
8 ; 0,

3
4 | t−1)) .

(4.4.2)

For the new sumwith parameters α,β = { 18 , 58 }, {0, 14 }, we have field of definitionKα,β =
Q(

√−1) because the subgroup of (Z/8Z)× preserving these subsets is generated by 5.
The term q2 + q + 1 in (4.4.2) is handled as before. For the next term, by splitting

behavior in the biquadratic field Q(ζ8) = Q(
√−1,

√
2) we obtain

Lp(Q(ζ8) | Q, pT ) =

⎧⎪⎨
⎪⎩
(1 − pT )3 if p ≡ 1 (mod 8),(
1 − (pT )2

)2
1 − pT

= (1 − pT ) (1 + pT )2 if p �≡ 1 (mod 8).

(4.4.3)

For q ≡ 1 (mod 8), the contribution to the exponential generating series is 3q, otherwise
the contribution is q − 2q = −q.
All remaining terms except for the term

2φ√
2 (q) qδ[q ≡ 1 (mod 8)]

(
Hq
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
+ Hq

( 3
8 ,

7
8 ; 0,

3
4 | t−1))

are handled in the proof of Proposition 4.2.1.We chooseM = Q(ζ8) which has conductor

m = 8. Then HK = 〈5〉 ≤ (Z/8Z)×. Let ε =
(√

2
p

)
for a prime p above p in Q(ζ8) (and

independent of this choice).
Suppose that p ≡ 1 (mod 8). We compute that f = 1 and r(M|K, p) = 2. By applying

Lemma 4.1.9(b), we have:

exp
(

−
∞∑
r=1

2εrprHpr
(
1
8 ,

5
8 ; 0,

1
4 | t−1

) (p−s)r
r

−
∞∑
r=1

2εrprHpr
( 3
8 ,

7
8 ; 0,

3
4 | t−1)

(
p−s)r
r

)

= Lp
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
, p1−s,φ√

2

)2
Lp
(
Hpr

( 3
8 ,

7
8 ; 0,

3
4 | t−1) , p1−s,φ√

2

)2
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=
∏

k∈(Z/8Z)×/〈HK ,p〉
Lp
(
H
(
1
8k,

5
8k ; 0,

1
4 k | t−1

)
, p1−s,φ√

2

)2

= Lp
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
,Q (ζ8) , p1−s,φ√

2

)
. (4.4.4)

Supposenow thatp ≡ 3, 7 (mod 8). Then f = 2 and r(M|K, p) = 2. ByLemma3.2.10(c),
for all q a power of p so that q ≡ 1 (mod 8), we have that

Hq
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
= Hq

(
1
8p,

5
8p; 0,

1
4p | t−p

)
= Hq

( 3
8 ,

7
8 ; 0,

3
4 | t−1) . (4.4.5)

Again applying Lemma 4.1.9(b), we have:

exp
(

−
∞∑
r=1

2εrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t−1

) (p−s)2r
2r

−
∞∑
r=1

2εrp2rHp2r
( 3
8 ,

7
8 ; 0,

3
4 | t−1)

(
p−s)2r
2r

)

= exp
(

−
∞∑
r=1

2εrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t−1

) (p−s)2r
r

)

= Lp2
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
, p1−s,φ√

2

)2

= Lp2
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
, p1−s,φ√

2

)r(M|K,p)

= Lp2
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
,Q (ζ8) , p1−s,φ√

2

)
. (4.4.6)

Finally, suppose that p ≡ 5 (mod 8). Then f = 2 and r(M|K, p) = 1, and now

exp
(

−
∞∑
r=1

2εrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t−1

) (p−s)2r
2r

−
∞∑
r=1

2εrp2rHp2r
( 3
8 ,

7
8 ; 0,

3
4 | t−1)

(
p−s)2r
2r

)

= Lp2
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
, p1−s,φ√

2

)
Lp2
(
H
( 3
8 ,

7
8 ; 0,

3
4 | t−1) , p1−s,φ√

2

)

=
∏

k∈(Z/8Z)×/〈HK ,p〉
Lp2
(
H
(
1
8k,

5
8k ; 0,

1
4k | t−1

)
, p1−s,φ√

2

)

= Lp
(
H
(
1
8 ,

5
8 ; 0,

1
4 | t−1

)
,Q (ζ8) , p1−s,φ√

2

)
. (4.4.7)

4.5 The pencil L2L2
We now prove Theorem 1.4.1(d).

Proposition 4.5.1 For the pencil L2L2, we have

LS
(
XL2L2 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s)

· ζQ(
√−1) (s − 1)4

· LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 | t) , s − 1,φ−1

)

· LS
(
H
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
,Q (i) , s − 1,φ√−1φψ

)
,
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where the characters φ−1,φ√−1 are defined in (4.2.2) and

φψ (p) =
(

ψ

p

)
is associated to Q(

√
ψ) | Q (4.5.2)

and ζQ(
√−1)(s) is the Dedekind zeta function of Q(

√−1).

Proof By Proposition 3.6.2, we have the point counts

#XL2L2 ,ψ
(
Fq
) = q2 + q + 1 + 4q ·

⎧⎨
⎩
2 if q ≡ 1 (mod 4),

0 if q ≡ 3 (mod 4)

+ Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)+ (−1)q

×/2 qHq
( 1
4 ,

3
4 ; 0,

1
2 | t)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qδ[q≡1 (mod 4)]Hq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
.

(4.5.3)

Again by splitting behavior, we have

ζQ(i),p(pT ) =
⎧⎨
⎩
(1 − pT )2 if p ≡ 1 (mod 4),

1 − p2T 2 if p ≡ 3 (mod 4).
(4.5.4)

For q ≡ 1 (mod 4), the contribution to the exponential generating series is 2q, otherwise
the contribution is 0.
All, but the last summand have been identified in the previous propositions, and this

one follows in a similar, but easier manner (because it hasQ as field of definition) applying
Lemma 4.1.9(b), withM = Q(

√−1) and fr(M|Q, p) = 2:

exp
(

−
∞∑
r=1

2 (−1)
(
pfr
)×

/4
ω (ψ)

(
pfr
)×

/2 pfrHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
) (p−s)fr

fr

)

= Lpf
(
H
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
, p1−s,φψφ−1

)2/f

= Lpf
(
H
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
, p1−s,φψφ−1

)r(M|Q,p)

= Lp
(
H
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t
)
,Q
(√−1

)
, p1−s,φψφ−1

)
. (4.5.5)

4.6 The pencil L4
Here, we prove Theorem 1.4.1(e).

Proposition 4.6.1 For the pencil L4 ,

LS
(
XL4 ,ψ , s

) = LS
(
H
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) , s) ζ (s − 1)2

· LS
(
H
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) ,Q (ζ5) , s − 1

)
.

Proof By Proposition 3.6.3, we have that

#XL4 (ψ) = q2 + 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)

+ 4qδ[q ≡ 1 (mod 5)]Hq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) .
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The extra two summands of q in the point count correspond to the L-series factor
ζ (s − 1)2. We now focus on the remaining new summand 4qHq( 15 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4)

that occurs exactly when q ≡ 1 (mod 5). Let f be the order of p in (Z/5Z)×, which divides
4. Take M = Q(ζ5). We know that K = Q for all possible p, hence r(M|K, p) = 4f −1. By
Lemma 4.1.9, we have

exp
(

−
∞∑
r=1

4prf Hprf
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1)

(
p−s)rf
fr

)

= Lpf
(
H
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) , p1−s)4/f

= Lpf
(
H
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) , p1−s)r(M|Q,p)

= Lp
(
H
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t−1) ,Q (ζ5) , p1−s) . (4.6.2)

4.7 Algebraic hypergeometric functions

We now turn to some applications of our main theorem. We begin in this section by
setting up a discussion of explicit identification of the algebraic hypergeometric functions
that arise in our decomposition, following foundational work of Beukers–Heckman [4].
Recall the hypergeometric function F (z) = F (α;β | z) (Definition 2.4.1) for parameters

α,β. For certain special parameters, this function may be algebraic over C(z), i.e., the field
C(z, F (z)) is a finite extension ofC(z). By a criterion of Beukers–Heckman, F (z) is algebraic
if and only if the parameters interlace (ordering the parameters, they alternate between
elements of α and β) [4, Theorem 4.8]; moreover, all sets of interlacing parameters are
classified [4, Theorem 7.1]. We see in Main Theorem 1.4.1 that for all, but the common
factor LS(H ( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s), the parameters interlace, so this theory applies.

Conjecture 4.7.1 Let t ∈ Q, let α,β with #α = β = d be such that the hypergeo-
metric function F (α;β | z) is algebraic. Let M satisfy (4.1.6). Then LS(H (α,β | t),M, s) is
an Artin L-series of degree d[M : Kα,β]; in particular, for all good primes p, we have
Lp(H (α,β | t),M, T ) ∈ 1 + TQ[T ] a polynomial of degree d[M : Kα,β].

Conjecture 4.7.1 is implicit in work of Katz [31, Chapter 8], and there is current, ongoing
work on the theory of hypergeometricmotives that is expected to prove this conjecture, at
least for certain choices ofM. An explicit version of Conjecture 4.7.1 could be established
in each case for the short list of parameters that arise in our Main Theorem. For example,
we can use the following proposition about L-series and apply it for the family F4, proving
a conjecture of Duan [19].

Proposition 4.7.2 (Cohen)We have the following L-series relations:

LS
(
H
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) , s,φ−1

) = LS
(
s,φ1−ψ2

)
LS
(
s,φ−1−ψ2

)
,

LS
(
1
2 ; 0 |ψ−4 ,Q

(√−1
)
, s,φ√−1

)
= LS

(
s,φ2(1−ψ4)

)
LS
(
s,φ−2(1−ψ4)

)
,

(4.7.3)

where φa =
(
a
p

)
is the Legendre symbol.

Proof The hypergeometric L-series were computed explicitly by Cohen [13, Propositions
6.4 and 7.32], and the above formulation follows directly from this computation.
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More generally, Naskręcki [44] has given an explicit description for algebraic hyper-
geometric L-series of low degree defined over Q using the variety defined by Beukers–
Cohen–Mellit [3].
Proposition 4.7.2, plugged into our hypergeometric decomposition, gives an explicit

decomposition of the polynomial QF4 ,ψ ,q as follows.

Corollary 4.7.4 We have:

QF4 ,ψ ,q(T )

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1−
(
1 − ψ2

q

)
qT
)3 (

1 −
(

−1 − ψ2

q

)
qT
)3 (

1 −
(
1 − ψ4

q

)
qT
)12

, if q≡1 (mod 4);
(
1−
(
1 − ψ2

q

)
qT
)3

(1 − qT )6(1 + qT )6, if q≡3 (mod 4).

where
(
a
q

)
denotes the Jacobi symbol.

Corollary 4.7.4 explains why the field of definition of the Picard group involves square
roots of 1 + ψ2 and 1 − ψ2.

4.8 Applications to zeta functions

To conclude, we give an application to zeta functions. In Sects. 2 and 3, we established
a relationship between the periods and the point counts for our collection of invertible
K3 polynomial families and hypergeometric functions. In particular, both the periods and
the point counts decompose naturally in terms of the group action into hypergeometric
components.
It is easy to see that the zeta function is the characteristic polynomial of Frobenius

acting on our cohomology (i.e., the collection of periods). In this sense, both Sects. 2 and
3 suggest that, as long as the group action and the action of Frobenius commute, the
splitting of Frobenius by the group action translates into factors, each corresponding to
the Frobenius acting only on a given isotypical component of the action. However, a priori
we only know that this factorization over Q (see, e.g., work of Miyatani [42]).
Thus, we have the following corollary of Main Theorem 1.4.1.

Corollary 4.8.1 Assuming Conjecture 4.7.1, for smooth X�,ψ ,q , the polynomials Q�,ψ ,q(T )
factor over Q[T ] under the given hypothesis as follows:
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Family Factorization Hypothesis

F4
(deg 2)3(deg 1)12 q ≡ 1 (mod 4)
(deg 2)3(deg 2)6 q ≡ 3 (mod 4)

F1L3

(deg 3)3(deg 3)3 q ≡ 1 (mod 7)
(deg 6)3 q ≡ 6 (mod 7)

(deg 9)(deg 9) q ≡ 2, 4 (mod 7)
(deg 18) q ≡ 3, 5 (mod 7)

F2L2

(1 − qT )6(deg 2)(deg 1)2(deg 2)2(deg 2)2 q ≡ 1 (mod 8)
(1 − qT )2(1 + qT )4(deg 2)(deg 1)2(deg 4)2 q ≡ 5 (mod 5)

(1 − qT )2(1 + qT )4(deg 2)(deg 2)(deg 4)(deg 4) q ≡ 3, 7 (mod 8)

L2L2
(1 − qT )8(deg 2)(deg 4)2 q ≡ 1 (mod 4)
(1 − q2T 2)4(deg 2)(deg 8) q ≡ 3 (mod 4)

L4

(1 − qT )2(deg 4)4 q ≡ 1 (mod 5)
(1 − qT )2(deg 8)2 q ≡ 4 (mod 5)
(1 − qT )2(deg 16) q ≡ 2, 3 (mod 5)

(4.8.2)

The factorization in Corollary 4.8.1 is to be read as follows: For the family L2L2 when
q ≡ 1 (mod 4), we have Q�,ψ ,q(T ) = (1 − qT )8Q1(T )Q2(T )2 where degQ1(T ) = 2 and
degQ2(T ) = 4, but we do not claim that Q1, Q2 are irreducible. A complete factorization
into irreducibles depends onψ ∈ F×

q and can instead be computed from the explicit Artin
L-series.

Proof For each case, we need to identify the field of definition for the terms associated
to hypergeometric functions other than H ( 14 ,

1
2 ,

3
4 ; 0, 0, 0 | t) and check the degrees of the

resulting zeta function factors using Lemma 4.1.9 and Conjecture 4.7.1.

F4. The case where q ≡ 3 (mod 4) is straightforward from the statement of Proposi-
tion 4.2.1. In the case where q ≡ 1 (mod 4), we see in the proof that the L-series

LS
(
Hq
( 1
2 ; 0 | t) ,Q

(√−1
)
, s − 1,φ√−1

)

factors into a square (see Eqs. (4.2.5) and (4.2.6)).
F1L3. In the case where q ≡ 1, 2, 4 (mod 7), we see in Eq. (4.3.3) that the L-series asso-

ciated to H ( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) factorizes into two terms with multiplicity 3/f

where f is the order of q in (Z/7Z)×. The analogous argument holds for when
q ≡ 3, 5, 6 (mod 7) using Eq. (4.3.5) to see that the L-series factors into one term
with multiplicity 6/f .

F2L2. The explicit factors followdirectly fromEq. (4.4.3). Thenext two factors come from
the L-series LS(H ( 14 ,

3
4 ; 0,

1
2 | t), s− 1,φ−1) and LS(H ( 12 ; 0 | t),Q(

√−1), s− 1,φ√−1)
were dealt with in the F4 case. The zeta function factorization implied by the
L-series LS(H ( 18 ,

5
8 ; 0,

1
4 | t−1),Q(ζ8), s − 1) follows by using Eqs. (4.4.4), (4.4.6),

and (4.4.7).
L2L2. The explicit factors follow directly from Eq. (4.5.4). The next factor has been dealt

with above. The final factor is implied by Eq. (4.5.5).
L4. The term ζ (s−1)2 gives the (1−qT )2 factor. The last factor is direct fromEq. (4.6.2).
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Example 4.8.3 Because the reciprocal roots ofQ�,ψ ,q(T ) are of the form q times a root of 1,
the factors ofQ�,ψ ,q(T ) overZ are of the form�(qT ), where� is a cyclotomic polynomial.
We now give the explicit zeta functions for the case where q = 281 and ψ = 18 in the
table below. We use a SageMath interface to C code written by Costa, which is described
in a paper of Costa–Tschinkel [14]. Note that the factorizations in Corollary 4.8.1 are
sharp for the families F1L3 and L4.

Family Q�,ψ ,q(T )

F4 (1 − qT )12(1 + qT )6

F2L2 (1 − qT )8(1 + qT )2(1 + q2T 2)4

F1L3 (1 + qT + q2T 2 + q3T 3 + q4T 4 + q5T 5 + q6T 6)3

L2L2 (1 − qT )12(1 + qT )6

L4 (1 − qT )2(1 + qT + q2T 2 + q3T 3 + q4T 4)4

(4.8.4)
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Appendix A. Remaining Picard–Fuchs equations
In this appendix, we provide the details in the computation of the remaining three pencils
F2L2, L2L2, and L4. We follow the same strategy as in Sects. 2.5–2.6.

A.1. The F2L2 pencil

Take the pencil

Fψ := x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3

that defines the pencil of projective hypersurfaces Xψ = Z(Fψ ) ⊂ P3. There is a Z/8Z

scaling symmetry of this family generated by the element

g(x0 : x1 : x2 : x3) = (ξ2x0 : x1 : ξx2 : ξ5x3)

where ξ is a primitive eighth root of unity. There are eight charactersχk : H → C×, where
χk (g) = ξ k . We can again decompose V into subspaces Wχk and write their monomial
bases. Note that the monomial bases for Wχ1 ,Wχ3 ,Wχ5 , and Wχ7 are the same up to
transpositions of x0 and x1 or x2 and x3 which leave the polynomial invariant; thus, they
have the same Picard–Fuchs equations. The monomial bases forWχ2 andWχ6 are related
by transposing x0 and x1, so they also have the same Picard–Fuchs equations. So, we are
left with four types of monomial bases:
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(i) Wχ0 has monomial basis {x0x1x2x3};
(ii) Wχ1 has monomial basis {x22x0x3, x20x1x3};
(iii) Wχ2 has monomial basis {x20x2x3, x21x22 , x21x23}; and
(iv) Wχ4 has monomial basis {x20x21 , x22x23 , x22x0x1, x23x0x1}.
Using (2.3.3), we compute the following period relations:

v + (4, 0, 0, 0) = 1 + v0
4(ω + 1)

v + ψ(v + (1, 1, 1, 1)),

v + (0, 4, 0, 0) = 1 + v1
4(ω + 1)

v + ψ(v + (1, 1, 1, 1)),

v + (0, 0, 3, 1) = 3(v2 + 1) − (v3 + 1)
8(ω + 1)

v + ψ(v + (1, 1, 1, 1)),

v + (0, 0, 1, 3) = −(v2 + 1) + 3(v3 + 1)
8(ω + 1)

v + ψ(v + (1, 1, 1, 1)).

(A.1.1)

We can now use the diagram method to prove the following proposition.

Proposition A.1.2 For the F2L2 family, the primitive cohomology group H2
prim(XF2L2 ,ψ ,C)

has 15 periods whose Picard–Fuchs equations are hypergeometric differential equations as
follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

2 periods are annihilated by D
( 1
4 ,

3
4 ; 1,

1
2 |ψ−4) ,

2 periods are annihilated by D
( 1
2 ; 1 |ψ4) ,

4 periods are annihilated by D
(
1
8 ,

5
8 ; 1,

1
4 |ψ4

)
, and

4 periods are annihilated by D
(−3

8 , 18 ; 0,
1
4 |ψ4) .

We consider each of these in turn.

Lemma A.1.3 The Picard–Fuchs equation associated to the periods ψ(2, 2, 0, 0) and
ψ(0, 0, 2, 2) is the hypergeometric differential equation D( 14 ,

3
4 ; 1,

1
2 |ψ−4).

Proof For the periods (2, 2, 0, 0) and (0, 0, 2, 2), corresponding to the quartic monomials
x20x

2
1 and x22x

2
3, we use the diagram

(2, 2, 0, 0) (3, 3, 1, 1)

(1, 1, 2, 0) (2, 2, 3, 1)

(0, 0, 2, 2) (1, 1, 3, 3)

(3,−1, 1, 1) (4, 0, 2, 2)

(3, 3, 1, 1)
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and get the relations

η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2),

η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0).
(A.1.4)

For the periods (2, 2, 0, 0) and (0, 0, 2, 2), corresponding to the quartic monomials x20x
2
1

and x22x
2
3, we get the same Picard–Fuchs equation

[
(η − 2)η − ψ4(η + 3)(η + 1)

]
. (A.1.5)

By multiplying by ψ and substituting t = ψ−4 and θ = t
d
dt

= −η/4, we get

ψ
[
(η − 2)η − ψ4(η + 3)(η + 1)

]
(2, 2, 0, 0) = 0,

[
(η − 3)(η − 1) − ψ4(η + 2)η

]
ψ(2, 2, 0, 0) = 0,

[(
θ + 3

4
) (

θ + 1
4
)− t−1 (θ − 1

2
)
θ
]
ψ(2, 2, 0, 0) = 0,

[(
θ − 1

2
)
θ − t

(
θ + 3

4
) (

θ + 1
4
)]

ψ(2, 2, 0, 0) = 0,

which is the hypergeometric differential equation D( 14 ,
3
4 ; 1,

1
2 |ψ−4).

Lemma A.1.6 The Picard–Fuchs equation associated to the periods (2, 0, 1, 1) is the hyper-
geometric differential equation D( 12 ; 1 |ψ4).

Proof For the period (2, 0, 1, 1), corresponding to the quartic monomial x20x2x3, we use
the diagram

(2, 0, 1, 1) (3, 1, 2, 2)

(1,−1, 3, 1) (2, 0, 4, 2)

(0, 2, 2, 0) (1, 3, 3, 1)

(−1, 1, 2, 2) (0, 2, 3, 3)

(3, 1, 2, 2)

One can see that (2, 0, 4, 2) = 1
8 (2 + η)(2, 0, 1, 1), which one can then use to show that

η(2, 0, 1, 1) = 8ψ2(0, 2, 3, 3)

= 8ψ3(1, 3, 3, 1)

= 8ψ4(2, 0, 4, 2)

= ψ4(η + 2)(2, 0, 1, 1).

(A.1.7)

Thus, the period (2, 0, 1, 1) corresponding to the quartic monomial x20x2x3 satisfies the
differential equation:

[
η − ψ4(η + 2)

]
(2, 0, 1, 1) = 0.
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By substituting u = ψ4 and σ = u
d
du

= 4η, we get

[
η − ψ4(η + 2)

]
(2, 0, 1, 1) = 0,

[
σ − u(σ + 1

2 )
]
(2, 0, 1, 1) = 0.

Lemma A.1.8 The Picard–Fuchs equations associated to the periods (2, 1, 0, 1),ψ3

(1, 0, 2, 1)are thehypergeometric differential equationsD( 18 ,
5
8 ; 1,

1
4 |ψ4), D( 18 ,

−3
8 ; 0, 14 |ψ4),

respectively.

Proof For the period (2, 1, 0, 1), corresponding to the quartic monomial x20x1x3, we use
the diagram

(0,−1, 2, 3)

D2

(1, 0, 3, 4)

(−1, 2, 1, 2)

D1

(0, 3, 2, 3)

(2, 1, 0, 1)

D3

(3, 2, 1, 2)

(1, 0, 2, 1)

D2

(2, 1, 3, 2)

(1, 0, 3, 4)

Note that:

η(2, 1, 0, 1) = 8ψ3(1, 0, 3, 4),

(1, 0, 3, 4) = 1
8
(
η + 3

2
)
(1, 0, 2, 1),

η(1, 0, 2, 1) = ψ
(
η + 1

2
)
(2, 1, 0, 1).

(A.1.9)

We can compute the two periods that satisfy each of the following Picard–Fuchs equa-
tions for the four sets of pairs:

[
(η − 3)η − ψ4

(
η + 5

2

) (
η + 1

2
)]

(2, 1, 0, 1) = 0,
[
(η − 1)η − ψ4 (η + 7

2
) (

η + 3
2
)]
(1, 0, 2, 1) = 0.

(A.1.10)

With the first Picard–Fuchs equation, we can substitute u = ψ4, σ = u d
du = 4η, and

yield the equation:
[
(η − 3)η − ψ4

(
η + 5

2

) (
η + 1

2
)]

(2, 1, 0, 1) = 0,
[(

σ − 3
4
)
σ − u

(
σ + 5

8

) (
σ + 1

8
)]

(2, 1, 0, 1) = 0.

which is the hypergeometric differential equationD( 18 ,
5
8 ; 1,

1
4 |u). For the second Picard–

Fuchs equation, we can multiply by ψ3 and then substitute to find

[
(η − 1) η − ψ4 (η + 7

2
) (

η + 3
2
)]
(1, 0, 2, 1) = 0,
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ψ3 [(η − 1) η − ψ4 (η + 7
2
) (

η + 3
2
)]
(1, 0, 2, 1) = 0,

[
(η − 4) (η − 3) − ψ4 (η + 1

2
) (

η − 3
2
)]

ψ3 (1, 0, 2, 1) = 0,
[
(σ − 1)

(
σ − 3

4
)− u

(
σ + 1

8
) (

σ − 3
8
)]

ψ3 (1, 0, 2, 1) = 0,

which is the hypergeometric function D( 18 ,
−3
8 ; 0, 14 |ψ4).

Proof of Proposition 2.7.1 Theperiods annihilatedbyD( 14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ−4) are those cor-

responding to the holomorphic form. The 2 periods are annihilated by D( 14 ,
3
4 ; 1,

1
2 |ψ−4)

and are provided by Lemma A.1.3. The period annihilated by D( 12 ; 1 |ψ4) corresponds
to a monomial in the basis for Wχ2 , which we compute in Lemma A.1.6. Since Wχ2 and
Wχ6 are related by a transposition of x0 and x1, there are two periods annihilated by
the hypergeometric differential equation computed here. The 4 periods annihilated by
D( 18 ,

5
8 ; 1,

1
4 |ψ4) and the 4 periods annihilated by D(−3

8 , 18 ; 0,
1
4 |ψ4) correspond to the

monomial bases for Wχ1 ,Wχ3 ,Wχ5 , and Wχ7 , which are the same up to transpositions.
We compute in LemmaA.1.8 the Picard–Fuchs equations forWχ1 which then give us that
each of those hypergeometric differential equations annihilates 4 periods.

A.2. The L2L2 pencil

Now, consider

Fψ := x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3

that defines the pencil of projective hypersurfaces Xψ = Z(Fψ ) ⊂ P3. There is a Z/4Z

symmetry with generator

g(x0 : x1 : x2 : x3) = (ξx0 : ξ5x1 : ξ3x2 : ξ7x3),

where ξ is a primitive eighth root of unity. There are four characters χa : H → Gm, where
χa(g1) = √−1a. We can again decompose V into subspaces Wχa . Out of the eight, the
subspacesWχ0 ,Wχ1 ,Wχ2 , andWχ3 are empty. The monomial bases forWχ1 andWχ3 are
related by a transposition of the variables x0 and x1, so their Picard–Fuchs equations are
the same. We have three types of monomial bases:

(i) Wχ0 has monomial basis {x0x1x2x3, x20x22 , x20x23 , x21x22 , x21x23};
(ii) Wχ1 has monomial basis {x20x1x2, x21x0x3, x22x1x3, x23x0x2}; and
(iii) Wχ2 has monomial basis {x20x21 , x22x23 , x20x2x3, x21x2x3, x22x0x1, x23x0x1}.
Using (2.3.3), we compute the following period relations:

v + (3, 1, 0, 0) = 3(v0 + 1) − (v1 + 1)
8(ω + 1)

v + ψ(v + (1, 1, 1, 1))

v + (1, 3, 0, 0) = −(v0 + 1) + 3(v1 + 1)
8(ω + 1)

v + ψ(v + (1, 1, 1, 1))
(A.2.1)

and the two symmetric relations replacing 0, 1 with 2, 3.

Proposition A.2.2 For the L2L2 family, the primitive cohomology group H2
prim(XL2L2 ,ψ ,C)

has 13 periods whose Picard–Fuchs equations are hypergeometric differential equations as



C. F. Doran et al. Res Math Sci             (2020) 7:7 Page 61 of 81     7 

follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

8 periods are annihilated by D
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4

)
, and

2 periods are annihilated by D
( 1
4 ,

3
4 ; 1,

1
2 |ψ4) .

To prove Proposition A.2.2, we use the diagram method above in a few cases and then
use symmetry. We first do two calculations.

Lemma A.2.3 The Picard–Fuchs equation associated to the periods (2, 1, 1, 0), (1, 0, 1, 2),
(1, 2, 0, 1), and (0, 1, 2, 1) is the hypergeometric differential equation D( 18 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4).

Proof To find the Picard–Fuchs equations corresponding to all these cohomology pieces,
we use the diagram

(2, 1, 1, 0) (3, 2, 2, 1)

(1, 0, 1, 2) (2, 1, 2, 3)

(1, 2, 0, 1) (2, 3, 1, 2)

(0, 1, 2, 1) (1, 2, 3, 2)

(3, 2, 2, 1)

We obtain the following relations:

η(1, 0, 1, 2) = ψ
(
η + 1

2
)
(2, 1, 1, 0),

η(1, 2, 0, 1) = ψ
(
η + 1

2
)
(1, 0, 1, 2),

η(0, 1, 2, 1) = ψ
(
η + 1

2
)
(1, 2, 0, 1),

η(2, 1, 1, 0) = ψ
(
η + 1

2
)
(0, 1, 2, 1).

(A.2.4)

Using these relations, we can get the Picard–Fuchs equation:

[
(η − 3)(η − 2)(η − 1)η − ψ4 (η + 7

2
) (

η + 5
2

) (
η + 3

2
) (

η + 1
2
)]

(1, 0, 1, 2) = 0.

(A.2.5)

By substituting u = ψ4 and σ = u
d
du

= 1
4η, we obtain:

[
(4σ − 3)(4σ − 2)(4σ − 1)4σ − u

(
4σ + 7

2
) (

η + 5
2

) (
4σ + 3

2
) (
4σ + 1

2
)]

· (1, 0, 1, 2) = 0,
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[
(σ − 3

4 )(σ − 1
2 )(σ − 1

4 )σ − u
(
σ + 7

8
) (

σ + 5
8

) (
σ + 3

8
) (

σ + 1
8
)]

· (1, 0, 1, 2) = 0,

which is the hypergeometric differential equation D( 18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4). The other

three Picard–Fuchs equations are the same due to the symmetry in (A.2.4).

Lemma A.2.6 The Picard–Fuchs equation associated to the periods (2, 2, 0, 0) and
(0, 0, 2, 2) is the hypergeometric differential equation D( 14 ,

3
4 ; 1,

1
2 |ψ4).

Proof We use the diagram

(2, 2, 0, 0) (3, 3, 1, 1)

(1, 1, 2, 0) (2, 2, 3, 1)

(0, 0, 2, 2) (1, 1, 3, 3)

(2, 0, 1, 1) (3, 1, 2, 2)

(3, 3, 1, 1)

We obtain the following relations:

η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0),

η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2),
(A.2.7)

giving the following Picard–Fuchs equations:

[
(η − 2)η − ψ4 (η + 3) (η + 1)

]
(2, 2, 0, 0) = 0,

[
(η − 2)η − ψ4 (η + 3) (η + 1)

]
(0, 0, 2, 2) = 0;

(A.2.8)

By substituting u = ψ4 and σ = u d
du = 1

4η, we obtain the hypergeometric form:

[(
σ − 1

2
)
σ − u

(
σ + 3

4
) (

σ + 1
4
)]
(2, 2, 0, 0) = 0,

[(
σ − 1

2
)
σ − u

(
σ + 3

4
) (

σ + 1
4
)]
(0, 0, 2, 2) = 0,

which is the hypergeometric differential equation D( 14 ,
3
4 ; 1,

1
2 |ψ4).

Proof of Proposition A.2.2 The first three periods are the same for each family. Next, by
Lemma A.2.3, all the monomial basis elements in Wχ1 are annihilated by the hypergeo-
metric differential equationD( 18 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4). SinceWχ1 andWχ3 are related by

a transposition, we get 8 periods annihilated by it. The Picard–Fuchs equations for the
last two periods are given by Lemma A.2.6.
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A.3. The L4 pencil

Finally, we consider

Fψ := x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3,

that defines the pencil of projective hypersurfacesXψ = Z(Fψ ) ⊂ P3. There is aH = Z/5Z

scaling symmetry on Xψ generated by the element

g(x0 : x1 : x2 : x3) = (ξx0 : ξ2x2 : ξ4x2 : ξ3x3)

where ξ is a fifth root of unity. There are five charactersχk : H → C× given byχk (g) = ξ k .
We decompose V into five subspaces Wχk . The monomial bases for Wχ1 ,Wχ2 ,Wχ3 , and
Wχ4 are related by a rotation of the variables x1, x2, x3, and x4, so their corresponding
Picard–Fuchs equations are the same.We are then left with two types of monomial bases:

(i) Wχ0 has monomial basis {x0x1x2x3, x20x22 , x21x23}; and
(ii) Wχ1 has monomial basis {x20x21 , x21x2x3, x23x0x2, x22x0x1}.
For this family, we can compute the period relations:

v + (3, 1, 0, 0) = 27(1 + v0) − (1 + v1) + 3(1 + v2) − 9(1 + v3)
80(ω + 1)

v + ψ(v + (1, 1, 1, 1))

(A.3.1)

and its 4 cyclic permutations.

Proposition A.3.2 For the family L4 , the primitive cohomology group H2
prim(XL4 ,ψ ,C) has

19 periods whose Picard–Fuchs equations are hypergeometric differential equations as
follows:

3 periods are annihilated by D
( 1
4 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ−4) ,

4 periods are annihilated by D
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 1,

1
4 ,

1
2 ,

3
4 |ψ4) ,

4 periods are annihilated by D
(−1

5 , 15 ,
2
5 ,

3
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) ,

4 periods are annihilated by D
(−2

5 , −1
5 , 15 ,

2
5 ;

−1
4 , 0, 14 ,

1
2 |ψ4) , and

4 periods are annihilated by D
(−3

5 , −2
5 , −1

5 , 15 ;
−1
2 , −1

4 , 0, 14 |ψ4) .
Proof The period associated to the holomorphic form is found by the same strategy as
before.
Lastly, we use (A.3.1) to construct the diagram:

(2, 2, 0, 0) (3, 3, 1, 1)

(1, 1, 2, 0) (2, 2, 3, 1)

(1, 0, 1, 2) (2, 1, 2, 3)

(0, 2, 1, 1) (1, 3, 2, 2)

(3, 3, 1, 1)
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and consequently obtain the following relations:

η(1, 1, 2, 0) = ψ
(
η + 2

5
)
(2, 2, 0, 0),

η(1, 0, 1, 2) = ψ
(
η + 1

5
)
(1, 1, 2, 0),

η(0, 2, 1, 1) = ψ
(
η + 4

5
)
(1, 0, 1, 2),

η(2, 2, 0, 0) = ψ
(
η + 3

5
)
(0, 2, 1, 1).

(A.3.3)

We then cyclically use these relations tofind a recursionwhich yields the followingPicard–
Fuchs equations:

[(
η + 16

5

) (
η + 12

5
) (

η + 8
5
) (

η + 4
5
)− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(1, 0, 1, 2) = 0,

[(
η + 17

5
) (

η + 13
5
) (

η + 9
5
) (

η + 1
5
)− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(1, 1, 2, 0) = 0,

[(
η + 18

5
) (

η + 14
5
) (

η + 6
5

) (
η + 2

5
)− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(2, 2, 0, 0) = 0,

[(
η + 19

5
) (

η + 11
5
) (

η + 7
5
) (

η + 3
5
)− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(0, 2, 1, 1) = 0.

(A.3.4)

By multiplying these lines by 1, ψ , ψ2, and ψ3, respectively, substituting u = ψ4,

σ = u
d
du

, and then multiplying by −u, we obtain the following equations:

[(
σ − 3

4
) (

σ − 1
2
) (

σ − 1
4
)
σ − u

(
σ + 4

5
) (

σ + 3
5
) (

σ + 2
5
) (

σ + 1
5
)]

· (1, 0, 1, 2) = 0
[
(σ − 1)

(
σ − 3

4
) (

σ − 1
2
) (

σ − 1
4
)− u

(
σ + 3

5
) (

σ + 2
5
) (

σ + 1
5
) (

σ − 1
5
)]

ψ

· (1, 1, 2, 0) = 0[(
σ − 5

4

)
(σ − 1)

(
σ − 3

4
) (

σ − 1
2
)− u

(
σ + 2

5
) (

σ + 1
5
) (

σ − 1
5
) (

σ − 2
5
)]

ψ2

· (2, 2, 0, 0) = 0[(
σ − 3

2
) (

σ − 5
4

)
(σ − 1)

(
σ − 3

4
)− u

(
σ + 1

5
) (

σ − 1
5
) (

σ − 2
5
) (

σ − 3
5
)]

ψ3

· (0, 2, 1, 1) = 0.

These are the claimed hypergeometric differential equations.

Appendix B. Finite-field hypergeometric sums
In this Appendix, we write down the details of manipulations of hypergeometric sums.

B.1. Hybrid definition

In this section, we apply the argument of Beukers–Cohen–Mellit to show that the hybrid
definition of the finite-field hypergeometric sum reduces to the classical one. We retain
the notation from Sects. 3.1–3.2.

Lemma B.1.1 Suppose that q is good and splittable for α,β. If αiq×,βiq× ∈ Z for all
i = 1, . . . , d, then Definitions 3.1.6 and 3.2.7 agree.
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Proof Our proof follows Beukers–Cohen–Mellit [3, Theorem 1.3]. We consider

G(m + α′q×,−m − β′q×) =
∏

α′
i∈α′

g(m + α′
iq

×)
g(αiq×)

∏

β ′
i∈β′

g(−m − β ′
iq

×)
g(−βiq×)

.

Wemassage this expression, and for simplicity drop the subscripts 0. First,

D (x)
∏

αj∈α̂

(
x − e2π

√−1αj
)

=∏r
j=1 (xpj − 1) and

D (x)
∏

βj∈β̃

(
x − e2π

√−1βj
)

=∏s
j=1 (xqj − 1) .

Write D(x) =∏δ
j=1(x − e2π

√−1cj/q× ). Then

G(m + α′q×,−m − β′q×)

=
⎛
⎝

r∏
i=1

pi−1∏
j=0

g(m+jq×/pi)
g(jq×/pi)

⎞
⎠
⎛
⎝

s∏
i=1

qi−1∏
j=0

g(−m−jq×/qi)
g(−jq×/qi)

⎞
⎠

δ∏
j=1

g(cj)g(−cj)
g(m+cj)g(−m−cj)

.

(B.1.2)

Since pi divides q×, by the Hasse–Davenport relation (Lemma 3.1.3(c)) we have that

pi−1∏
j=0

g(m + jq×/pi)
g(jq×/pi)

= −g(pim)
ω(pi)pim

. (B.1.3)

Analogously, since qi divides q×, we use Hasse–Davenport to find that

qi−1∏
j=0

g(−m − jq×/qi)
g(−jq×/qi)

= −g(−qim)ω(qi)qim. (B.1.4)

Note that if cj �= 0, then g(cj)g(−cj) = (−1)cj q and 1 otherwise, hence

δ∏
i=1

g(cj)g(−cj) = (−1)
∑

cj qδ−s(0),

where s(0) is the multiplicity of 1 in D(x), or, equivalently, the number of times cj is 0.
Now, note the number of times thatm+cj = 0 is themultiplicity of the root e−2π

√−1m/q×

in D(x), which, equivalently, is the multiplicity of e2π
√−1m/q× in D(x) as D(x) is a product

of cyclotomic polynomials. This implies that
δ∏

j=1
g(m + cj)g(−m − cj) = (−1)m+cj qδ−λ(m).

We then have that

δ∏
j=1

g(cj)g(−cj)
g(m + cj)g(−m − cj)

= (−1)
∑

j cj qδ−s(0)

(−1)
∑

j(m+cj)qδ−s(m)
= (−1)−δmqs(m)−s(0). (B.1.5)
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Combining Eqs. (B.1.3), (B.1.4), and (B.1.5), we then have

G(m + α′q×,−m − β′q×)

=
( r∏
i=1

−g(pim)
ω(pi)pim

)( s∏
i=1

−g(−qim)ω(qi)qim
)(

(−1)−δmqs(m)−s(0)
)

= (−1)r+sqs(m)−s(0)g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm)

· ω((−1)δp−p1
1 · · · p−pr

r qq11 · · · qqss )m

= (−1)r+sqs(m)−s(0)g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm)ω((−1)δM)m.

By plugging this equation into Definition 3.1.6 for the appropriate factors, we obtain the
quantity given in Definition 3.2.7.

B.2. The pencil F2L2
Proposition B.2.1 The number of Fq-points on F2L2 can be written in terms of hypergeo-
metric functions, as follows:

(a) If q ≡ 3 (mod 4), then

XF2L2 ,ψ
(
Fq
) = q2 − q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(b) If q ≡ 5 (mod 8), then

XF2L2 ,ψ
(
Fq
) = q2 − q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)− 2qHq

( 1
2 ; 0 |ψ−4) .

(c) If q ≡ 1 (mod 8), then

XF2L2 ,ψ
(
Fq
) = q2 + 7q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4) .

Remark B.2.2 Notice that the hypergeometric functions appearing in the point count cor-
respond to the Picard–Fuchs equations in Proposition 2.7.1. We also see the appearance
of six additional trivial factors.

Step 1: Computing and clustering the characters

To use Theorem 3.3.3 we compute the subset S ⊂ (Z/q×Z)r given by the constraints in
(3.3.1).

(a) If q ≡ 3 (mod 4), then S can be clustered in the following way:

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
(b) If q ≡ 5 (mod 8), then S contains the two sets above and:

(i) the set S5 = {k(1, 1, 1, 1,−4) + q×
4 (0, 2, 1, 1, 0) : k ∈ Z/q×Z} and
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(ii) the set S6 = {k(1, 1, 1, 1,−4) + 3 q×
4 (0, 2, 1, 1, 0) : k ∈ Z/q×Z}.

(c) If q ≡ 1 (mod 8), then S contains the four sets above and

(i) two sets of the form S10 = {k(1, 1, 1, 1,−4) + q×
8 (0, 2, 1, 5, 0) : k ∈ Z/q×Z} and

(ii) two sets of the form S11 = {k(1, 1, 1, 1,−4) + q×
8 (0, 6, 7, 3, 0) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates

Lemma B.2.3 Suppose ψ ∈ F×
q .

(a) If q ≡ 3 (mod 4), then

#UF2L2 ,ψ
(
Fq
) = q2 − 3q + 1+Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(B.2.4)

(b) If q ≡ 5 (mod 8), then

#UF2L2 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

− 2qHq
( 1
2 ; 0 |ψ−4)− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ .

(B.2.5)

(c) If q ≡ 1 (mod 8), then

#UF2L2 ,ψ
(
Fq
) = q2 − 3q + 7 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4)

− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠− 4

q g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)

− 4
q g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)
.

(B.2.6)

Proof If q ≡ 3 (mod 4), then by Lemmas 3.4.4 and 3.4.7

#UF2L2 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs +
∑
s∈S4

ω (a)−s cs

= (q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4))+

− 2 − qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

= q2 − 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(B.2.7)

If q ≡ 5 (mod 8), then q ≡ 1 (mod 4) but q �≡ 1 (mod 8), so by Lem-
mas 3.4.4, 3.4.7, 3.4.12, and 3.4.21
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#UF2L2 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs +
∑
s∈S4

ω (a)−s cs +
∑
s∈S5

ω (a)−s cs +
∑
s∈S6

ω (a)−s cs

= (q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4))

+ (2 + qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4))

+ (−1)q
×/4 qHq

( 1
2 ; 0 |ψ−4)+ (−1)q

×/4 −
⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

+ (−1)q
×/4 qHq

( 1
2 ; 0 |ψ−4)+ (−1)q

×/4 −
⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4))

− 2qHq
( 1
2 ; 0 |ψ−4)− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ .

(B.2.8)

If q ≡ 1 (mod 8), then by Lemmas 3.4.4, 3.4.7, 3.4.12, 3.4.21, B.2.12, and B.2.17, we
have:

#UF2L2 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs +
∑
s∈S4

ω (a)−s cs +
∑
s∈S5

ω (a)−s cs +
∑
s∈S6

ω (a)−s cs

+
∑
s∈S10

ω (a)−s cs +
∑
s∈S11

ω (a)−s cs

= (q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4))

+ (2 + qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4))

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2 − 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

+ 2ω (2)q
×/4 qHq

(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)
+ 2ω (2)q

×/4 qHq
( 3
8 ,

7
8 ; 0,

3
4 |ψ4)

− 4
q g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)
− 4

q g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)

= q2 − 3q + 7 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4)− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

− 4
q g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)
− 4

q g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)

(B.2.9)

as claimed.

Before proving the lemmas that associate the quantities
∑

s∈S10 ω(a)−scs and
∑

s∈S11
ω(a)−scs to hypergeometric sums, we need the following lemma.
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Lemma B.2.10 Suppose q ≡ 1 (mod 8) and q = pr for some natural number r and prime
p. Then

g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

g
(
q×
2

) = ω (2)q
×/4 q.

Proof Since q ≡ 1 (mod 8), we can use Hasse–Davenport with N = 2 and m = q×
8 to

get that

g
(
q×
4

)
= ω (2)q

×/4
g
(
q×
8

)
g
(
5q×
8

)

g
(
q×
2

) . (B.2.11)

By multiplying both sides by g( 3q
×
4 ), and dividing by ω(2)q×/4, we have

ω (2)−q×/4 g
(
q×
4

)
g
(
3q×
4

)
=

g
(
q×
8

)
g
(
5q×
8

)
g
(
3q×
4

)

g
(
q×
2

) .

We obtain the identity above after noting that g( q
×
4 )g( 3q

×
4 ) = (−1)q×/4q = q, since q ≡ 1

(mod 8) and that ω(2)q×/4 = ±1 when q ≡ 1 (mod 8); hence, ω(2)q×/4 = ω(2)−q×/4.

Lemma B.2.12 Suppose q ≡ 1 (mod 8). Then for

S10 =
{
k(1, 1, 1, 1,−4) + q×

8 (0, 2, 1, 5, 0) : k ∈ Z/q×Z

}

we have
∑
s∈S10

ω (a)−s cs = ω (2)q
×/4 qHq

(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)
− 1

q
g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)

−1
q
g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)
.

Proof First, we take the definition of the sum and take out all terms that are of the form
�
q×
4 to obtain the equality:

∑
s∈S10

ω (a)−s cs = 1
qq× g

(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)
− 1

qq× g
(
q×
4

)
g
(
q×
2

)
g
(
3q×
8

)
g
(
7q×
8

)

− 1
qq× g

(
q×
2

)
g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 1
qq× g

(
3q×
4

)
g
(
7q×
8

)
g
(
q×
8

)

+ 1
qq×

q−2∑
k=0

4k �≡0 (mod q×)

ω (4ψ)4k g (k)

· g
(
k + q×

4

)
g
(
k + q×

8

)
g
(
k + 5q×

8

)
g (−4k) .

(B.2.13)

Next, we use the Hasse–Davenport relationship to expand g(−4k) and then use relation
from3.1.3(b) to cancel out the g(k+ q×

4 ) factor in the summation. Through this, we obtain:
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∑
s∈S10

ω (a)−s cs = 1
qq× g

(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)
− 1

qq× g
(
q×
4

)
g
(
q×
2

)
g
(
3q×
8

)
g
(
7q×
8

)

− 1
qq× g

(
q×
2

)
g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 1
qq× g

(
3q×
4

)
g
(
7q×
8

)
g
(
q×
8

)

+ 1
q×

q−2∑
k=0

4k �≡0 (mod q×)

ω (ψ)4k

·
g
(
k + q×

8

)
g
(
k + 5q×

8

)
g
(
−k + q×

4

)
g
(
−k + q×

2

)

g
(
q×
2

) .

(B.2.14)

Here, we reindex the summation bym = k + q×
2 to obtain:

∑
s∈S10

ω (a)−s cs = 1
qq× g

(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)
− 1

qq× g
(
q×
4

)
g
(
q×
2

)
g
(
3q×
8

)
g
(
7q×
8

)

− 1
qq× g

(
q×
2

)
g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 1
qq× g

(
3q×
4

)
g
(
7q×
8

)
g
(
q×
8

)

+ 1
q − 1

q−2∑
m=0

4m�≡0 (mod q×)

ω (ψ)4m

·
g
(
m + q×

8

)
g
(
m + 5q×

8

)
g
(
−m − q×

4

)
g (−m)

g
(
q×
2

) .

(B.2.15)

We now multiply the final form by the expression

g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

) = 1.

We put the denominator of this factor into the summation to relate the summation to a
hypergeometric function but factor out the numerator along with a factor of g( q

×
2 ). We

then apply Lemma B.2.10 to this factor ahead of the summation. We thus obtain:

∑
s∈S10

ω (a)−s cs = 1
qq× g

(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)
− 1

qq× g
(
q×
4

)
g
(
q×
2

)
g
(
3q×
8

)
g
(
7q×
8

)

− 1
qq× g

(
q×
2

)
g
(
3q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 1
qq× g

(
3q×
4

)
g
(
7q×
8

)
g
(
q×
8

)
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− ω (2)q
×/4 q

q×
q−2∑
m=0

4m�≡0 (mod q×)

ω (ψ)4m

·
g
(
m + q×

8

)
g
(
m + 5q×

8

)
g
(
−m − q×

4

)
g (−m)

g
(
q×
8

)
g
(
5q×
8

)
g
(
− q×

4

)
g (0)

. (B.2.16)

By comparing terms of the summations above and the hypergeometric function itself, we
obtain the desired result.

Lemma B.2.17 Suppose q ≡ 1 (mod 8). Then for

S11 =
{
k(1, 1, 1, 1,−4) + q×

8 (0, 6, 7, 3, 0) : k ∈ Z/q×Z

}

we have
∑
s∈S11

ω (a)−s cs = ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4)

−1
q
g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)
− 1

q
g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)
.

Proof The proof is analogous to the proof in Lemma B.2.12 except we substitute m =
k + q×

2 . Alternatively, apply complex conjugation to the conclusion of Lemma B.2.12,
negating indices as in the proof of Lemma 3.5.6.

Step 3: Count points when at least one coordinate is zero

Lemma B.2.18 The following statements hold.

(a) If q ≡ 3 (mod 4), then

#XF2L2 ,ψ (Fq) − #UF2L2 ,ψ (Fq) = 2q.

(b) If q ≡ 5 (mod 8), then

#XF2L2 ,ψ
(
Fq
)− #UF2L2,ψ

(
Fq
) = 2q − 2 + 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ .

(c) If q ≡ 1 (mod 8), then

#XF2L2 ,ψ
(
Fq
)− #UF2L2,ψ

(
Fq
) = 10q − 6 + 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

+ 4
q g
(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 4
q g
(
3q×
4

)
g
(
3q×
8

)
g
(
7q×
8

)
.

Proof We do this case by case. If x1 is the only variable equaling zero, then wemust count
the number of solutions in the open torus for the hypersurface Z(x4 + y3z + z3y) ⊂ P2.
We can see by using Theorem 3.3.3 that this depends on q. Here, in case (a) we get
q − 1 points, in case (b) we get q − 3 + (g( q

×
4 )2 + g( 3q

×
4 )2)g( q

×
2 )−1, and in case (c) we
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get q − 3+ (g( q
×
4 )2 + g( 3q

×
4 )2)g( q

×
2 )−1 + 2q−1(g( q

×
4 )g( q

×
8 )g( 5q

×
8 )+ g( 3q

×
4 )g( 3q

×
8 )g( 7q

×
8 )).

There are two such cases, when either x1 or x2 is the only variable equaling 0.
Next is when both x1 and x2 are zero and the other two variables are nonzero. Here, the

number of solutions is 1 + (−1)q×/2.
Next is when x3 is zero but the rest are nonzero. Here, this is (q−1) times the number of

solutions of Z(x4 + y4) in the open torus of P1. We then get that the number of solutions
is 0 if q �≡ 1 (mod 8) and 4 if q ≡ 1 (mod 8), hence 4q − 4 points. There are two such
cases, when x3 or x4 are uniquely zero.
The next case is when x3 and x4 are both zero. Then the number of nonzero solutions

is exactly the number of solutions of Z(x4 + y4) in the open torus of P1, i.e., 0 if q �≡ 1
(mod 8) and 4 if q ≡ 1 (mod 8).
There are no rational points where x1 and x3 are both zero and x2 nonzero and the same

when you swap x1 with x2 or x3 with x4. Finally, there are twomore solutions: (0 : 0 : 1 : 0)
and (0 : 0 : 0 : 1). We now count.

(a) If q �≡ 1 (mod 4) and q is odd, then

#XF2L2 ,ψ (Fq) − #UF2L2 ,ψ (Fq) = 2(q − 1) + 0 + 0 + 0 + 2 = 2q.

(b) If q ≡ 5 (mod 8), then

#XF2L2 ,ψ
(
Fq
)− #UF2L2 ,ψ

(
Fq
) = 2

⎛
⎜⎝q − 3 +

g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

+ 2 + 0 + 0 + 2

= 2q − 2 + 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠ .

(c) If q ≡ 1 (mod 8), then

#XF2L2 ,ψ
(
Fq
)− #UF2L2 ,ψ

(
Fq
)

= 2

⎛
⎜⎝q − 3 +

g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) + 2
q
g
(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+2
q
g
(
3q×
4

)
g
(
3q×
8

)
g
(
7q×
8

))
+ 2 + 2 (4 (q − 1)) + 4 + 2

= 10q − 6 + 2
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

) + 4
q g
(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 4
q g
(
3q×
4

)
g
(
3q×
8

)
g
(
7q×
8

)
.

Step 4: Combine Steps 2 and 3 to reach the conclusion

Proof of Proposition 3.6.1 We now combine Lemmas B.2.3 and B.2.18 as follows. For (a),
for q ≡ 3 (mod 4),
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#XF2L2 ,ψ
(
Fq
) = q2−3q+1+Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)+2q

= q2 − q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

For (b), for q ≡ 5 (mod 8),

#XF2L2 ,ψ
(
Fq
) = q2 − 3q + 3 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

− 2qHq
( 1
2 ; 0 |ψ−4)− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

+ 2q − 2 + 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

= q2 − q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)− 2qHq

( 1
2 ; 0 |ψ−4)

Finally, for (c) with q ≡ 1 (mod 8),

#XF2L2 ,ψ
(
Fq
) = q2 − 3q + 5 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4)

− 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠

− 4
q g
(
q×
8

)
g
(
5q×
8

)
g
(
q×
4

)
− 4

q g
(
3q×
8

)
g
(
7q×
8

)
g
(
3q×
4

)

+ 10q − 6 + 2

⎛
⎜⎝
g
(
q×
4

)2 + g
(
3q×
4

)2

g
(
q×
2

)

⎞
⎟⎠+ 4

q g
(
q×
4

)
g
(
q×
8

)
g
(
5q×
8

)

+ 4
q g
(
3q×
4

)
g
(
3q×
8

)
g
(
7q×
8

)

= q2 + 7q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2qHq
( 1
2 ; 0 |ψ−4)+ 2ω (2)q

×/4 qHq
(
1
8 ,

5
8 ; 0,

1
4 |ψ4

)

+ 2ω (2)q
×/4 qHq

( 3
8 ,

7
8 ; 0,

3
4 |ψ4) .

B.3. The pencil L2L2
Proposition B.3.1 The number of Fq-points on L2L2 can be written in terms of hypergeo-
metric functions, as follows:

(a) If q ≡ 3 (mod 4), then

#XL2L2 ,ψ
(
Fq
) = q2 + q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(B.3.2)
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(b) If q ≡ 1 (mod 4), then

#XL2L2 ,ψ
(
Fq
) = q2 + 9q + 1 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
.

(B.3.3)

Remark B.3.4 Again, notice that the hypergeometric functions appearing in the point
count correspond to exactly one of the Picard–Fuchs equations in Proposition A.2.2. We
also see the appearance of eight additional trivial factors.

Step 1: Computing and clustering the characters

As with all the previous families, we first compute the set S of solutions to the system of
congruences given by Theorem 3.3.3:

(a) If q �≡ 1 (mod 4), and q is odd, then S consists of

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
(b) If q ≡ 1 (mod 4), then

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}, and
(iii) two sets of the form S12 = {k(1, 1, 1, 1,−4) + q×

4 (0, 2, 3, 1, 2) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates

Lemma B.3.5 Suppose ψ ∈ F×
q . For q, we have:

(a) If q ≡ 3 (mod 4), then

#UL2L2 ,ψ
(
Fq
) = q2 − 3q + 1+Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(B.3.6)

(b) If q ≡ 1 (mod 4), then

#UL2L2 ,ψ
(
Fq
) = q2 − 3q + 5 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
.

(B.3.7)

Proof We do this by cases. For (a), where q ≡ 3 (mod 4), then by using Theorem 3.3.3
with Lemmas 3.4.4 and 3.4.7 we have that

#UL2L2 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs +
∑
s∈S4

ω (a)−s cs

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− 2 − qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

= q2 − 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) .

(B.3.8)
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For (b)with q ≡ 1 (mod 4), by usingTheorem3.3.3with Lemmas 3.4.4, 3.4.7, andB.3.10
below, we have that

#UL2L2 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs +
∑
s∈S4

ω (a)−s cs + 2
∑
s∈S12

ω (a)−s cs

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ 2 + qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq

(
1
8
,
3
8
,
5
8
,
7
8
; 0,

1
4
,
1
2
,
3
4

|ψ−4
)

= q2 − 3q + 5 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
. (B.3.9)

Lemma B.3.10 Suppose that q ≡ 1 (mod 4). Then
∑
s∈S12

ω (a)−s cs = (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
.

Proof We start with the definition, factor out ω(ψ)q×/2, and then use the Hasse–
Davenport relation (3.1.4) with N = 4 with respect tom = k to obtain:

∑
s∈S12

ω (a)−s cs = 1
qq×

q−2∑
k=0

ω (−4ψ)4k+ q×
2 g (k) g

(
k + q×

4

)
g
(
k + q×

2

)

· g
(
k + 3q×

4

)
g
(
−4k + q×

2

)

= ω (ψ)q
×/2

qq×
q−2∑
k=0

ω (−4ψ)4k g (4k)ω (4)−4k g
(
q×
2

)

· g
(
q×
4

)
g
(
3q×
4

)
g
(
−4k + q×

2

)
.

(B.3.11)

Simplify with Lemma 3.1.3(b) to get

∑
s∈S12

ω (a)−s cs = (−1)q
×/4 ω (ψ)q

×/2

q − 1

q−2∑
k=0

ω (−ψ)4k g (4k) g
(
q×
2

)
g
(
−4k + q×

2

)
.

(B.3.12)

Now, we use the Hasse–Davenport relation again with N = 2 andm = −4k to find:

∑
s∈S12

ω (a)−s cs = (−1)q
×/4 ω (ψ)q

×/2

q − 1

q−2∑
k=0

ω (−ψ)4k g (4k) g
(
q×
2

)

·
⎛
⎝g (−8k) g

(
q×
2

)
ω (2)8k

g (−4k)

⎞
⎠ . (B.3.13)

We now simplify using Lemma 3.1.3(b) again and then expand the summation to get:
∑
s∈S12

ω(a)−scs = (−1)q
×/4ω(ψ)q

×/2q

·

⎛
⎜⎜⎝− 4

q× + 1
q×

q−2∑
k=0

4k �≡0 (mod q×)

ω(4ψ)4kq−1g(4k)2g(−8k)

⎞
⎟⎟⎠ .

(B.3.14)
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We finally reindex the sum withm = −k , yielding

∑
s∈S12

ω(a)−scs = (−1)q
×/4ω(ψ)q

×/2

· q

⎛
⎜⎜⎝− 4

q× + 1
q×

q−2∑
m=0

4m�≡0 (mod q×)

ω(4ψ)−4mq−1g(−4m)2g(8m)

⎞
⎟⎟⎠

= (−1)q
×/4ω(ψ)q

×/2qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)

(B.3.15)

relating back to the finite-field hypergeometric sum.

Step 3: Count points when at least one coordinate is zero

Lemma B.3.16 Let q be an odd prime that is not 7. Then

(a) If q ≡ 3 (mod 4), then

#XL2L2 ,ψ (Fq) − #UL2L2,ψ (Fq) = 4q.

(b) If q ≡ 1 (mod 4), then

#XL2L2 ,ψ (Fq) − #UL2L2,ψ (Fq) = 12q − 4.

Proof Suppose that x1 = 0 and the rest are nonzero. Then, by using Theorem 3.3.3, we
can see that there are (q − 1)((−1)q×/2 + 1) such points. Since there are four choices of
one coordinate being zero, this counts 4(q − 1)((−1)q×/2 + 1) points.
Suppose now that x1 = x2 = 0 and the rest nonzero, then by Theorem 3.3.3 again, we

have ((−1)q×/2 + 1) points. By symmetry, this is the same as the case where x3 = x4 = 0
and the rest nonzero, so we now count 2((−1)q×/2 + 1).
Next, suppose x1 = x3 = 0 and the rest nonzero. Automatically, the polynomial van-

ishes, hence there are q − 1 such points. There are 4 such cases from choosing one of x1
and x2 and another from x3 and x4 to equal zero, hence we count 4(q − 1) points. Finally,
the four points where three coordinates are zero are all solutions, hence we count 4 more
points. Thus,

#XL2L2 ,ψ
(
Fq
)− #UL2L2 ,ψ

(
Fq
) = 4 (q − 1)

(
(−1)q

×/2 + 1
)

+ 2
(
(−1)q

×/2 + 1
)

+4 (q − 1) + 4.

If q ≡ 3 (mod 4), then (−1)q×/2 = −1, so #XL2L2 ,ψ (Fq) − #UL2L2 ,ψ (Fq) = 4q. If q ≡ 1
(mod 4), then (−1)q×/2 = 1, so #XL2L2 ,ψ (Fq) − #UL2L2 ,ψ (Fq) = 12q − 4.

Step 4: Combine Steps 2 and 3 to reach the conclusion

Proof of Proposition 3.6.2 If q �≡ 1 (mod 4), then by Lemmas B.3.5 and B.3.16, we have
that

#XL2L2 ,ψ
(
Fq
) = (

q2 − 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)− qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4))

+4q = q2 + q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

−qHq
( 1
4 ,

3
4 ; 0,

1
2 |ψ−4) . (B.3.17)
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If q ≡ 1 (mod 4), then by Lemmas B.3.5 and B.3.16, we have that

#XL2L2 ,ψ
(
Fq
) = q2 − 3q + 5 + Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
+ 12q − 4

= q2 + 9q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+ qHq

( 1
4 ,

3
4 ; 0,

1
2 |ψ−4)

+ 2 (−1)q
×/4 ω (ψ)q

×/2 qHq
(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ−4

)
. (B.3.18)

B.2. The pencil L4
Proposition B.4.1 The number of Fq points on L4 for q odd is given in terms of hypergeo-
metric functions as follows.

(a) If q �≡ 1 (mod 5), then

#XL4 ,ψ (Fq) = q2 + 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) .

(b) If q ≡ 1 (mod 5), then

#XL4 ,ψ (Fq) = q2 + 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+4qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) .

Remark B.4.2 As before, we can identify the parameters of the hypergeometric function

Hq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4)

with the parameters of the second Picard–Fuchs equation in Proposition A.3.2. If we
use Theorem 3.4 of [3] again to shift parameters, then we see that in fact all of the
Picard–Fuchs equations satisfied by the non-holomorphic periods correspond to this
same hypergeometric motive over Q.
Also notice that in the discussion following Proposition A.3.2, we see two periods that

are “missed” by the Griffiths–Dwork method, and here they clearly correspond to the two
additional trivial factors coming from the 3q term in the point count.

Step 1: Computing and clustering the characters

Again, we compute the solutions to the system of congruences given by Theorem 3.3.3.
We obtain

(a) If q �≡ 1 (mod 5), the solution set is

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z}.
(b) If q ≡ 1 (mod 5), then clusters of solutions are

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) four sets of the form S13 = {k(1, 1, 1, 1,−4) + q×

5 (1, 2, 4, 3, 0) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates

Lemma B.4.3 Suppose ψ ∈ F×
q . For q odd, we have:

(a) If q �≡ 1 (mod 5), then

#UL4 ,ψ (Fq) = q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (B.4.4)
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(b) If q ≡ 1 (mod 5), then

#UL4 ,ψ
(
Fq
) = q2−3q+3+Hq

( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)+4qHq

( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) .
(B.4.5)

Proof When q �≡ 1 (mod 5), we know that there is only one cluster of characters, S1. By
Lemma 3.4.4, we know that

#UL4 ,ψ (Fq) =
∑
s∈S1

ω(a)−scs = q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (B.4.6)

When q ≡ 1 (mod 5), we have two types of clusters of characters. By Lemmas 3.4.4
and B.4.8,

#UL4 ,ψ
(
Fq
) =

∑
s∈S1

ω (a)−s cs + 4
∑
s∈S13

ω (a)−s cs

= q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+ 4qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) . (B.4.7)

We now just need a hypergeometric way to write the point count associated to the
cluster S13.

Lemma B.4.8 If q ≡ 1 (mod 5) and q is odd, then

∑
s∈S13

ω(a)−scs = qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) . (B.4.9)

Proof By using the hybrid hypergeometric definition, this equality is found quickly:

∑
s∈S13

ω (a)−s cs = 1
qq×

q−2∑
k=0

ω
(−44ψ4) g

(
k + q×

5

)
g
(
k + 2q×

5

)

· g
(
k + 3q×

5

)
g
(
k + 4q×

5

)
g (−4k)

= 1
qq×

q−2∑
k=0

ω
(
44ψ4) g

(
k + q×

5

)
g
(
k + 2q×

5

)

· g
(
k + 3q×

5

)
g
(
k + 4q×

5

)
g (−4k)

= q
q×

q−2∑
k=0

ω
(
44ψ4)

·
g
(
k + q×

5

)
g
(
k + 2q×

5

)
g
(
k + 3q×

5

)
g
(
k + 4q×

5

)

q2
g (−4k)

= q
q×

q−2∑
k=0

ω
(
44ψ4)
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·
g
(
k + q×

5

)
g
(
k + 2q×

5

)
g
(
k + 3q×

5

)
g
(
k + 4q×

5

)

g
(
q×
5

)
g
(
2q×
5

)
g
(
3q×
5

)
g
(
4q×
5

) g (−4k)

= qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) . (B.4.10)

The last line uses the hybrid definition (Definition 3.2.7) of the hypergeometric function

Hq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) .

Even though the hypergeometric function is defined over Q, we can get to the relation
much more quickly using the hybrid definition.

Step 3: Count points when at least one coordinate is zero.

Lemma B.4.11 If q is odd and not 7, then

#XL4 ,ψ (Fq) − #UL4 ,ψ (Fq) = 6q − 2.

Proof First, we count the number of rational points when exactly variable equals zero.
Without loss of generality, assume x1 = 0. Then we want solutions of

x32x3 + x33x4 = 0

whichwecan solve for x4. Since x4 is completely determinedby x2 and x3,we cannormalize
x2 = 1 and see there are exactly q − 1 solutions when only x1 is zero. By symmetry,
this shows that there are 4q − 4 solutions when exactly one variable equals zero. If two
consecutive variables are zero (say x1 = x2 = 0), then we want solutions of the form
x33x4 = 0 which implies that a third variable equals zero. Thus, there are 4 solutions with 3
variables equaling zero and no solutions when exactly two variables equal zero and those
variables are consecutive. Lastly, if two non-consecutive variables are zero then any other
solution works. For any pair of non-consecutive variables (of which there are two), we
then have q − 1 solutions. Therefore,

#XL4 ,ψ (Fq) − #UL4 ,ψ (Fq) = 4q − 4 + 4 + 2(q − 1) = 6q − 2.

Step 4: Combine Steps 2 and 3 to find conclusion

We now prove Proposition 3.6.3.

Proof of Proposition 3.6.3 Combining Lemmas B.4.3 and B.4.11, we have

(a) If q �≡ 1 (mod 5), then

#XL4 ,ψ
(
Fq
) = (

q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4))+ (6q − 2)

= q2 + 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4) . (B.4.12)

(b) If q ≡ 1 (mod 5), then

#XL4 ,ψ
(
Fq
) = (

q2 − 3q + 3 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+4qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4))+ (6q − 2)

= q2 + 3q + 1 + Hq
( 1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ−4)

+4qHq
( 1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ4) . (B.4.13)

This completes the proof.
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