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WASSERSTEIN GRADIENT FLOW FORMULATION OF THE
TIME-FRACTIONAL FOKKER-PLANCK EQUATION∗

MANH HONG DUONG† AND BANGTI JIN ‡

Abstract. In this work, we investigate a variational formulation for a time-fractional Fokker-
Planck equation which arises in the study of complex physical systems involving anomalously slow
diffusion. The model involves a fractional-order Caputo derivative in time, and thus inherently
nonlocal. The study follows the Wasserstein gradient flow approach pioneered by [26]. We pro-
pose a JKO type scheme for discretizing the model, using the L1 scheme for the Caputo fractional
derivative in time, and establish the convergence of the scheme as the time step size tends to zero. Illus-
trative numerical results in one- and two-dimensional problems are also presented to show the approach.

Keywords. Wasserstein gradient flow; time-fractional Fokker-Planck equation; convergence of
time-discretization scheme.

AMS subject classifications. 35Q84; 65M12; 60G22

1. Introduction In this work, we are interested in the following time-fractional
Fokker-Planck equation (FPE):{

∂αt ρ= div(∇Ψρ)+∆ρ, in Rd

ρ(0) =ρ0,
(1.1)

where ρ0 is the initial datum, and Ψ is the forcing term. Here, the notation ∂αt ϕ(t)
denotes the Caputo fractional derivative of order α∈ (0,1) in time, defined by [28, p.
91]

∂αt ϕ(t) =
1

Γ(α)

∫ t

0

(t−s)α−1ϕ′(s)ds

where Γ(z) is the Gamma function defined by Γ(z) =
∫∞

0
sz−1e−sds. The fractional

derivative ∂αt ϕ(t) recovers the usual first-order derivative ϕ′(t) as α→1− for suitably
smooth functions. Therefore, the model (1.1) can be regarded as a time-fractional
analogue of the classical FPE.

The interest in the model (1.1) is motivated by an explosively growing list of prac-
tical applications involving anomalously slow diffusion processes (a.k.a. subdiffusion),
which deviate from the classical diffusive behavior. The so-called subdiffusive process
displays local motion occasionally interrupted by long sojourns and trapping effects,
and it has been widely accepted to better describe transport phenomena in a number
of practical applications in physics, biology and finance, e.g., the study of volatility of
financial markets, bacterial motion and bird flight, etc. (see the review [37] for an exten-
sive list with physical modelings). Model (1.1) can be viewed as the macroscopic limit
of continuous time random walk with a heavy-tailed waiting time distribution (with
a divergent mean) between consecutive jumps [7], in analogy with Brownian motion
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2 Time-Fractional Fokker Planck Equation

for normal diffusion. The evolution of the probability density function (PDF) associ-
ated with the subdiffusion process is governed by a time-fractional FPE, i.e., a FPE
involving a fractional derivative in time, as given in (1.1). In the literature, there are
also several works using fractional Laplacian to describe anomalously fast diffusion pro-
cesses (i.e., superdiffusion), which leads to space fractional Fokker-Planck equations;
see, e.g., [1, 8, 14] and references therein.

There have been several important studies on the model (1.1) from various different
perspectives [5–7,10,20,27,32,35,38]. The physical modeling using time-fractional FPE
has a long history; see [37] for in-depth detailed discussions. Barkai et al [7] derived the
model (1.1) from the continuous time random walk model in order to describe anomalous
diffusion in a time-independent external force field; see [5,20] for an extension to space-
and time-dependent forcing. The well-posedness of the problem was discussed in [6],
and the stochastic representation of the solutions was studied in [35, 38]. Le et al [30]
studied the numerical solution of the time-fractional FPE using the Galerkin finite
element method. Camilli and De Maio [10] established the existence and uniqueness of
a time-fractional mean field games system. Kemppainen and Zacher [27] investigated the
long time behavior of a general class of nonlocal-in-time FPEs via an entropy argument,
which is substantially different from that for the classical FPE. Li and Liu [32] described
a discretization scheme for time-fractional gradient flow. However, none of these works
has treated the gradient flow formulation for time-fractional FPE, which was recently
pointed out by Kemppainen and Zacher [27] as “an analogue of the celebrated theorem
of Jordan, Kinderlehrer and Otto on the gradient flow structure of the classical FPE
in the Wasserstein space P2(Rd) seems to be unknown for equation (1.1) and would be
highly desirable.”

The goal of this work is to discuss the time discretization of the model (1.1) via a
JKO type scheme, thereby filling in an important missing piece on the time-fractional
FPE pointed out by Kemppainen and Zacher [27]. This is carried out following the
pioneering work of Jordan, Kinderlehrer and Otto [26] using the Wasserstein gradient
flow for the classical FPE. Specifically, with a time step size τ , the scheme reads: given
the initial datum ρ0, find ρn, n= 1,2,. ..,N by minimizing

Cα
2τα

W 2
2 (ρ,ρn−1)+F(ρ), (1.2)

over the Wasserstein space P2(Rd), whereW2(·, ·) denotes the Wasserstein distance, ρn−1

is a convex combination of of ρ0,. ..,ρn−1 (with weights depending on the numerical
approximation of the fractional derivative ∂αt ρ), Cα= 1/Γ(2−α) is a fixed constant
and F(ρ) is the free energy; See Section 4 for details. The term ρk−1 captures the
nonlocal nature / memory effect of the mathematical model. The scheme recovers the
classical JKO scheme [26] as α→1−, and thus it represents a fractional analogue of
the latter. Numerically, it has comparable computational complexity as the classical
JKO scheme, except the extra computation of the convex combination ρn−1. The main
result is given in Theorem 4.2, which shows that the piecewise constant interpolation
converges weakly in L1((0,T )×Rd) to a weak solution of the model (1.1). Further,
we numerically illustrate the performance of the approach, using recently developed
powerful solvers for minimization problems involving Wassserstein distance based on
entropy regularization [13,39,40].

The main technical challenge of the fractional extension (1.2) of the classical JKO
scheme is to deal with the nonlocality of the fractional derivative ∂αt ρ. Numerically,
this is overcome by adopting one extremely popular fractional analogue of the backward
Euler scheme (used in the JKO scheme) from the numerical analysis community, known
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as the L1 scheme [34] for discretizing the Caputo derivative ∂αt ρ, and its weights enter
into the term ρn−1. Naturally, the nonlocality of the term ρn−1 also requires substantial
adaptation of known techniques [26] for the convergence analysis. The gradient flow
formulation and its convergence analysis represent the main contributions of this work.

The rest of the paper is organized as follows. In Section 2, we recall preliminaries on
fractional calculus and describe the connection of the model (1.1) with stochastic process
and related results on existence and uniqueness. Then in Section 3, we describe the L1
scheme, which is an extension of the backward Euler method to the fractional case,
and derive relevant approximation properties, which are needed for constructing the
scheme (1.2) and its convergence analysis. In Section 4, we describe the time-fractional
JKO scheme, and state the main theorem, whose lengthy and technical proof is given in
Section 5. Last, in Section 6, we present numerical results for one- and two-dimensional
problems to illustrate features of the proposed JKO scheme. Below, C denotes a generic
constant that depends on the parameters of the problem, on the initial datum ρ0, and
may change at each occurrence, but it is always independent of the time level n and of
time step size τ .

2. Preliminaries
In this section we briefly recall preliminaries on fractional calculus, stochastic model

for fractional FPEs and the concept of weak solution for problem (1.1).

2.1. Preliminaries on fractional calculus First, we recall basic concepts
from fractional calculus [28]. Throughout, we always assume γ∈ [0,1), and a<b. Then
for a function f : (a,b)→R, the left-sided and right-sided Riemann-Liouville fractional
integrals of order γ, denoted by aI

γ
t f and tI

γ
b f , are respectively defined by

aI
γ
t f(t) =

1

Γ(γ)

∫ t

a

(t−s)γ−1f(s)ds and tI
γ
b f(t) =

1

Γ(γ)

∫ b

t

(s− t)γ−1f(s)ds.

These integral operators are well defined for f ∈L1(a,b) and are bounded on Lp(a,b) for
any p≥1. The integral operators aI

γ
t and tI

γ
b are adjoint to each other with respect to

L2(a,b): ∫ b

a

(aI
γ
t f)(t)g(t)dt=

∫ b

a

f(t)(tI
γ
b g)(t)dt. (2.1)

This relation can be verified directly by changing the order of integration.
The left-sided and right-sided Caputo derivative of order α∈ (0,1) of a function

f : (a,b)→R, denoted by aD
α
t f and tD

α
b f , are respectively defined by

aD
α
t f(t) = (aI

1−α
t f ′)(t) and tD

α
b f(t) =−(tI

1−α
b f ′)(t).

Note that the definition of the Caputo derivative of order α requires the existence of
a first-order derivative. Hence, the definition is more stringent. There have been several
important efforts in relaxing the regularity requirement [18,31]. It can be verified that as
α→1−, aD

α
t f recovers the usual first-order derivative ∂tf , when f is sufficiently smooth.

Due to the nonlocality of the fractional derivatives, many useful rules in calculus are no
longer available. The following integration by parts formula is useful.
Lemma 2.1. The following identity holds for f,g∈C1[a,b] with g(b) = 0:∫ b

a

(aD
α
t f)(t)g(t) dt=

∫ b

a

f(t)(tD
α
b g)(t) dt− f(a)

Γ(1−α)

∫ b

a

(t−a)−αg(t)dt. (2.2)
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Proof. Indeed, there holds∫ b

a

(aD
α
t f)(t)g(t) dt=

∫ b

a

(aI
1−α
t f ′)(t)g(t)dt=

∫ b

a

f ′(t)(tI
1−α
b g)(t)dt

=−
∫ b

a

f(t)(tI
1−α
b g)′(t)dt+

[
f(t)(tI

1−α
b g)(t)

]b
a
.

where the first identity follows from the definition of the Caputo derivative aD
α
t f ,

the second identity follows from (2.1), and the third identity is obtained by integra-
tion by parts. Since g(b) = 0, by the definition of the right-sided Caputo derivative,
−(tI

1−α
b g)′(t) = tD

α
b g [28, (2.4.10), p. 91]. Then the desired assertion follows by[

f(t)(tI
1−α
b g)(t)

]b
a

=f(b)(tI
1−α
b g)(b)−f(a)(tI

1−α
b g)(a)

=− f(a)

Γ(1−α)

∫ b

a

(s−a)−αg(s)ds,

since (tI
1−α
b g)(b) = 0. This completes the proof of the lemma.

Below we shall write ∂αt f and Dα
t f for 0D

α
T f and tD

α
T f , respectively, for notational

simplicity.

2.2. From stochastic processes to time-fractional FPE It is well-known
that the classical FPE

∂tf = div(∇Ψf)+∆f, (2.3)

which corresponds to problem (1.1) with α= 1, is the Kolmogorov forward equation of
the following stochastic differential equation (SDE):

dX(t) =−∇Ψ(X(t)) dt+
√

2dW (t), with X(0) =X0, (2.4)

where W (t) is a standard d-dimensional Wiener process and X0 is a d-dimensional
random vector distributed according to the density ρ0. The SDE (2.4) describes the
motion of a particle undergoing diffusion in an external field Ψ, where X(t) is the
position of the particle at time t, and the FPE (2.3) describes the time evolution of
the PDF of the particle. Its solution f(t,x) is the PDF of finding the particle at time
t and at position x. The time-fractional FPE (1.1) can be viewed as the Kolmogorov
forward equation of a stochastic process which is obtained from (2.4) under a time-
changed process. Specifically, let Uα(t) be the α-stable subordinator with its Laplace
transform given by E

[
e−kUα(τ)

]
=e−τk

α

, 0<α<1, and let Sα(t) be the inverse α-stable
subordinator

Sα(t) = inf{τ >0 : Uα(τ)>t}.

Define the time-changed process

Y (t) =X(Sα(t)).

Then the probability density function (PDF) p(x,t) of Y (t) satisfies the time-fractional
FPE (1.1). In fact, the following theorem [19,35,36] describes a close connection between
the solutions of (1.1) and (2.3).
Theorem 2.1. Let f(x,τ) and g(τ,t) be respectively the PDFs of X(τ) and S(t). The
following assertions hold.
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(i) The PDF p(x,t) of Y (t) is given by p(x,t) =
∫∞

0
f(x,τ)g(τ,t)dτ .

(ii) The Laplace transform of p and f , denoted by p̂ and f̂ , respectively, satisfy

p̂(x,k) =kα−1f̂(x,kα).
(iii) p(x,t) is a weak solution to the time-fractional FPE (1.1) in the sense of Defi-

nition (2.1) below.
See the works [19, 35, 36] for further details on the stochastic representation of

problem (1.1).
Remark 2.1. There are alternative equivalent reformulations of problem (1.1). One
popular alternative reads

∂tρ=R∂1−α
t (∇·(ρ∇Ψ)+∆ρ), (2.5)

where the R∂1−α
t ϕ denotes Riemann-Liouville fractional derivative of order 1−α, i.e.,

R∂1−α
t ϕ(t) = d

dt (0I
α
t ϕ)(t). Formally, it can be obtained from (1.1) by applying R∂1−α

t to
both sides of (1.1) as

R∂1−α
t ∂αt ϕ(t) =

d

dt
0I
α
t 0I

1−α
t ϕ′(t) =

d

dt
0Itϕ

′(t) =ϕ′(t),

where the first identity is due to the definitions of the fractional derivatives and the
second identity is due to the semigroup property of Riemann-Liouville fractional integral.
Further, one may change the order the spatial and temporal derivative when the forcing Ψ
is time-independent. We refer to the work [20] for discussions on the proper formulation
for a time-dependent forcing. In the present work, we focus on the formulation (1.1),
and leave the study of other time-fractional FPE models to future works.

2.3. Well-posedness Throughout, we only consider probability measures on Rd
that are absolutely continuous with respect to Lebesgue measure, and often identify a
probability measure with its density, as the classical setting [26]. We denote by P2(Rd)
the set of all probability measures on Rd with a finite second moment, i.e.,

P2(Rd) :=
{
ρ :Rd→ [0,∞) measurable,

∫
Rd
ρ(x) dx= 1, M2(ρ)<∞

}
,

where the second moment M2(ρ) is defined by

M2(ρ) =

∫
Rd
|x|2ρ(x) dx. (2.6)

Now, we introduce a notion of weak solutions to problem (1.1). Similar to the classical
setting, we multiply equation (1.1) by a smooth test function and using the integration
by parts formula (2.2) in Lemma 2.1, which leads to the following notion of weak
solution. Below we shall write a function f(t,x) as a vector valued function f(t).
Definition 2.1. A function ρ∈L1(R+×Rd) is called a weak solution of problem (1.1)
with initial datum ρ0∈P2(Rd) if it satisfies that for any ϕ∈C∞([0,T ]×Rd) with ϕ(T ) =
0, there holds ∫ T

0

∫
Rd

(
tD

α
Tϕ(t)+∇Ψ·∇ϕ(t)−∆ϕ(t)

)
ρ(t)dxdt (2.7)

=
1

Γ(1−α)

∫
Rd

∫ T

0

t−αϕ(t)dtρ0 dx.
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Note that the formulation (2.7) of the weak solution involves a nonlocal term∫
Rd tI

1−α
T ϕ(0)ρ0 dx. This term appears due to the nonlocality of the Caputo deriva-

tive ∂αt ρ, cf. Lemma 2.1. In the limit α→1−, it recovers the usual
∫
Rdϕ(0)ρ0 dx, in

view of the identity limα→0+ 0I
α−1
t ϕ(0) =ϕ(0), under suitable regularity assumptions.

We are not are aware of any existing work directly investigating the existence and reg-
ularity of the solutions on problem (1.1). However, the existence and uniqueness of the
weak solution of an equivalent formulation given in (2.5) of problem (1.1) were already
proven in [10, Theorem 3.3]. See also [3, 42] for discussion on the well-posedness (exis-
tence and uniqueness) of abstract Volterra type evolution equations in a Hilbert space
setting. It is also worth noting that the proper interpretation of the initial condition
requires some care; see the works [18, 31] for in-depth discussions. We leave a detailed
study on these important analytic issues (possibly in more general settings of metric
spaces and spaces of probability measures) to future works.

3. Numerical approximation of Caputo derivative
Now we recall the numerical approximation of the Caputo derivative ∂αt ϕ(t). There

are several different ways to construct a “fractional” analogue of the classical backward
Euler method (see [23] for a concise overview), on which the classical JKO scheme [26] is
based. We shall employ the so-called piecewise linear approximation, commonly known
as the L1 approximation (due to Lin and Xu [34]) in the numerical analysis literature.

Consider a uniform partition of the time interval [0,T ], with a time step size τ = T
N

and the grid tn=nτ , n= 0,1,. ..,N . For any function ϕ∈C[0,T ], we use the shorthand
notation ϕn=ϕ(tn). Further, we denote Cα= Γ(2−α)−1. Then the L1 approximation
[34] is constructed as follows. First we split the interval [0,tn] into n subintervals

∂αt ϕ
n=

1

Γ(1−α)

n∑
i=1

∫ ti

ti−1

(tn−s)−αϕ′(s) ds,

and then by approximating ϕ by its linear interpolation over the subinterval [ti−1,ti],
i.e.,

ϕ(t)≈ ti− t
τ

ϕi−1 +
t− ti−1

τ
ϕi, t∈ [ti−1,ti],i= 1,. ..,N,

or equivalently ϕ′(t)≈ (ϕi−ϕi−1)/τ for t∈ [ti−1,ti], we obtain the following approxima-
tion to the Caputo derivative ∂αt ϕ at time t= tn by

∂αt ϕ
n=

1

Γ(1−α)

n∑
i=1

∫ ti

ti−1

(tn−s)−α
ϕi−ϕi−1

τ
ds+rnτ ,

where rnτ is the local truncation error. It can be verified that rnτ takes the following
form [34]

rnτ ≤ cϕ

[
1

Γ(1−α)

n∑
i=1

∫ ti

ti−1

ti+ ti−1−2s

(tn−s)α
ds+O(τ2)

]
,

with the constant cϕ depending only on ‖ϕ‖C2[0,T ]. Now the elementary integral∫ ti

ti−1

(tn−s)−αds= (1−α)−1τ1−α((n+1− i)1−α−(n− i)1−α)
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and simple algebraic manipulations (with Cα= 1/Γ(2−α)) lead to

∂αt ϕ
n≈Cατ−α

n∑
i=1

(ϕi−ϕi−1)((n+1− i)1−α−(n− i)1−α)

=Cατ
−α

n∑
i=0

b
(n)
n−iϕ

i := ∂̄τϕ
n, (3.1)

where the quadrature weights b
(n)
i are given by

b
(n)
i =

1, i= 0,
(i+1)1−α+(i−1)1−α−2i1−α, i= 1,. ..,n−1,
(n−1)1−α−n1−α, i=n.

(3.2)

Note that the last weight b
(n)
n depends on n differently than the preceding ones. In the

special case α= 1, the approximation reduces to the classical backward Euler method,

since b
(n)
0 = 1 and b

(n)
1 =−1, and b

(n)
i = 0, for any 1<i≤n. In a similar manner, the L1

approximation D
α

τ ϕ
n to the right-sided Caputo fractional derivative tD

α
Tϕ(t) at t= tn

is given by

D
α

τ ϕ
n=Cατ

−α
N−n∑
j=0

b
(N−n)
j ϕn+j =Cατ

−α
N∑
j=n

b
(N−n)
j−n ϕj . (3.3)

This approximation can be obtained by a simple change of variables.
By construction, the L1 approximations ∂̄ατ ϕ

n and D
α

τ ϕ
n are essentially a weighted

piecewise linear approximation, with respect to the weakly singular weight t−α. The
discrete approximations are of convolution form, similar to the continuous fractional
derivatives ∂αt ϕ and Dα

t ϕ. The L1 approximation has been widely employed for solving
time-fractional diffusion, due to its excellent empirical performance; see [22, 24, 25] for
some relevant works on error analysis.

We will need the following auxiliary lemma.

Lemma 3.1. For 0<α<1 and a fixed n∈N, for the weights b
(n)
j given in (3.2), then

there holds b
(n)
i <0 for i= 1,. ..,n and

∑n
i=0 b

(n)
i = 0. Further,

k∑
n=1

(−b(n)
n ) =k1−α and

k−i∑
j=1

(−b(j+i)j ) = 1+(k− i)1−α−(k− i+1)1−α.

Proof. The first assertion is well known (see, e.g., [34, eq. (3.7)]), and we only give
a proof for completeness. Consider the function f(x) =x1−α for x>0. Since 0<α<1,
we have f ′′(x) =−α(1−α)x−α−1<0, and hence f is strictly concave on (0,∞). By
Jensen’s inequality we have

i1−α=f(i) =f
(
i+1+i−1

2

)
> 1

2f(i+1)+ 1
2f(i−1)

= 1
2 (i+1)1−α+ 1

2 (i−1)1−α,

which immediately implies that b
(n)
i <0 for all i= 1,. ..,n. Further, straight computa-

tions give

n∑
i=0

b
(n)
i = 1+

n−1∑
i=1

(
(i+1)1−α+(i−1)1−α−2i1−α

)
+((n−1)1−α−n1−α) = 0.
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This shows the second assertion. The rest follows from straightforward computation as:

k∑
n=1

(−b(n)
n ) =

k∑
n=1

(n1−α−(n−1)1−α) =k1−α,

k−i∑
j=1

(−b(j+i)j ) =−
k−i∑
j=1

(
(j+1)1−α+(j−1)1−α−2j1−α)

=−
k−i∑
j=1

(
((j+1)1−α−j1−α)−(j1−α−(j−1)1−α)

)
= 1+(k− i)1−α−(k− i+1)1−α.

This completes the proof of the lemma.
We will also need the following useful inequality of Gronwall type [33, Lemma 2.2].

Lemma 3.2. Suppose {φn}Nn=0 are nonnegative, and satisfy the following inequality
(with τ =T/N)

∂̄ατ φ
n≤C1 +C2φ

n,

where C1,C2 are positive constants. Then there holds

φn≤2Eα(2C2t
α
n)
(
φ0 +

C1

Γ(1+α)
tαn

)
, ∀n= 1,. ..,N

where Eα denotes the Mittag-Leffler function Eα(z) =
∑∞
k=0

zk

Γ(kα+1) .

The next result gives a “semi-discrete” version of the integration by parts formula
in Lemma 2.1 for the L1 approximation ∂̄ατ ϕ

n.
Lemma 3.3. Let {ϕn}Nn=0 be a given sequence, and φ(t)∈C1[0,T ] with φ(T ) = 0. The
piecewise constant approximation ϕτ (t) is defined by ϕτ (t) =φn for (n−1)τ <t≤nτ ,
with φτ (0) =φ0. Then the following identity holds

∫ T

0

(∂̄ατ ϕ
n)(t)φ(t)dt=

∫ T

0

ϕτ (t)D
α

τ φ(t)dt+Cατ
−αϕ0

N∑
n=1

b(n)
n

∫ tn

tn−1

φ(t)dt,

where the function D
α

τ φ(t) is defined by (with zero extension on φ)

D
α

τ φ(t) =

N∑
i=n

b
(N−n)
i−n φ(t+(i−n)τ), ∀t∈ (tn−1,tn], n= 1,. ..,N.

Proof. By the definition of the L1 approximation in (3.1), we have

C−1
α ταLHS =

N∑
n=1

∫ tn

tn−1

[
ϕn+

n−1∑
i=0

b
(n)
n−iϕ

i
]
φ(t)dt

=

N∑
n=1

∫ tn

tn−1

ϕnφ(t)dt+

N∑
n=1

n−1∑
i=1

b
(n)
n−i

∫ tn

tn−1

ϕiφ(t)dt+

N∑
n=1

b(n)
n

∫ tn

tn−1

ϕ0φ(t)dt

=: I+II+III.
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By the definition of the interpolation ϕτ (t), the first term I can be rewritten as

I =

N∑
n=1

∫ tn

tn−1

ϕτ (t)φ(t)dt.

Now we turn to the term II. Using the change of variables t 7→ t+(n− i)τ and then
applying the definition of the interpolation ϕτ (t), we deduce

II =

N∑
n=1

n−1∑
i=1

b
(n)
n−i

∫ ti

ti−1

ϕiφ(t+(n− i)τ)dt

=

N∑
n=1

n−1∑
i=1

b
(n)
n−i

∫ ti

ti−1

ϕτ (t)φ(t+(n− i)τ)dt.

Next we interchange the order of summation and relabel the indices (with the convention
that the sum is zero when the lower index is greater than the upper index) to obtain

II =

N−1∑
i=1

N∑
n=i+1

b
(n)
n−i

∫ ti

ti−1

ϕτ (t)φ(t+(n− i)τ)dt

=

N−1∑
n=1

N∑
i=n+1

b
(i)
i−n

∫ tn

tn−1

ϕτ (t)φ(t+(i−n)τ)dt

=

N∑
n=1

N∑
i=n+1

b
(i)
i−n

∫ tn

tn−1

ϕτ (t)φ(t+(i−n)τ)dt.

Now recall the definition of the weights b
(i)
i−n in (3.2), there holds

b
(i)
i−n= b

(N−n)
i−n , i=n+1,. ..,N−1.

Further, since φ is supported on (0,T ), we may change b
(N)
N−n to b

(N−n)
N−n , and thus obtain

II =

N∑
n=1

N∑
i=n+1

b
(N−n)
i−n

∫ tn

tn−1

ϕτ (t)φ(t+(i−n)τ)dt.

Consequently, since bN−n0 = 1 and using the definition of the notation D
α

τ φ(t),

I+II =

N∑
n=1

∫ tn

tn−1

ϕτ

(
φ(t)+

N∑
i=n+1

b
(N−n)
i−n φ(t+(i−n)τ)

)
dt

=

N∑
n=1

∫ tn

tn−1

ϕτD
α

τ φ(t)dt=

∫ T

0

ϕτD
α

τ φ(t)dt.

Then combining the preceding identities completes the proof of the lemma.
The following result gives the error estimates of the L1 approximation for smooth

functions.
Theorem 3.1. The following error estimates hold

∂̄ατ ϕ
n= (∂αt ϕ)(tn)+O(τ2−α), ∀ϕ∈C2[0,T ]
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Cατ
−α

N∑
n=1

b(n)
n

∫ tn

tn−1

ϕ(t)dt=−(tI
α
Tϕ)(0)+O(τ), ∀ϕ∈C1[0,T ].

Proof. The first estimate can be found at [34, equations (3.12) and (3.13)]. It

suffices to show the second estimate. Using the expression of the weight b
(n)
n , we may

rewrite the left hand side as (with C ′α=−Cα(1−α) =− 1
Γ(1−α)

LHS =C ′α

N∑
n=1

∫ tn

tn−1

t−αdt
(
τ−1

∫ tn

tn−1

ϕ(s)ds
)

=C ′α

N∑
n=1

∫ tn

tn−1

t−αϕ(t)dt−C ′α
N∑
n=1

∫ tn

tn−1

t−α
(
ϕ(t)−τ−1

∫ tn

tn−1

ϕ(s)ds
)

dt

=C ′α

∫ T

0

t−αϕ(t)dt−C ′α
N∑
n=1

∫ tn

tn−1

t−α
(
ϕ(t)−τ−1

∫ tn

tn−1

ϕ(s)ds
)

dt.

Next we bound the term in the bracket by

|ϕ(t)−τ−1

∫ tn

tn−1

ϕ(s)ds|= |τ−1

∫ tn

tn−1

ϕ(t)−ϕ(s)ds|≤‖ϕ‖C1[0,T ]τ.

Combining the last two estimates gives the desired estimate.

4. Time-fractional JKO scheme

Now we construct a JKO type scheme for problem (1.1), and give the main result
of the work.

4.1. Wasserstein distance The Wasserstein distance of order two, denoted by
W2(µ1,µ2), between two (Borel) probability measures µ1 and µ2 on Rd is defined by

W2(µ1,µ2)2 = inf
p∈P(µ1,µ2)

∫
Rd×Rd

|x−y|2p(dxdy), (4.1)

where P(µ1,µ2) is the set of all probability measures on Rd×Rd with the first marginal
µ1 and second marginal µ2, and the symbol | · | denotes the usual Euclidean norm on
Rd. That is, a probability measure p is in P(µ1,µ2) if and only if for each Borel subset
A⊂Rd there holds

p(A×Rd) =µ1(A) and p(Rd×A) =µ2(A).

It is well known that W2(µ1,µ2) defines a metric on the set of probability measure µ on
Rd having finite second moments:

∫
Rd |x|

2µ(dx)<∞ [17].

The variational problem (4.1) is an example of a Monge-Kantorovich mass transport
problem with a cost function c(x,y) = |x−y|2. In that context, an infimizer p∗ is referred
to as an optimal (transport) plan; see [17] for a probabilistic proof that the infimum
in (4.1) exists when the measures µ1 and µ2 have finite second moments. Brenier [9]
established the existence of a one-to-one optimal (transport) plan in the case that the
measures µ1 and µ2 have bounded support and are absolutely continuous with respect
to Lebesgue measure.
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4.2. Time-fractional JKO scheme
Next we derive the fractional analogue of the JKO scheme for problem (1.1). The

classical JKO scheme [26] for the FPE (2.3) is based on the backward Euler approxima-
tion of the first-order derivative ∂tρ in time. Hence, naturally, the fractional analogue
relies on a backward Euler type approximation to the Caputo derivative ∂αt ρ. We shall
employ the L1 approximation [34] described in Section 3. By combining the classical
JKO scheme [26] and the L1 approximation of the fractional time derivative ∂αt ρ, we
obtain a JKO type scheme for problem (1.1) as follows.

Scheme 4.1 (Discrete variational approximation scheme for the model (1.1)). Let
ρ0 :=ρ0. Given ρ0, find ρn, n= 1,2,. ..,N , as the unique minimizer of

Cα
2τα

W 2
2 (ρ,ρn−1)+F(ρ), (4.2)

over ρ∈P2(Rd), where ρn−1 and F(ρ) are defined respectively by

ρn−1 :=

n−1∑
i=0

(−b(n)
n−i)ρ

i and F(ρ) :=E(ρ)+S(ρ),

with

E(ρ) =

∫
Rd

Ψρdx and S(ρ) =

∫
Rd
ρ logρdx.

Given ρ0∈P2(Rd), the existence and uniqueness of a minimizer of Scheme 4.1 was

proven in [26, Proposition 4.1]. In view of Lemma 3.1(i),
∑n−1
i=0 (−b(n)

n−i) = 1, and thus

ρn−1 is a convex combination of all past approximations {ρi}n−1
i=0 . This property plays

a crucial role in the convergence analysis. One distinct feature of the scheme is that
instead of using only the immediate previous density ρn−1 in (4.2) as in the classical
JKO-scheme, it employs a convex combination ρn−1 of all previous densities {ρi}n−1

i=0 .
This is to capture the memory effect (and thus non-Markovian nature) of the continuous
time-fractional FPE. In the limiting case α= 1, it is identical with the classical JKO
scheme (see the properties of the L1 approximation in Section 3).

Below we shall make one minor assumption on Ψ. Note that the assumption Ψ(x)≥
0 can be relaxed to that Ψ is bounded from below.
Assumption 4.1. Ψ(x)∈C∞(Rd), Ψ(x)≥0 and |∇Ψ(x)|≤C(|x|+1) for all x∈Rd.
Remark 4.1. There are other possible formulations of JKO type schemes for the time-
fractional FPE (1.1). For example, the following formulation seems also feasible. Given
ρ0, find ρn, n= 1,2,. ..,N , by minimizing over P2(Rd) the following functional

Cα
2τα

n−1∑
i=0

(−b(n)
n−i)W

2
2 (ρ,ρi)+F(ρ).

By the convexity of the Wasserstein distance, this functional is an upper bound of the
one in (4.2). However, it involves multiple Wasserstein distances and thus is computa-
tionally far less convenient. Thus it is not explored in this work.

The next result represents the main theoretical contribution of the paper, i.e., the
convergence of the discrete approximations {ρn}Nn=1. The proof of the theorem is lengthy
and technical and will be given in Section 5.
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Theorem 4.2. Let ρ0∈P2(Rd) satisfy F(ρ0)<∞. For any fixed τ >0, let {ρn}Nn=1 be
the sequence of minimizers given by Scheme 4.1. For any t≥0, we define a picewise-
constant time interpolation: with ρτ (0) =ρ0 and

ρτ (t,x) =ρn(x) for (n−1)τ <t≤nτ, n= 1,. ..,N. (4.3)

Then under Assumption 4.1, for any T >0,

ρτ→ρ weakly in L1
(
(0,T )×Rd

)
as τ→0, (4.4)

where ρ is the unique weak solution to problem (1.1) in the sense of Definition 2.1.

5. Proof of Theorem 4.2
This section is devoted to the convergence analysis of Scheme 4.1, i.e., the proof of

Theorem 4.2. First, we give the Euler-Lagrange equation for the sequence of minimizers.
Lemma 5.1. Let τ >0 and {ρn}Nn=1 be the sequence of minimizer given by Scheme 4.1,
and Pn the optimal plan for the Wasserstein distance W2(ρn,ρn−1) between ρn−1 and
ρn. Then for all ϕ∈C∞0 (Rd), there holds

Cα
τα

∫
R2d

(y−x) ·∇ϕ(y)Pn(dxdy)+

∫
Rd

(
∇Ψ ·∇ϕ−∆ϕ

)
ρn(x) dx= 0. (5.1)

Proof. The derivation of the Euler-Lagrange equation for the sequence {ρn}Nn=1 of
minimizers follows the now well-established procedure; see e.g., [15, 21, 26]. We only
sketch the main steps below. Let ξ∈C∞c (Rd,Rd), and we define a flow Φ : [0,∞)×Rd→
Rd by

∂Φs
∂s

= ξ(Φs), with Φ0 = Id.

For any s∈R, let ρs(y)dy be the push-forward of the measure ρn(y)dy under Φs. That
is, for any ζ ∈C∞0 (Rd), we have∫

Rd
ρs(y)ζ(y) dy=

∫
Rd
ρn(y)ζ(Φs(y)) dy.

Since Φ0 = Id, it follows that ρ0(y) =ρn(y) and an explicit calculation yields

∂sρs
∣∣
s=0

=−div(ρnξ).

Following the computations in [26], we derive the following stationarity condition on
ρn:

Cα
τα

∫
R2d

(y−x) ·ξ(y)Pn(dxdy)+

∫
Rd

(
∇Ψ ·ξ−divξ

)
ρn(x)dx= 0, (5.2)

where Pn is the optimal plan in the definition of the Wasserstein distance W2(ρn,ρn−1)
between ρ̄n−1 and ρn. For any ϕ∈C∞0 (Rd), by choosing ξ=∇ϕ in (5.2), we get

Cα
τα

∫
R2d

(y−x) ·∇ϕ(y)Pn(dxdy)+

∫
Rd

(
∇Ψ ·∇ϕ−∆ϕ

)
ρn(x)dx= 0.

This completes the proof of the lemma.
The next result is an immediate corollary of Lemma 5.1.
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Corollary 5.1. The solutions {ρn}Nn=1 given by Scheme 4.1 satisfy for all ϕ∈C∞c (Rd)
and all n= 1,. ..,N :∣∣∣∣∫

Rd

Cα(ρn−ρn−1)

τα
ϕdx+

∫
Rd

(∇Ψ ·∇ϕ−∆ϕ)ρndx

∣∣∣∣≤ sup
x

‖∇2ϕ(x)‖
2

τ−αW 2
2 (ρn,ρn−1),

where ∇2ϕ∈Rd×d denotes the Hessian of ϕ, and ‖·‖ denotes the spectral norm of a
matrix.

Proof. The assertion follows identically with (5.15) and (5.16) below, and hence it
is omitted.

In the next few lemmas, we derive several important a priori estimates on the
sequence {ρn}Nn=1 of approximations. These estimates are analogous to (42)-(45) in [26].
However, due to the appearance of the convex combination density ρn−1 instead of ρn−1

in Scheme 4.1, the derivation of these estimates is more involved than that in [26].
First, we derive elementary inequalities for F(ρn), using convexity of F(ρ).

Lemma 5.2. For any n, there holds

F(ρn−1)≤
n−1∑
i=0

(−b(n)
n−i)F(ρi), (5.3)

n∑
i=1

F(ρ̄i−1)≤n1−αF(ρ0)+

n−1∑
i=1

(
1+(n− i)1−α−(n− i+1)1−α)F(ρi). (5.4)

Proof. Since F(ρn−1) =E(ρn−1)+S(ρn−1), for the energy term E(ρn−1), we have

E(ρn−1) =

∫
Rd

Ψρn−1 dx=

∫
Rd

Ψ

n−1∑
i=0

(−b(n)
n−i)ρ

idx

=

n−1∑
i=0

(−b(n)
n−i)

∫
Rd

Ψρidx=

n−1∑
i=0

(−b(n)
n−i)E(ρi).

For the entropy term S(ρn−1): since the function z 7→s(z) =z log(z) is convex for z≥0

and the identity −
∑n−1
i=0 b

(n)
n−i= 1 (cf. Lemma 3.1(i)), Jensen’s inequality implies

s(ρn−1) =s
(
−
n−1∑
i=0

b
(n)
n−iρ

i
)
≤
n−1∑
i=0

(−b(n)
n−i)s(ρ

i),

which, upon integration, immediately implies

S(ρn−1) =

∫
Rd
s(ρn−1)dx≤

n−1∑
i=0

(−b(n)
n−i)

∫
Rd
s(ρi)dx=

n−1∑
i=0

(−b(n)
n−i)S(ρi).

Then the preceding two estimates imply

F(ρn−1) =E(ρn−1)+S(ρn−1)

≤
n−1∑
i=0

(−b(n)
n−i)(E(ρi)+S(ρi)) =

n−1∑
i=0

(−b(n)
n−i)F(ρi).
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This shows the first assertion. Next, summing the inequality over i= 1 to i=n≤N ,
changing the order of summation and relabeling the indices yield

n∑
i=1

F(ρ̄i−1)≤
n∑
i=1

i−1∑
j=0

(−b(j)j−i)F(ρi) =

n−1∑
i=0

n∑
j=i+1

(−b(j)j−i)F(ρi)

=
( n∑
i=1

(−b(i)i )
)
F(ρ0)+

n−1∑
i=1

(n−i∑
j=1

(−b(j+i)j )
)
F(ρi).

Upon noting the identities in Lemma 3.1, we obtain the second assertion.

The next result gives useful bounds on the free energy F(ρn) and F(ρn−1).

Lemma 5.3. Suppose that F(ρ0) is finite. Let {ρn}Nn=1 be the sequence of minimizers
given by Scheme 4.1. Then for any positive integer 1≤n≤N ,

F(ρn)≤F(ρ0) and F(ρn−1)≤F(ρ0). (5.5)

Proof. Since ρn is the minimizer of problem (4.2) and ρn−1 is an admissible density,
we have

Cα
2τα

W 2
2 (ρn,ρn−1)+F(ρn)≤ Cα

2τα
W 2

2 (ρn−1,ρn−1)+F(ρn−1) =F(ρn−1),

which implies

W 2
2 (ρn,ρn−1)≤2C−1

α τα
(
F(ρn−1)−F(ρn)

)
. (5.6)

It follows from this inequality and Lemma 5.2 that

F(ρn)≤F(ρn−1)≤
n−1∑
i=0

(−b(n)
n−i)F(ρi).

Then by mathematical induction, we claim F(ρn)≤F(ρ0). Indeed, the claim holds triv-
ially for n= 0. Now suppose it holds up to n≤N−1, then by the induction hypothesis

and the facts that b
(n+1)
n+1−i<0 for i= 0,. ..,k and

∑n
i=0(−b(n+1)

n+1−i) = 1, cf. Lemma 3.1, it
follows

F(ρn+1)≤
n∑
i=0

(−b(n+1)
n+1−i)F(ρi)≤

n∑
i=0

(−b(n+1)
n+1−i)F(ρ0) =F(ρ0),

which shows directly the first assertion. Then the second assertion follows immediately

as F(ρn−1)≤
∑n−1
i=0 (−b(n)

n−i)F(ρi)≤F(ρ0)
∑n−1
i=0 (−b(n)

n−i)≤F(ρ0), cf. Lemma 5.2.

The next result gives a uniform bound on the second moment M2(ρn) of the approx-
imation ρn, which plays a crucial role in the convergence analysis. The proof crucially
employs the property of the relative entropy. Recall that the relative entropy H(µ,ν)
between two probability measures µ and ν is defined by

H(µ|ν) =

{∫
log
(
dµ
dν

)
dµ if dµ�dν

+∞ otherwises.
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By Jensen’s inequality, H(µ|ν)≥0 for all µ and ν. Taking µ∈P2(Rd) and ν=Z−1e−
|x|2
2m ,

where Z= (2πm)−
d
2 is the normalization constant (m>0 is to be chosen), gives

0≤H(µ|Z−1e−
|x|2
2m ) =

∫
Rd
µlogµdx+

1

2m

∫
Rd
|x|2µdx+logZ,

This implies the following useful inequality

−
∫
Rd
µ logµdx≤ 1

2mM2(µ)− d
2 log(2πm). (5.7)

Lemma 5.4. Suppose that F(ρ0) and M2(ρ0) are finite. Let {ρn}Nn=1 be the sequence of
minimizers given by Scheme 4.1. Then for any positive integer 1≤n≤N , there holds

M2(ρn)≤C. (5.8)

Proof. The proof of the lemma is inspired by [16, Lemma 3.7, (3.10)]. Let Pn be
the optimal plan for the Wasserstein distance W2(ρn,ρn−1) between ρn−1 and ρn. Then
by the definition of the second moment M2(ρn), there holds

M2(ρn) =

∫
|y|2ρn(dy) =

∫
|y|2Pn(dxdy)

≤
∫

(2|y−x|2 +2x2)Pn(dxdy)

= 2W 2
2 (ρn,ρn−1)+2M2(ρn−1)

= 2W 2
2 (ρn,ρn−1)+2

n−1∑
i=0

(−b(n)
i )M2(ρi).

By means of mathematical induction, this estimate, the inequality (5.6) and the as-
sumptions F(ρ0)<∞ and M2(ρ0)<0 directly imply that the second moment M2(ρn)
of each of the approximation ρn is indeed finite. To derive a uniform bound (with re-
spect to n and τ), we estimate the “fractional” difference quotient of the second moment
using Corollary 5.1 with ϕ= |x|2. This choice is justified by the finiteness of the second
moment of each of the ρn:

Cα
τα

(M2(ρn)−M2(ρn−1)) =
Cα
τα

∫
Rd
x2(ρn−ρn−1)dx

≤
∣∣∣∫

Rd
(2∇Ψ ·x−2)ρn(x)dx

∣∣∣+τ−αW 2
2 (ρn,ρn−1)

≤2

∫
Rd
|∇Ψ||x|ρndx+2+τ−αW 2

2 (ρn,ρn−1).

Now by the growth condition (4.1) on Ψ, we have∫
Rd
|∇Ψ||x|ρndx≤C(1+M2(ρn)).

It follows from these two estimates and (5.6) that

Cατ
−α(M2(ρn)−M2(ρn−1))≤C(1+M2(ρn))+τ−αW 2

2 (ρn,ρn−1)
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≤C(1+M2(ρn))+Cα(F(ρn−1)−F(ρn)).

Next we bound the terms F(ρn−1) and −F (ρn) on the right hand side. First, by Lemma
5.3, F(ρn−1)≤F(ρ0)<∞. Meanwhile, since Ψ≥0 by Assumption 4.1, we obtain from
(5.7) that

−F(µ) =−
∫
Rd
µlogµdx−

∫
Rd

Ψµdx≤−
∫
Rd
µlogµdx≤ 1

2mM2(µ)− d
2 log(2πm).

Applying this inequality with µ=ρn and m= 1/2 gives

−F(ρn)≤M2(ρn)− d
2

log(π). (5.9)

These estimates together imply

Cατ
−α(M2(ρn)−M2(ρn−1))≤C(1+M2(ρn)).

Further, by the definition of ρn−1,

M2(ρn−1) =

∫
Rd
|x|2ρn−1 dx=

∫
Rd
|x|2

n−1∑
i=0

(−b(n)
n−i)ρ

idx=

n−1∑
i=0

(−b(n)
n−iM2(ρi).

Together with the definition of the L1 scheme in (3.1), it implies

∂̄ατM2(ρn)≤C(1+M2(ρn)).

This and the discrete Gronwall’s inequality from Lemma 3.2 immediately imply the
desired assertion.

The next result gives a uniform bound on the entropy and energy of the approxima-
tions {ρn}Nn=1, which induces the necessary compactness needed in the proof of Theorem
4.2. The notation []+ denotes taking the positive part.
Lemma 5.5. Suppose that F(ρ0) and M2(ρ0) are finite. Let {ρn}Nn=1 be the sequence
of minimizers given by Scheme 4.1. Then for any positive integer 1≤n≤N , there hold∫

Rd
[ρn logρn]+ dx≤C, E(ρn)≤C,

k∑
n=1

W 2
2 (ρn,ρn−1)≤Cτα.

Proof. These estimates are analogous to (43), (44) and (45) in [26]. According
to [26, Equations (14)-(15)], there exist 0<γ<1 and C<∞ such that for all ρ∈P2(Rd)

S(ρ)≥−C(M2(ρ)+1)γ and

∫
Rd
|min{ρ logρ,0}|dx≤C(M2(ρ)+1)γ . (5.10)

Now the first two estimates follow directly from (5.10) and (5.8), and Lemmas 5.3 and
5.4 as ∫

max{ρn logρn,0}dx≤S(ρn)+

∫
Rd
|min{ρn logρN ,0}|dx

≤S(ρn)+C(M2(ρn)+1)γ

≤F(ρn)+C(M2(ρn)+1)γ≤C,
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E(ρk) =F(ρn)−S(ρn)

≤F(ρn)+C(M2(ρn)+1)γ≤C.

It remains to prove the last estimate. By summing (5.6) over n and using the inequality
(5.4), we obtain

n∑
i=1

W 2
2 (ρi, ρ̄i−1)≤ 2τα

Cα

n∑
i=1

(
F(ρ̄i−1)−F(ρi)

)
≤ 2τα

Cα

[
n1−αF(ρ0)+

n−1∑
i=1

(
(n− i)1−α−(n− i+1)1−α

)
F(ρi)−F(ρn)

]
. (5.11)

Next we bound the summation in the square bracket. The inequality (5.7) (with m to
be chosen below) implies

n−1∑
i=1

(
(n− i)1−α−(n− i+1)1−α

)
F(ρi)

=

n−1∑
i=1

(
(n− i+1)1−α−(n− i)1−α

)
(−F(ρi))

≤
n−1∑
i=1

(
(n− i+1)1−α−(n− i)1−α)( 1

2m
M2(ρi)− d

2
log(2πm)

)
≤ M

2m

n−1∑
i=1

(
(n− i+1)1−α−(n− i)1−α)− d

2
log(2πm)(n1−α−1)

=n1−α
[M

2m
− d

2
log(2πm)

]
+
d

2
log(2πm)− M

2m
,

where M>0 is an upper bound of M2(ρi) for all i= 1,. ..,n−1 derived in Lemma 5.4.
Consequently,

n1−αF(ρ0)+

n−1∑
i=1

(
(n− i)1−α−(n− i+1)1−α

)
F(ρi)

≤n1−α
[
F(ρ0)+

M

2m
− d

2
log(2πm)

]
+
d

2
log(2πm)− M

2m
. (5.12)

It suffices to bound the right hand side uniformly with respect to n. To this end, let g :
(0,+∞)→R be defined by g(m) :=F(ρ0)+ M

2m−
d
2 log(2πm). Then, simple computation

shows g′(m) =− M
2m2 − d

2m <0, limm→0+ g(m) = +∞ and limm→+∞g(m) =−∞. Thus,
the equation g(m) = 0 has a unique solution m∗∈ (0,+∞) that depends only on F(ρ0),
d and M . Choosing m=m∗ in (5.12) gives

n1−αF(ρ0)+

n−1∑
i=1

(
(n− i)1−α−(n− i+1)1−α

)
F(ρi)≤ d

2
log(2πm∗)− M

2m∗
=F(ρ0).

This estimate, (5.11) and (5.9) together imply

n∑
i=1

W 2
2 (ρi, ρ̄i−1)≤Cτα

[
n1−αF(ρ0)+

n−1∑
i=1

(
(n− i)1−α−(n− i+1)1−α

)
F(ρi)−F(ρn)

]
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≤Cτα
[
F(ρ0)+M(ρn)− d

2
log(π)

]
≤Cτα,

where the last step follows from Lemma 5.4. This completes the proof of the lemma.
Now we can state the proof of Theorem 4.2.
Proof. [Proof of Theorem 4.2] The proof follows the strategy in [15, 21, 26]. The

key idea is to pass to the limit τ→0+ in the Euler-Lagrange equation for the sequence
of minimizers (5.1) proved in Lemma 5.1. The a priori estimates in Lemmas 5.4 and
5.5 provide necessary compactness properties that allow us to extract a convergent
subsequence.

Let T >0 be a given final time. For each fixed τ >0, let {ρn}Nn=1 be the sequence of
minimizers given by Scheme 4.1 and let t 7→ρτ (t) be the approximation defined in (4.3).
By Lemmas 5.4 and 5.5, we have

M2(ρτ (t))+

∫
Rd

[ρτ (t)logρτ (t)]+ dx≤C, for all 0≤ t≤T. (5.13)

Since the function z 7→ [z logz]+ has super-linear growth, the bound (5.13) and Dunford-
Pettis theorem [41] ensure that there exists a subsequence, denoted again by ρτ , and
some ρ∈L1((0,T )×Rd) such that

ρτ→ρ weakly in L1((0,T )×Rd). (5.14)

It remains to show that the limit ρ satisfies the weak formulation (2.7) of problem (1.1)
in the sense of Definition 2.1. Fix any test function ϕ∈C∞c ((−∞,T )×Rd). Let Pn∈
P(ρn−1,ρn) be the optimal plan for W2(ρn−1,ρn). For any 0<t<T , we have∫

Rd

[
ρn(x)−ρn−1(x)

]
ϕ(t,x)dx

=

∫
Rd
ρn(y)ϕ(t,y)dy−

∫
Rd
ρn−1(x)ϕ(t,x)dx

=

∫
R2d

[
ϕ(t,y)−ϕ(t,x)

]
Pn(dxdy)

=

∫
R2d

(y−x) ·∇ϕ(t,y)Pn(dxdy)+εn, (5.15)

where in the last line, we have used Taylor expansion of ϕ. The error term εn depends
on t through time-dependence of ϕ and can be bounded by

|εn(t)|≤C
∫
R2d

|y−x|2Pn(dxdy)≤CW 2
2 (ρn−1,ρn). (5.16)

From Lemma 5.1 and the identity (5.15), we obtain

Cα
τα

∫
Rd

[
ρn(x)−ρn−1(x)

]
ϕ(t,x)dx=

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρn(x) dx− Cα
τα

εn, (5.17)

which, upon integrating with respect to t from tn−1 to tn, yields

Cα
τα

∫ tn

tn−1

∫
Rd

[ρn(x)−ρn−1(x)]ϕ(t,x) dxdt

=

∫ tn

tn−1

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρn(x) dxdt− Cα
τα

∫ tn

tn−1

εn dt
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=

∫ tn

tn−1

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρτ (t,x) dx dt− Cα
τα

∫ tn

tn−1

εn dt,

where the last line follows from the definition of the piecewise constant interpolation
ρτ (t,x). Summing the last identity from n= 1 to N gives

N∑
n=1

Cα
τα

∫ tn

tn−1

∫
Rd

[ρn(x)−ρn−1(x)]ϕ(t,x) dx dt

=

∫ T

0

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρτ (t,x) dx dt+eτ , (5.18)

where the term eτ is given by

eτ =−Cα
τα

N∑
n=1

∫ tn

tn−1

εn dt. (5.19)

Now recall that by the definition ρn−1 of Scheme 4.1, ρn−1 =
∑n−1
i=0 (−b(n)

n−i)ρ
i. This and

the definition of the L1 approximation in (3.1), we can rewrite the left hand side of the
identity (5.18) as

N∑
n=1

Cα
τα

∫ tn

tn−1

∫
Rd

[ρn(x)−ρn−1(x)]ϕ(t,x) dxdt

=

N∑
n=1

Cα
τα

∫ tn

tn−1

∫
Rd

[
ρn(x)+

n−1∑
i=0

b
(n)
n−iρ

i(x)
]
ϕ(t,x) dx dt

=

N∑
n=1

∫ tn

tn−1

∫
Rd
∂̄ατ ρ

n(x)ϕ(t,x) dxdt.

By Lemma 3.3, we obtain

N∑
n=1

∫ tn

tn−1

∫
Rd

(∂̄ατ ρ
n)(t,x)ϕ(t,x)dtdx

=

∫
Rd

∫ T

0

ρτ (t,x)D
α

τ ϕ(t,x)dtdx+Cατ
−α
∫
Rd
ρ0(x)

( N∑
n=1

b(n)
n

∫ tn

tn−1

ϕ(t,x)dt
)

dx.

Now by Theorem 3.1, the following two limits hold

lim
τ→0+

D
α

τ ϕ(t) = tD
α
Tϕ(t),

lim
τ→0+

Cατ
−α

N∑
n=1

b(n)
n

∫ tn

tn−1

ϕ(t)dt=−(tI
α
Tϕ)(0).

Thus, upon passing to limit τ→0+ and noting the weak convergence of the sequence
ρτ to ρ in L1(Ω), we deduce

lim
τ→0+

N∑
n=1

Cα
τα

∫ tn

tn−1

∫
Rd

[ρn(x)− ρ̄n−1(x)]ϕ(t,x) dxdt
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= lim
τ→0+

∫
Rd

∫ T

0

ρτ (t,x)D
α

τ ϕ(t,x)dtdx+Cατ
−α
∫
Rd
ρ0(x)

( N∑
n=1

b(n)
n

∫ tn

tn−1

ϕ(t,x)dt
)

dx

=

∫
Rd

∫ T

0

ρ(t,x)tD
α
Tϕ(t,x)dtdx− 1

Γ(1−α)

∫
Rd
ρ0(x)

∫ T

0

t−αϕ(t,x)dtdx.

Meanwhile, for the first term on the right-hand side of (5.18), using the weak convergence
of ρτ to ρ in L1((0,T )×Rd), we obtain

lim
τ→0+

∫ T

0

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρτ (t,x) dxdt=

∫ T

0

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρ(t,x) dxdt.

It remains to consider the error term eτ . Actually, by the estimates (5.19) and (5.16),
we have

|eτ |≤
Cα
τα

N∑
n=1

∫ tn

tn−1

|εn(t)|dt≤Cτ−α
N∑
n=1

∫ tn

tn−1

W 2
2 (ρ̄n−1,ρn) dt

≤Cτ1−α
N∑
n=1

W 2
2 (ρ̄n−1,ρn)≤Cτ,

where the last step is due to the bound on
∑N
n=1W

2
2 (ρ̄n−1,ρn) from Lemma 5.5. This

inequality implies that eτ→0 as τ→0+. Therefore, taking the limit τ→0+, we deduce
that the limiting density ρ(t,x) satisfies∫ T

0

∫
Rd
ρ(t,x)tD

α
Tϕ(t,x)dtdx− 1

Γ(1−α)

∫ T

0

t−α
∫
Rd
ρ0(x)ϕ(t,x)dxdt

=

∫ T

0

∫
Rd

(−∇Ψ ·∇ϕ+∆ϕ)ρ(t,x) dxdt

which is precisely the weak formulation (2.7) of (1.1) in Definition 2.1. This completes
the proof of the theorem.

6. Numerical experiments
The classical JKO scheme may be employed as a time-stepping scheme for solving

FPEs [2,29], although not extensively studied due to relatively high computational cost
associated with the Wasserstein distance. Following the setting in [29], we illustrate the
fractional scheme 4.1 with the following time-fractional FPE:

∂αt u−∇·(∇u+∇Ψu) = 0 in Ω, (6.1)

subject to the following initial and boundary conditions

u
∣∣
t=0

=u0≥0 and (∇u+∇Ψu) ·ν= 0 on ∂Ω, (6.2)

where ν is the unit outward normal direction, and u0 is assumed to be a probability
density in Ω, i.e.,

∫
Ω
u0(x)dx= 1.

6.1. Implementation details Based on Scheme 4.1, we employ the following
time semi-discrete approximation: Let u0 :=u0, and for n≥1, define un to be the unique
minimizer overA :=

{
u : Ω→∞ :u∈L1(Ω) and

∫
Ω
u(x)dx=

∫
Ω
un(x)dx

}
of the following

functional

J(u) :=
Cα
2τα

W 2
2 (u,un−1)+

∫
Ω

(u logu+Ψu)dx, with un−1 =

n−1∑
i=0

(−b(n)
n−i)u

i. (6.3)
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Next we describe a spatial discretization of the function J(u) for the one-dimensional
case Ω = (0,1), and the discretization is similarly for the high-dimensional case, provided
that one can have a regular decomposition (e.g., triangulation) of the domain Ω. The
interval Ω =[0,1] is discretized into subintervals [xi,xi+1], where xi= ih and h= 1/M
denotes the mesh size and M ∈N+. Similarly, the time interval [0,T ] is discretized as
into [tn,tn+1], where tn=nτ , n= 0,1,. .., and τ =T/N denotes the time-step size and
M ∈N+. Following [2, 29], we approximate the solutions un with spatially piecewise
constant functions. The initial data u0 : Ω→R and the forcing Ψ : Ω→R are taken
to be piecewise constant functions whose values coincide with their function values at
the midpoint xi+ 1

2
=xi+

h
2 , i.e., u0 by the sequence u0 = (u0i)

M−1
i=0 ∈RM , with u0i=

u0(xi+ 1
2
), and similarly for Ψ. Accordingly, the integral of a function f : Ω→R over the

domain Ω is approximate by the following midpoint quadrature:∫
Ω

f(x) dx'h
M−1∑
i=0

fi.

By absorbing the mesh size h into the probability, i.e., ui=
∫ xi+1

xi
udx, then u∈RM

belongs to the discrete probability space. The discrete analogue Jh(u) of the functional
J(u) is given by

Jh(u) =
Cα
2τα

W 2
2 (u,un−1)+〈u,logu+ψ〉, with un−1 =

n−1∑
i=0

(−b(n)
n−i)u

i, (6.4)

where log (and exponential) of a vector is understood componentwise, 〈·, ·〉 denotes
the usual Euclidean inner product on RM (or RM×M ). The minimization is over the

probability simplex ΣM ={u∈RM :ui≥0,
∑M−1
i=0 ui= 1}. In the functional, we have

dropped the constant independent of logu, since it does not affect the minimization.
The discrete functional Jh(u) involves the Wasserstein distance W 2

2 (u,un−1), and
thus its efficient minimization is nontrivial, which has restricted the computation of
Wasserstein gradient flow traditionally to the one spatial dimensional case, for which
the Wasserstein distance can be computed explicitly via an inverse cumulative distribu-
tion function [29]. Nonetheless, over the past few years, the computation of Wasserstein
distance has witnessed significant progress, especially within the computer vision and
machine learning communities; see the monograph [40] for an up-to-date account. In
the numerical experiments below, we employ the Dykstra algorithm given in Peyre [39]
for each JKO time-stepping. It is based on entropic approximation of Wasserstein dis-
tance [13], and easily extended to the multi-dimensional case, when compared with the
relaxation algorithm and projected gradient descent employed in [2,29]. We describe the
whole computational procedure for minimizing Jh(u) in Appendix A for the convenience
of readers. Note that the Wasserstein distance can also be approximated using the en-
tropic regularization, leading to Sinkhorn algorithm [13]. This algorithm is employed
below to compute the error in Wasserstein distance approximately. In the computation,
the (crucial) relaxation parameter γ in the algorithms is fixed at 1/N , where N is the
number of time steps.

6.2. Numerical results and discussions
Now we present some numerical results. First we consider the one-dimensional case.

Example 6.1. The domain Ω = (0,1), the initial condition u0(x) = 1 in Ω, and the
forcing Ψ is given by Ψ(x) =x or Ψ(x) = 1

2x
2.
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The numerical results are given in Tables 6.1 and 6.2, respectively, at the time
T = 1, for the forcing Ψ(x) =x and Ψ(x) = 1

2x
2, where the L1(Ω) and L2(Ω) error of

the numerical solutions with respect to the reference solution, which is computed on a
much finer temporal grid with a time step size τ = 1/1280. Note that the L1(Ω) metric
was employed in the prior studies [2, 29], whereas the L2(Ω) metric is very common in
numerical analysis [23]. In addition, we also present the error in the Wasserstein distance
(indicated by W in the tables), computed using Sinkhorn algorithm [13]. The results
show that the scheme is convergent in either norm, with the convergence rate in the L1

norm slightly higher than that for the L2 norm. The convergence rate is consistently
observed to be sublinear for all fractional orders, and it is slower than the first-order
convergence of the standard implementation of the L1 scheme (implemented with the
Galerkin in space) [22]. Surprisingly, the convergence rate deteriorates as the fractional
order α increases, however, the precise mechanism of the loss remains elusive. In sharp
contrast, the convergence in Wasserstein distance is rather stable with respect to the
fractional order α. The empirical rate is at 0.47, which is slower than the optimal first-
order rate for the classical JKO scheme (under suitable conditions) [4, Theorem 4.0.4];

see also [11] and [12, Theorem 2.7] for a convergence rate O(τ
1
4 ) and O(τ

1
2 ), respectively.

In view of these empirical observations, it is of enormous interest to rigorously derive
sharp convergence rate in the fractional case. Note that for the two forcing terms, the
convergence behavior of the scheme is very similar to each other; see Fig. 6.1 for the
density function at T = 1. Qualitatively, the plots also indicate that the convergence
speed to the equilibrium differs significantly with the fractional order α, as recently
established by Kemppainen and Zacher [27], i.e., the smaller is the fractional order α,
the slower is the convergence to the equilibrium.

Table 6.1. Numerical results for the forcing Ψ(x) =x.

α\N 20 40 80 160 320 rate
L1 2.22e-2 1.41e-2 8.85e-3 5.40e-3 2.98e-3 0.72

0.6 L2 3.22e-2 2.18e-2 1.41e-2 8.62e-3 4.71e-3 0.69
W 1.44e-1 1.05e-1 7.57e-2 5.42e-2 3.86e-2 0.47
L1 3.11e-2 2.18e-2 1.44e-2 9.42e-3 5.56e-3 0.62

0.8 L2 4.43e-2 3.32e-2 2.38e-2 1.59e-2 9.52e-3 0.55
W 1.44e-1 1.05e-1 7.58e-2 5.42e-2 3.87e-2 0.47
L1 3.37e-2 2.58e-2 1.83e-2 1.19e-2 6.81e-3 0.57

1.0 L2 4.45e-2 3.66e-2 2.86e-2 2.07e-2 1.32e-2 0.43
W 1.44e-1 1.05e-1 7.58e-2 5.43e-2 3.87e-2 0.47

The next example is concerned with a two-dimensional problem.

Example 6.2. The domain Ω = (0,1)2, the initial data u0(x) = 1 in Ω, and the forcing
Ψ is given by Ψ(x1,x2) =x1 +x2.

The numerical results for Example 6.2 are presented in Table 6.3 and Fig. 6.2. The
empirical convergence rates are similar to the one-dimensional case, and the convergence
is also very steady (but the computing time is much higher). The density profiles for
the three fractional orders are largely comparable at T = 1, with the main differences lie
at the boundary, as observed in the one-dimensional case, cf. Fig. 6.1. This is possibly
due to the difference in the long-time behavior for different fractional orders.

Appendix A. Dykstra algorithm.
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Table 6.2. Numerical results for the forcing Ψ(x) =x2/2.

α\N 20 40 80 160 320 rate
L1 1.41e-2 8.74e-3 5.06e-3 2.98e-3 1.61e-3 0.78

0.6 L2 1.93e-2 1.30e-2 8.46e-3 5.14e-3 2.79e-3 0.69
W 1.45e-1 1.05e-1 7.60e-2 5.44e-2 3.88e-2 0.47
L1 2.18e-2 1.51e-2 9.81e-3 5.85e-3 3.28e-3 0.68

0.8 L2 2.88e-2 2.17e-2 1.56e-2 1.04e-2 6.22e-3 0.55
W 1.45e-1 1.05e-1 7.60e-2 5.44e-2 3.87e-2 0.47
L1 3.04e-2 2.34e-2 1.66e-2 1.07e-2 6.09e-3 0.58

1.0 L2 3.81e-2 3.15e-2 2.46e-2 1.78e-2 1.14e-2 0.43
W 1.45e-1 1.05e-1 7.60e-2 5.44e-2 3.88e-2 0.47
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=0.6
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Ψ(x) =x Ψ(x) =x2/2

Fig. 6.1. The probability density function at t= 1.

Table 6.3. Numerical results for the forcing Ψ(x) =x1 +x2.

α\N 20 40 80 160 320 rate
L1 3.28e-2 2.15e-2 1.35e-2 8.14e-3 4.43e-3 0.72

0.6 L2 4.81e-2 3.27e-2 2.13e-2 1.31e-2 7.24e-3 0.68
W 2.04e-1 1.48e-1 1.07e-1 7.66e-2 5.47e-2 0.47
L1 4.57e-2 3.31e-2 2.27e-2 1.46e-2 8.58e-3 0.60

0.8 L2 6.63e-2 5.01e-2 3.62e-2 2.46e-2 1.49e-2 0.53
W 2.04e-1 1.48e-1 1.07e-1 7.67e-2 5.47e-2 0.47
L1 4.93e-2 3.96e-2 2.92e-2 1.94e-2 1.09e-2 0.54

1.0 L2 6.57e-2 5.43e-2 4.27e-2 3.13e-2 2.05e-2 0.42
W 2.04e-1 1.49e-1 1.07e-1 7.68e-2 5.48e-2 0.47

In this appendix, we describe the Dykstra algorithm for JKO stepping, originally
developed in [39]. Let C= [cij ]∈RM×M be the cost, with cij = |xi−xj |2. The entropic
regularization of Wasserstein distance between two discrete probability measures p,q∈
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Fig. 6.2. The probability density function for Example 6.2 at t= 1.

ΣM for a cost C∈RM×M is given by

W2,γ(p,q)2 = min
π∈P(p,q)

〈C,π〉+γ〈π, logπ−1〉+〈1,`RM×M+
(π)〉,

where γ>0 is a small number, controlling the tradeoff between accuracy and com-
putational efficiency, and P(p,q) is the set of couplings between p and q, i.e.,
P(p,q) ={π∈RM×M+ :π1=p,πT1=q}, with 1 being a vector or a matrix with all
entries equal to unit. Accordingly, the entropic regularization of the fractional JKO
functional is given by

〈C,π〉+γ〈π,logπ−1〉+〈1,`RM×M+
(π)〉+τ ′f(π1)+`Cq (π), (A.1)

where `C is an indicator function, τ ′= 2τα

Cα
, Cq ={π∈RM×M :πT1= q} and f(q) =

〈q, logq−1+ψ〉. This functional can be recast into

min
π

KL(π|ξ)+ϕ1(π)+ϕ2(π),

with KL being the classical KL divergence, and

ϕ1(π) = `Cq (π) and ϕ2(π) = τ ′

γ f(π1),

and the Gibbs kernel ξ is given by

ξ=e−C/γ ∈RM×M+,∗ .

The update is obtained using p=π1. It remains to minimize (A.1) with respect to
the coupling π∈P(p,q). This can be carried out using the Dykstra algorithm devel-
oped in [39]; see Algorithm 1 for the complete procedure, where the notation ◦ denotes
componentwise product between two vectors. It is noteworthy that the algorithm op-
erates only on vectors a,b,u,v instead of the coupling ξ directly, due to the fact that
the optimal coupling satisfies π= diag(a)ξdiag(b), for some a,b∈RM+ , like the classical
entropic regularization of optimal transport [13].

The (Kullback-Leibler) KL proximal operator ProxKL
σf (q) in (A.4) for any q∈RM+

is defined by

ProxKL
σf (q) = arg min

p∈RM+
〈p, log p

q −1〉+σ〈p,logp−1+ψ〉.
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Algorithm 1 Dykstra algorithm for JKO stepping.

1: Set a0 =b0 =u0 =v0 =1, and specify the tolerance ε.
2: for `= 1,. ..,L do
3: if ` is odd then
4: update a` and b` by

a`=a`−1 ◦u`−2 and b`=
q

ξT (a`)
; (A.2)

5: else
6: update a` and b` by

b`=b`−1 ◦v`−2 and a`=
p`

ξ(b`)
, (A.3)

where p` is given by

p`= ProxKL
τ
γ f

(a`−1 ◦u`−2 ◦ξ(b`)); (A.4)

7: end if
8: update u` and v` by

u`=u`−2 ◦ a
`−1

a`
and v`=v`−2 ◦ b

`−1

b`
;

9: if ‖b` ◦ξT (a`)−q‖<ε and ` is even, terminate the iteration;
10: end for
11: Output p` defined in (A.4).

Due to the separability of the optimization problem, it suffices to minimize the one-
dimensional function g(s) =slog st −s+ t+σ(slogs−s+sψ). Differentiating with re-
spect to s and setting it to zero gives logs− logt+σ(logs+ψ) = 0, i.e., logs= 1

1+σ logt−
σψ

1+σ , and s∗= t
1

1+σ e−
σ

1+σψ. Thus the proximal operator is given by

ProxKL
σf (q) =q

1
1+σ ◦e−

σ
1+σψ.

The stopping criterion at line 9 employs the violation of the constraint Cq.
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