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MAXIMISING BERNOULLI MEASURES AND DIMENSION GAPS FOR
COUNTABLE BRANCHED SYSTEMS

SIMON BAKER AND NATALIA JURGA

Abstract. Kifer, Peres, and Weiss proved in [3] that there exists c0 > 0, such that

dimµ ≤ 1 − c0 for any probability measure µ which makes the digits of the continued

fraction expansion i.i.d. random variables. In this paper we prove that amongst this class

of measures, there exists one whose dimension is maximal. Our results also apply in the

more general setting of countable branched systems.

1. Introduction

Let x ∈ [0, 1] \Q. Then as is well known, there exists a unique sequence (ai) ∈ NN such

that

x =
1

a1 +
1

a2 +
1

a3 + . . .

.

The sequence (ai) is called the continued fraction expansion of x. We can generate (ai)

using the Gauss map T : [0, 1] \Q→ [0, 1] \Q, which is defined to be

T (x) =
1

x
(mod 1).

The sequence (ai) is then constructed via the rule

ai =
⌊ 1

T i−1(x)

⌋
.

Here b·c denotes the integer part. One can study the statistical properties of T using the

Gauss measure µG, which is given by

µG(A) =
1

log 2

∫
A

1

1 + x
dx

for any Borel subset A ⊂ [0, 1]. The measure µG is T -invariant and ergodic. Importantly

µG is also absolutely continuous with respect to the Lebesgue measure. Consequently one
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2 SIMON BAKER AND NATALIA JURGA

can use µG to derive statistical information about the sequence (ai) for Lebesgue almost

every x.

Using the shift space (NN, σ) one can “code” the dynamics of T . Let Π : NN → [0, 1] \Q
be the map satisfying

Π((ai)) :=
1

a1 +
1

a2 +
1

a3 + . . .

.

Then T ◦ Π = Π ◦ σ. Here σ is the usual shift map. One can define many T -invariant

measures on [0, 1] \ Q using the coding map Π. Indeed, for any σ-invariant measure m,

one can define a T -invariant measure Π∗m = m ◦ Π−1. The fact that Π∗m is T -invariant

follows from the relation T ◦Π = Π ◦ σ. We call Π∗m the pushforward of m. The simplest

σ-invariant measures on NN are the Bernoulli measures mp corresponding to a probability

vector p = (pi)
∞
i=1. In what follows we let µp := Π∗mp. From a statistical perspective,

it would be highly desirable for the pushforward of a Bernoulli measure to be absolutely

continuous with respect to the Lebesgue measure. This is unfortunately not the case for T ,

and we are forced to realign our expectations and hope that there exists a “large” set whose

dynamics can be described by the pushforward of a Bernoulli measure. For us large will

be described by the dimension of a measure. For an arbitrary Borel probability measure µ

supported on [0, 1], we define the dimension of µ to be

dim(µ) := inf{dimH(A) : µ(A) = 1}

where dimH denotes Hausdorff dimension. One can prove using the thermodynamic form-

alism developed by Walters [7], and a result of Kinney and Pitcher [4], that whenever

−
∑
pi log pi <∞ we have

(1.1) dimµp < 1.

What is not clear from (1.1) is whether dimµp can be arbitrarily close to 1. This problem

is difficult since dim(·) is not necessarily upper semi-continuous as a real valued function

on the space of T -invariant probability measures equipped with the weak star topology,

and the set {µp} is not compact. That being said, an answer to this question was obtained

in a paper of Kifer, Peres, and Weiss [3], who proved the following theorem.

Theorem 1.1. supp dimµp < 1− 10−7.

Theorem 1.1 was recently extended by Rapaport [6] who showed that there exists c0 > 0,

such that whenever µ is a measure which makes the digits independent, not necessarily
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identically distributed, then dimµ < 1 − c0. In an upcoming paper of the second author

[2], another proof is given that there exists a c0 > 0, which can be made explicit, such that

supp dimµp < 1− c0. This proof makes use of techniques from thermodynamic formalism.

The main result of this paper gives a new proof that supp dimµp < 1. Our result is

weaker than Theorem 1.1 in the sense that we do not achieve any quantitative information

on the size of the dimension gap. However, we improve upon Theorem 1.1 by showing that

there exists a Bernoulli measure whose pushforward achieves the supremum.

Theorem 1.2. There exists a probability vector p∗ such that supp dimµp = dimµp∗ .

It will follow from our proof that the measure µp∗ appearing in Theorem 1.2 satis-

fies −
∑
p∗i log p∗i < ∞. Applying (1.1), we see that Theorem 1.2 immediately implies

supp dimµp < 1. As we will see, Theorem 1.2 in fact holds more generally for countable

branched systems that satisfy some regularity assumptions.

Our proof of Theorem 1.2 differs significantly from the approaches given in [3] and

[6]. The approach of both of these papers relied on showing that for any of the considered

measures µ, a generic point for µ is contained in a set exhibiting exceptional large deviation

asymptotics. Importantly this exceptional set has no dependence on µ. Their problem then

reduces to determining an upper bound for the Hausdorff dimension of this exceptional set.

Our proof relies on studying those Bernoulli measures whose pushforward is supported on

only the first L digits. Restricting to this class of measures, it is known that there exists a

measure µpL whose dimension is maximal. We will show that this measure always satisfies

a certain decay property. This decay property allows us to rewrite dimµpL as an expression

involving finitely many digits up to some uniformly small error. Taking a weak star limit

along some subsequence of (µpL)∞L=1, we can then use this expression for dimµpL to show

that the limiting measure in fact achieves the supremum in Theorem 1.2.

The rest of this paper is arranged as follows. In Section 2 we recall some background

from countable branched systems and state our main result (Theorem 2.1), from which

the proof of Theorem 1.2 will follow as a special case. In Section 3 we prove our main

result (Theorem 2.1) and in Section 4 we show how it implies Theorem 1.2 and make some

concluding remarks.

2. Preliminaries

Let {In = (an, bn)}∞n=1 be a countable collection of disjoint open subintervals of (0, 1)

such that either a1 = 0, bn = an+1 for all n ∈ N, and limn→∞ bn = 1, or b1 = 1, bn+1 = an for

all n ∈ N, and limn→∞ an = 0. Assume that for each In there exists a map Tn : In → (0, 1)

such that Tn is a C2 bijection from In onto (0, 1). In what follows we always assume
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that every Tn is orientation preserving, or every Tn is orientation reversing. We can then

define the orientation preserving or orientation reversing map T : ∪∞n=1In → (0, 1) via the

rule T (x) = Tn(x) if x ∈ In. Throughout we will assume that T satisfies the following

conditions:

(1) (Monotone derivative). The derivative T ′ is monotone on ∪∞n=1In.

(2) (Orientation reversing) If T is orientation reversing and T ′ is increasing, then for

any n ∈ N and x, y ∈ In such that x ≥ y, we have (T 2)′(x) ≥ (T 2)′(y). If T is

orientation reversing and T ′ is decreasing, then for any n ∈ N and x, y ∈ In such

that x ≥ y, we have (T 2)′(x) ≤ (T 2)′(y).

(3) (Uniformly expanding). Some iterate of T is uniformly expanding, that is, there

exists l ∈ N and Λ > 1 such that

|(T l)′(x)| ≥ Λ

for all x ∈ [0, 1].

(4) (Rényi condition). There exists κ <∞ such that

sup
n∈N

sup
x,y,z∈In

∣∣ T ′′(x)

T ′(y)T ′(z)

∣∣ ≤ κ.

(5) There exists s ∈ (0, 1) such that

∞∑
n=1

|In|s <∞.

Let us emphasise here that the Gauss map satisfies (1)− (5). Conditions (1), (3), (4), and

(5) are standard assumptions. Condition (2) is not a standard assumption but arises as an

artefact of our proof of our main result for countable branched systems, stated in Theorem

2.1 below, which we expect would hold without assuming condition (2). For more details

on why condition (2) will be required, see Remark 3.6.

We let |In| denote the Lebesgue measure of the interval In and define

s0 := inf

{
s :

∞∑
n=1

|In|s <∞

}
.(2.1)

By (5) we know that s0 < 1.

Let φn : (0, 1)→ In be the inverse map of Tn. Given a sequence (ai) ∈ Nn we let

φa1,...,an := φa1 ◦ · · · ◦ φan and Ia1,...,an := φa1,...,an((0, 1))).
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Under our assumptions we can code the dynamics of T using the coding map Π : NN → [0, 1]

defined as follows:

Π((ai)) :=
∞⋂
n=1

Ia1,...,an .

Notice that we again have the relation Π◦σ = T ◦Π. We can use the map Π to pushforward

Bernoulli measures and again ask what is their dimension. Our main result is the following.

Theorem 2.1. Assume T satisfies properties (1)− (5). Suppose there exists µp such that

dimµp > s0, then there exists µp∗ such that supp dimµp = dimµp∗ .

For the Gauss map it can be shown that s0 = 1/2. So by Theorem 2.1 to prove Theorem

1.2 it suffices to construct a Bernoulli measure µp such that dimµp > 1/2. We construct

such a measure in Section 4. Note that Theorem 2.1 has the following straightforward

corollary, which can be used to establish the existence of a dimension gap at 1.

Corollary 2.2. Assume T satisfies properties (1)− (5). Suppose that

dimµp < 1 for all µp.

Then there exists some c0 > 0 such that

sup
p

dimµp ≤ 1− c0.

Corollary 2.2 follows since if we fail the hypothesis of Theorem 2.1, we must have

dimµp ≤ s0 for all µp and s0 < 1.

When studying the dimension of T -invariant measures the following dynamical quantities

naturally arise. Given a map T satisfying properties (1) − (5) and a T -invariant measure

µ, we define the entropy of µ to be

h(µ) := lim
n→∞

1

n

∑
(ai)∈Nn

−µ(Ia1...an) log µ(Ia1...an).

Note that when µ is the pushforward of a Bernoulli measure we have the following simpler

expression for h(µ):

h(µp) = −
∞∑
i=1

pi log pi.

We define the Lyapunov exponent of µ to be

χ(µ) :=

∫
log |T ′| dµ.
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The following well known formula relates the dimension of µ to these two dynamical quant-

ities, see [5] for a proof in our general setting, and [4] for a proof in the setting of the Gauss

map.

Proposition 2.3. Suppose T satisfies properties (1)− (5). If µ is an ergodic T -invariant

measure and h(µ) <∞, then

dim(µ) =
h(µ)

χ(µ)
.

As a consequence of the Rényi condition we have the following useful bounded distortion

property.

Lemma 2.4. Suppose T satisfies properties (1) − (5). There exists a uniform constant

C > 0 such that for any finite word (a1, ..., an),

−C ≤ log
(T n)′(x)

(T n)′(y)
≤ C

for any x, y ∈ Ia1,...,an.

3. Proof of Theorem 2.1

When studying dim(µp) there are two cases that naturally arise. The case when h(µp)

is finite, and the case when h(µp) is infinite. We start this section by obtaining a upper

bound for dim(µp) when h(µp) =∞.

3.1. The case where h(µp) =∞. In this section we prove the following proposition.

Proposition 3.1. If h(µp) =∞ then dim(µp) ≤ s0.

We start by proving that h(µp) =∞ implies χ(µp) =∞. Our proof is an adaptation of

Lemma 3.1 from [1].

Lemma 3.2. If h(µp) =∞ then χ(µp) =∞.

Proof. We start by remarking that by Lemma 2.4 and the mean value theorem we have

(3.1) χ(µp) =

∫
log |T ′|dµp ≥

∞∑
n=1

µp(In) log
1

|In|
− C

for some constant C > 0. We observe that for any N ∈ N we have

−
N∑
n=1

µp(In) log µp(In) +
N∑
n=1

µp(In) log |In| =
N∑
n=1

µp(In) log
|In|

µp(In)

≤

(
N∑
n=1

µp(In)

)
log
( ∑N

k=1 |Ik|∑N
m=1 µp(Im)

)



MAXIMISING BERNOULLI MEASURES AND DIMENSION GAPS 7

where the last step follows by Jensen’s inequality and the fact that log is a concave function.

Since
∑∞

n=1 |In| = 1 our upper bound converges to 0 as N →∞ . It follows therefore that

if −
∑∞

n=1 µp(In) log µp(In) = ∞ then −
∑∞

n=1 µp(In) log |In| = ∞. By (3.1) this implies

that if h(µp) =∞ then χ(µp) =∞. �

Let Jn(x) = Ia1,...,an if x ∈ Ia1,...,an . Given λ > 0, we let

Eλ :=
∞⋂
j=1

∞⋃
n=j

{
x ∈ (0, 1) : |Jn(x)| ≤ e−λn

}
.

Given s ∈ (0, 1) let

KT (s) := sup
x∈

⋃
n In

∑
y:T (y)=x

|T ′(y)|−s.

Note that
1

supx∈In |T ′(x)|
≤ |In| ≤

1

infy∈In |T ′(y)|
and that by Lemma 2.4,

e−C ≤
supx∈In |T ′(x)|
infy∈In |T ′(y)|

≤ eC .

Hence,

KT (s) ≤
∞∑
n=1

1

infy∈In |T ′(y)|s
≤

∞∑
n=1

eCs

supx∈In |T ′(x)|s
≤ eCs

∞∑
n=1

|In|s

and similarly

KT (s) ≥ e−Cs
∞∑
n=1

|In|s.

In particular,
∑∞

n=1 |In|s < ∞ if and only if KT (s) < ∞. The following theorem was

established in [3].

Theorem 3.3. Assume that T satisfies properties (1)− (5). For s ∈ (s0, 1) we have

q(s) := lim
n→∞

1

n
log

∫
|(T n)′(x)|1−sdx ≤ KT (s).

Moreover, for any λ > 0 we have

dimH(Eλ) ≤ inf
s0<s<1

(
s+

q(s)

λ

)
.

Using Theorem 3.3 we may now prove Proposition 3.1.
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Proof of Proposition 3.1. Let µp be such that h(µp) = ∞. By Lemma 3.2 we must have

χ(µp) =∞. It follows then from the Birkhoff Ergodic Theorem that for µp a.e. x we have

lim
n→∞

1

n

n−1∑
j=0

log |T ′(T j)(x)| =∞.

By Lemma 2.4 and the chain rule, this implies that for any λ > 0, µp a.e. x is contained in

Eλ. Therefore µp gives full measure to Eλ for any λ > 0. Consequently dimµp ≤ dimH(Eλ)

for any λ > 0. Applying Theorem 3.3 we may conclude that dimµp ≤ s0. �

3.2. The case where h(µp) < ∞. We start this section by introducing some notation

and proving two lemmas which describe how the entropy and the Lyapunov exponent of

µp change when mass is moved from the nth coordinate to the first coordinate.

Given a probability vector p = (p1, p2, ...), for n ≥ 2 and 0 ≤ ε ≤ min{pn, 1− p1} we let

pε,n denote the probability vector

pε,n = (p1 + ε, p2, ..., pn − ε, pn+1, ...).

That is, pε,n is the probability vector obtained from p when ε mass has been moved from

the nth coordinate to the first coordinate.

Lemma 3.4. Let p be such that h(µp) <∞. Then

d

dε
(h(µp)− h(µpε,n)) = log

(
p1 + ε

pn − ε

)
.

Proof. Fix a probability vector p such that h(µp) <∞. Then for 0 ≤ ε ≤ min{pn, 1− p1}
we have

h(µp)− h(µpε,n) = −pn log pn − p1 log p1 + (pn − ε) log(pn − ε) + (p1 + ε) log(p1 + ε).

Differentiating the right hand side of the above we obtain

d

dε
(h(µp)− h(µpε,n)) = −pn − ε

pn − ε
− log(pn − ε) +

p1 + ε

p1 + ε
+ log(p1 + ε)

= −1− log(pn − ε) + 1 + log(p1 + ε)

= log

(
p1 + ε

pn − ε

)
.

�

Lemma 3.4 tells us that for small values of ε, the change in entropy when we move ε

mass from the nth coordinate to the first coordinate is approximately ε log
(
p1+ε
pn−ε

)
. We

now prove a complimentary statement for the Lyapunov exponent. In order to quantify
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how the Lyapunov exponents change under redistribution of measure, we need to estimate

the difference
∫

log |T ′|dµp −
∫

log |T ′|dµpε,n . It will be easier to estimate this quantity by

rewriting the integrals over a common measure.

Fix a probability vector p and n ∈ N. We denote Σ = NN. Let Σ0 = ({0} ∪ N)N denote

the space of sequences whose entries are either an element of the natural numbers, or equal

to the extra digit zero. We equip Σ0 with the shift map σ0 : Σ0 → Σ0.

We define two projections Π1 : Σ0 → Σ and Π2 : Σ0 → Σ given by

Π1((bi)) = (ai) where

{
ai = bi if bi 6= 0

ai = 1 if bi = 0

and

Π2((bi)) = (ai) where

{
ai = bi if bi 6= 0

ai = n if bi = 0.

Let ν be the Bernoulli measure on Σ0 associated to the probability vector (q0, q1, ...) =

(ε, p1, ..., pn − ε, pn+1, ...). We make here the important observation that

Π∗(Π1∗(ν)) = µpε,n and Π∗(Π2∗(ν)) = µp.

Finally, denote

τn = inf
x∈In
|T ′(x)|.(3.2)

Lemma 3.5. Let T satisfy properties (1) − (5) and p be a probability vector. Then there

exists a constant 0 < λ < 1, such that for all n ∈ N and ε sufficiently small

χ(µp)− χ(µpε,n) ≥ ε log(λτn).

Proof. Let us start by fixing s > s0. We split our proof into two cases: when T is orientation

preserving and when T is orientation reversing. In both cases we will assume T ′ is increas-

ing. The case where T ′ is decreasing is handled similarly. Note that under the assumption

T ′ is increasing and T is orientation preserving the defining intervals {In = (an, bn)}} must

satisfy a1 = 0 and bn → 1. Likewise if T ′ is increasing and T is orientation reversing the

defining intervals {In = (an, bn)} must satisfy b1 = 1 and an → 0.

Case 1 (T is orientation preserving). Let Π1, Π2 and ν be as above. Since the

branches of T are orientation preserving and T ′ is increasing we have

(3.3) Π ◦ Π2((bi)) ≥ Π ◦ Π1((bi))
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for all (bi) ∈ Σ0. Given a finite word j = (j1, . . . , jk) ∈ ({0} ∪ N)k, we define the cylinder

set determined by j to be

[j] := {(bi) ∈ Σ0 : (b1, . . . , bk) = j}.

We observe∫
log |T ′|dµp −

∫
log |T ′|dµpε,n =

∫
log |T ′ ◦ Π ◦ Π2| − log |T ′ ◦ Π ◦ Π1|dν

=
∞∑
i=0

∫
[i]

log

∣∣∣∣T ′ ◦ Π ◦ Π2

T ′ ◦ Π ◦ Π1

∣∣∣∣ dν
≥
∫

[0]

log

∣∣∣∣T ′ ◦ Π ◦ Π2

T ′ ◦ Π ◦ Π1

∣∣∣∣ dν.(3.4)

In the final inequality we used the fact that T ′ is increasing and (3.3). Since the absolute

value of the derivative of any point in I1 can be bounded above by a constant C ′ > 0 that

does not depend upon n, and by the definition of τn in (3.2), we have

(3.5)

∫
[0]

log

∣∣∣∣T ′ ◦ Π ◦ Π2

T ′ ◦ Π ◦ Π1

∣∣∣∣ dν ≥ ∫
[0]

log
τn
C ′
dν = ν([0]) log

τn
C ′

= ε log
τn
C ′
.

Combining (3.4) with (3.5) implies our result.

Case 2 (T is orientation reversing). We define

A :=
{

(bi) : min
i
{bi = 0} is even

}
and

B :=
{

(bi) : min
i
{bi = 0} is odd

}
.

In particular

A =
⋃

w∈Σ∗odd

[w0]

and

B =
⋃

w∈Σ∗even

[w0].

Here Σ∗odd denotes all finite words over the alphabet N of odd length, Σ∗even denotes all

finite words over the alphabet N of even length. By the Birkhoff Ergodic Theorem,

ν (Σ0 \ A ∪B) = 0.

Since T is orientation reversing and T ′ is increasing, it follows that for (bi) ∈ A,

Π(Π1((bi))) ≤ Π(Π2((bi))), and for (bi) ∈ B, Π(Π2((bi))) ≤ Π(Π1((bi))). Now,

χ(µp) =

∫
A

log |T ′ ◦ Π ◦ Π2|dν +

∫
B

log |T ′ ◦ Π ◦ Π2|dν
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and similarly

χ(µpε,n) =

∫
A

log |T ′ ◦ Π ◦ Π1|dν +

∫
B

log |T ′ ◦ Π ◦ Π1|dν.

Thus,

(3.6) χ(µp)− χ(µpε,n) =

∫
B

log |T ′ ◦ Π ◦ Π2| − log |T ′ ◦ Π ◦ Π1|dν−∫
A

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν.

Fix w ∈ Σ∗even (where w can be the ‘empty’ word). We begin by showing that

(3.7)

∫
[w0]

log |T ′◦Π◦Π2|−log |T ′◦Π◦Π1|dν ≥
∫
⋃
k∈N[kw0]

log |T ′◦Π◦Π1|−log |T ′◦Π◦Π2|dν.

Since ν is σ0 invariant, we can rewrite the first integral above as∫
[w0]

log |T ′ ◦ Π ◦ Π2| − log |T ′ ◦ Π ◦ Π1|dν ◦ σ−1
0

=

∫
⋃
k∈N0

[kw0]

log |T ′ ◦ Π ◦ Π2 ◦ σ0| − log |T ′ ◦ Π ◦ Π1 ◦ σ0|dν

=

∫
⋃
k∈N0

[kw0]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν.(3.8)

Here N0 = N ∪ {0}. The final line follows because Π1 ◦ σ0 = σ ◦ Π1, Π2 ◦ σ0 = σ ◦ Π2 and

Π ◦ σ = T ◦ Π. For all (bi) ∈ [0w0], T (Π ◦ Π2((bi))) ≤ T (Π ◦ Π1((bi))), therefore since |T ′|
is decreasing,

(3.9)

∫
[0w0]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν ≥ 0.

So to prove (3.7) it is enough to prove∫
⋃
k∈N[kw0]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν ≥∫
⋃
k∈N[kw0]

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν.(3.10)

If we let (bi) ∈ [kw0] and put x = Π ◦ Π2((bi)), y = Π ◦ Π1((bi)) we see that x > y. We

know by property (2) that (T 2)′(x) ≥ (T 2)′(y) for any x > y for which x, y ∈ Ik, therefore

by an application of the chain rule we have

log

∣∣∣∣T ′ ◦ T (Π ◦ Π2((bi)))

T ′ ◦ T (Π ◦ Π1((bi)))

∣∣∣∣ ≥ log

∣∣∣∣T ′(Π ◦ Π1((bi)))

T ′(Π ◦ Π2((bi)))

∣∣∣∣
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from which we can deduce (3.10). Applying the above equations we obtain the following

χ(µp)− χ(µpε,n)
(3.6)
=

∑
w∈Σ∗even

(∫
[w0]

log |T ′ ◦ Π ◦ Π2| − log |T ′ ◦ Π ◦ Π1|dν

−
∫
⋃
k∈N[kw0]

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν
)

(3.7)

≥
∫

[0]

log |T ′ ◦ Π ◦ Π2| − log |T ′ ◦ Π ◦ Π1|dν

−
∫
⋃
k∈N[k0]

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν

(3.8)
=

∫
⋃
k∈N0

[k0]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν

−
∫
⋃
k∈N[k0]

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν

=

∫
[00]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν

+

∫
⋃
k∈N[k0]

log |T ′ ◦ T ◦ Π ◦ Π2| − log |T ′ ◦ T ◦ Π ◦ Π1|dν

−
∫
⋃
k∈N[k0]

log |T ′ ◦ Π ◦ Π1| − log |T ′ ◦ Π ◦ Π2|dν

=

∫
[00]

log
∣∣∣T ′ ◦ T ◦ Π ◦ Π2

T ′ ◦ T ◦ Π ◦ Π1

∣∣∣dν(3.11)

+

∫
⋃
k∈N[k0]

log

∣∣∣∣T ′ ◦ T ◦ Π ◦ Π2 · T ′ ◦ Π ◦ Π2

T ′ ◦ T ◦ Π ◦ Π1 · T ′ ◦ Π ◦ Π1

∣∣∣∣ dν.
If (bi) ∈ [k0] for some k ∈ N0, then T ◦ Π ◦ Π1((bi)) ∈ I1, and T ◦ Π ◦ Π2((bi)) ∈ In.

Repeating the argument given in Case 1, we can assert that there exists D > 0 such that

(3.12)
T ′ ◦ T ◦ Π ◦ Π2((bi))

T ′ ◦ T ◦ Π ◦ Π1((bi))
≥ Dτn.

If (bi) ∈ [k0] for some k ∈ N then Π ◦ Π1((bi)),Π ◦ Π2((bi)) ∈ Ik. Then it follows from

Lemma 2.4 that there exists D′ > 0 such that for all (bi) ∈ [k0], we have

(3.13)
T ′ ◦ Π ◦ Π2((bi))

T ′ ◦ Π ◦ Π1((bi))
≥ D′.
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Without loss of generality we may assume that D′ < 1. In this case substituting (3.12)

and (3.13) into (3.11) we obtain

χ(µp)− χ(µpε,n) ≥
∫

[00]

logDD′τndν +

∫
⋃
k∈N[k0]

logDD′τndν

=
(
ν([00]) + ν(∪k∈N[k0]))

)
logDD′τn

= ε logDD′τn.

Which completes our proof.

�

Remark 3.6. The proof of Lemma 3.5 is the only place where condition (2) on our map

T is used. In particular, it is required for us to estimate the change in the Lyapunov

exponent χ(µp) when redistributing mass in the probability vector p, in the case that T

is orientation reversing. Without condition (2) we were unable to prove (3.10), which is

central to the proof of Lemma 3.5. Note that our proof of Theorem 2.1 depends heavily on

the estimates provided by Lemma 3.5, which is why we were unable to establish Theorem

2.1 in the absence of conditon (2).

3.3. Maximising measures supported on finitely many symbols. Fix a T satisfying

properties (1) − (5) and L ∈ N. One can consider the sequence space ΣL := {1, . . . , L}N

and the projection map Π : ΣL → [0, 1] given by restricting Π to ΣL. By a small abuse

of notation we will also denote this restricted map by Π. Given a probability vector

p = (pi)
L
i=1, we can consider the corresponding Bernoulli measure mp supported on ΣL,

and its associated pushforward µp. Just as in the case of infinitely many digits, one can

ask whether there exists a Bernoulli measure whose pushforward has maximal dimension.

Importantly when we restrict to finitely many digits, the set of Bernoulli measures mp

is now compact with respect to the weak star topology, and the map mp 7→ dimµp is

continuous by Lemma 2.3. Therefore there must exist pL such that

dimµpL = sup
p=(pi)Li=1

dimµp.

Note that we can apply Proposition 2.3 because any measure µp supported on at most

L digits always satisfies h(µp) ≤ logL. We remark that if µp is the pushforward of a

Bernoulli measure for a probability vector p = (pi)
L
i=1, then µp can also be realised as the

pushforward of a Bernoulli measure for a probability vector p′ = (p′i)
L+1
i=1 , just set p′i = pi for

1 ≤ i ≤ L and p′L+1 = 0. It follows from this simple observation that dimµpL is increasing
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as a function of L. To construct the maximising measure µp∗ whose existence is asserted

by Theorem 2.1, we will make use of the sequence of measures (µpL).

We now introduce a useful class of measures that exhibit a certain decay property. Let

C > 0 and α ∈ (s0, 1), we say that a probability vector p exhibits (C, α) decay if

pi ≤
C

ταi
for all i ∈ N.

Recall here that τn := infx∈In |T ′(x)|. We let

D(C, α) := {µp : p exhibits (C, α) decay}.

In the following proposition we show that when h(µp) <∞, the quantity dimH(µp) can be

approximated arbitrarily well by the dimension of a measure supported on finitely many

symbols. We also prove that dim(·) is continuous as a real valued function on D(C, α) with

respect to the weak star topology.

Proposition 3.7. Assume T satisfies properties (1)− (5). The following properties hold:

(1) Suppose µp satisfies h(µp) < ∞. Then for any ε > 0 there exists L ∈ N and a

measure µp,L supported on L symbols such that

| dimµp − dimµp,L| < ε.

(2) dim : D(C, α)→ R is continuous.

Proof. We start by proving (1). Without loss of generality we may assume that dimµp

is strictly positive, and so by Proposition 2.3 we must also have χ(µp) < ∞. Otherwise

we may simply take µp,L to be a measure supported on a single point and our proof is

complete.

It follows from the fact that µp is T -invariant, the chain rule, and Proposition 2.3, that

for any n ∈ N we have

(3.14) dimµp =
−
∑

j∈Nnmp([j]) logmp([j])∫
log |(T n)′| dµp

.

Now, fix ε > 0. It follows from our uniformly expanding assumption that infx∈[0,1] |(T n)′(x)|
becomes arbitrarily large as n → ∞. Combining this observation with Lemma 2.4 and

(3.14), it follows that we can pick n sufficiently large that for any p′ satisfying h(µp′) <∞
and χ(µ′p) <∞ we have

(3.15)
∣∣∣ dimµp′ −

−
∑

j∈Nnmp′([j]) logmp′([j])∑
j∈Nnmp′([j]) log |(T n)′(xj)|

∣∣∣ < ε

4
.
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Here xj is an arbitrary element of Ij. Let us now pick L ∈ N sufficiently large that

(3.16)
∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
−
−
∑

j∈Nnmp([j]) logmp([j])∑
j∈Nnmp([j]) log |(T n)′(xj)|

∣∣∣ < ε

4

and

(3.17)
∣∣∣ log

( L∑
i=1

mp([i])
)n∣∣∣ < ε

4
.

Let mp,L be the Bernoulli measure defined via the equation

mp,L([j]) :=

{
mp([j])∑L
i=1mp([i])

if 1 ≤ j ≤ L;

0 if j > L.

We observe

−
∑

j∈{1,...,L}nmp([j]) logmp([j])∑
j∈{1,...,L}nmp([j]) log |(T n)′(xj)|

=
−
∑

j∈{1,...,L}nmp,L([j]) logmp([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

=
−
∑

j∈{1,...,L}nmp,L([j]) logmp([j]) +
∑

j∈{1,...,L}nmp,L([j]) logmp,L([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

−
∑

j∈{1,...,L}nmp,L([j]) logmp,L([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

=−
log
(∑L

i=1mp([i])
)n∑

j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|
−
∑

j∈{1,...,L}nmp,L([j]) logmp,L([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

.

Applying (3.17) we have

(3.18)
∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
−
−
∑

j∈{1,...,L}nmp,L([j]) logmp,L([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

∣∣∣ < ε

4
.
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Now by repeated applications of the triangle inequality we obtain

| dim(µp)− dim(µp,L)|

≤
∣∣∣ dim(µp)−

−
∑

j∈Nnmp([j]) logmp([j])∑
j∈Nnmp([j]) log |(T n)′(xj)|

∣∣∣(3.19)

+
∣∣∣ −∑j∈Nnmp([j]) logmp([j])∑

j∈Nnmp([j]) log |(T n)′(xj)|
−
−
∑

j∈{1,...,L}nmp([j]) logmp([j])∑
j∈{1,...,L}nmp([j]) log |(T n)′(xj)|

∣∣∣
+
∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
−
−
∑

j∈{1,...,L}nmp,L([j]) logmp,L([j])∑
j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|

∣∣∣
+
∣∣∣−∑j∈{1,...,L}nmp,L([j]) logmp,L(j)∑

j∈{1,...,L}nmp,L([j]) log |(T n)′(xj)|
− dim(µp,L)

∣∣∣
<4 · ε

4
= ε.

Here we bounded the terms in (3.19) in order by, (3.15), (3.16), (3.18), and (3.15) respect-

ively. This completes our proof of item (1).

We now prove item (2). Let us fix C > 0 and α ∈ (s0, 1). It follows from the definition

of p exhibiting (C, α) decay that for any n ∈ N and ε > 0, we can pick L ∈ N depending

only on n,C, and α, such that:

(1) For all µp ∈ D(C, α)∣∣∣∑
j∈Nn

mp([j]) logmp([j])−
∑

j∈{1,...,L}n
mp([j]) logmp([j])

∣∣∣ < ε.

(2) For all µp ∈ D(C, α)∣∣∣∑
j∈Nn

mp([j]) log |(T n)′(xj)| −
∑

j∈{1,...,L}n
mp([j]) log |(T n)′(xj)|

∣∣∣ < ε.

Similarly, it follows from the definition of p exhibiting (C, α) decay that for any

n ∈ N, one can pick K,K ′ > 0 depending only on n,C, and α, such that:

(3) For all µp ∈ D(C, α)

−
∑
j∈Nn

mp([j]) logmp([j]) < K.

(4) For all µp ∈ D(C, α) ∑
j∈Nn

mp([j]) log |(T n)′(xj)| < K ′.
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Applying the above properties, we can assert that for any ε > 0, there exists L ∈ N
depending only on n,C and α, such that for any µp ∈ D(C, α) we have∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
−
−
∑

j∈Nnmp([j]) logmp([j])∑
j∈Nnmp([j]) log |(T n)′(xj)|

∣∣∣ < ε.

Therefore, by (3.15) we can assert that for any ε > 0, there exists n ∈ N, and L ∈ N
depending only on n,C, and α, such that for any µp ∈ D(C, α) we have

(3.20)
∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
− dimµp

∣∣∣ < ε.

Now let us a fix a measure µp ∈ D(C, α) and assume (µpk) is a sequence in D(C, α) such

that µpk → µp with respect to the weak star topology. Then for any ε > 0 we have

lim
k→∞
| dim(µpk)− dim(µp)|

≤ lim
k→∞

∣∣∣ dim(µpk)−
−
∑

j∈{1,...,L}nmpk([j]) logmpk([j])∑
j∈{1,...,L}nmpk([j]) log |(T n)′(xj)|

∣∣∣
+
∣∣∣−∑j∈{1,...,L}nmpk([j]) logmpk([j])∑

j∈{1,...,L}nmpk([j]) log |(T n)′(xj)|
−
−
∑

j∈{1,...,L}nmp([j]) logmp([j])∑
j∈{1,...,L}nmp([j]) log |(T n)′(xj)|

∣∣∣
+
∣∣∣ −∑j∈{1,...,L}nmp([j]) logmp([j])∑

j∈{1,...,L}nmp([j]) log |(T n)′(xj)|
− dim(µp)

∣∣∣
< 2ε.

Here n ∈ N and L ∈ N were chosen so (3.20) holds. We used weak star convergence to con-

clude that the second term converges to zero. Since ε is arbitrary we have limk→∞ dim(µpk) =

dim(µp) as required. �

The following proposition gives conditions guaranteeing that our maximising measures

on L symbols, the µpL , are contained in D(C, α) for appropriate choices of C > 0 and α.

Proposition 3.8. Suppose there exists µp such that dimµp > s0. Then there exists C > 0

and α ∈ (s0, 1) such that µpL ∈ D(C, α) for all L ∈ N.

Proof. It suffices to prove the result for L sufficiently large. By item (1) from Proposition

3.7 there must exist µp′ supported on finitely many digits such that dimµp′ > s for some

s > s0. Since dimµpL is increasing with L, we may therefore assume that for all L ∈ N
sufficiently large we have dimµpL > s.

Let κ > 1 and α ∈ (s0, 1) be sufficiently small so dimµpL > κα for all L sufficiently

large. Now let us assume for a contradiction that there does not exist C > 0 such that
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µpL ∈ D(C, α) for all L ∈ N. Therefore there must exist L ∈ N arbitrarily large, and n

arbitrarily large, such that 1 ≤ n ≤ L and

(3.21) pLn >
1

ταn
.

Let us now fix such L and n. We consider the measure µpLε,n
obtained when we transfer

ε of the mass from the digit n to the digit 1. Then by Proposition 2.3, Lemma 3.4, and

Lemma 3.5, for sufficiently small ε > 0, and L and n sufficiently large,

dimµpLε,n
=

h(µpLε,n
)

χ(µpLε,n
)

≥
h(µpL)− εκ log( p1

pn
)

χ(µpL)− ε log(λτn)

(3.21)

≥
h(µpL)− εκ log(ταn )

χ(µpL)− ε log(λτn)

>
h(µpL)

χ(µpL)
.(3.22)

Here (3.22) follows because (now abbreviating h = h(µpL) and χ(µpL) = χ):

h− εκ log(ταn )

χ− ε log(λτn)
>
h

χ
⇔ h

χ
>

κα log τn
log λ+ log τn

,

and for L and 1 ≤ n ≤ L sufficiently large

h

χ
= dimµpL >

κα log τn
log λ+ log τn

.

In the last inequality we used the fact that for sufficiently large n the right hand side re-

sembles κα, and by definition dimµpL > κα. Therefore µpLε,n
is another measure supported

on the first L symbols such that dimµpLε,n
> dimµpL . This contradicts the fact dimµpL is

maximal and our result follows.

�

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. By assumption there exists µp such that dimµp > s0. Applying

Proposition 3.8 we know that the maximising measures µpL are contained in D(C, α) for
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some C > 0 and α ∈ (s0, 1). Let

p1 = (1, 0, 0 . . . , )

p2 = (p2
1, p

2
2, 0, 0 . . . , )

· · ·

pL = (pL1 , p
L
2 , . . . , p

L
L, 0, 0 . . .).

By considering subsequences we can assert that there exists a vector p∗ = (p∗i )
∞
i=1, such

that pLni → p∗i along some subsequence (Ln) for all i ∈ N. Note that p∗ is a probability

vector, and the corresponding measure µp∗ is contained in D(C, α). This is a consequence

of µpL being contained D(C, α) for all L ∈ N.

By the above µpLn → µp∗ in the weak star topology. We claim that

(3.23) sup
p

dimµp = dimµp∗ .

To see this, suppose that (3.23) is not true and there exists p′ such that dim(µp′) > dimµp∗ .

It follows from Proposition 3.7 that there must exist µ′′p supported on finitely many symbols

such that dimµ′′p > dimµp∗ . Since dimµpL+1 ≥ dimµpL for all L ∈ N, we can pick N ∈ N
sufficiently large such that for all n ≥ N we have dimµpLn ≥ dim(µ′′p). However, by

Proposition 3.7 we know that limn→∞ dimµpLn = dimµp∗ . Which is impossible given

dimµpLn ≥ dim(µ′′p). So we have our contradiction and (3.23) must hold. �

4. Proof of Theorem 1.2 and final comments

To use Theorem 2.1 to prove Theorem 1.2, we need to demonstrate that there exists a

measure µp satisfying dimµp > s0. We remark that for the Gauss map we have s0 = 1/2.

Consider the probability vector p1/3 = (1/3, 1/3, 1/3, 0 . . .). It is straightforward to show

that h(µp1/3
) = log 3. Since p1/3 is supported on 3 digits and log |T ′(x)| = −2 log x we

have ∫
log |T ′|dµp1/3

=
∑

1≤i,j≤3

∫
Iij

log |T ′|dµp1/3
≤

∑
1≤i,j≤3

∫
Iij

max
x∈Iij
−2 log x dµp1/3

=
2

9

∑
1≤i,j≤3

max
x∈Iij

log
1

x
.

Importantly this last term lends itself to explicit calculation. Performing the relevant

calculations it can be shown that∫
log |T ′|dµp1/3

≤ 1.79811 . . . .
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Consequently, using Proposition 2.3 we have

dimµp1/3
=
h(µp1/3

)

χ(µp1/3
)
≥ log 3

1.79811
≥ 0.61.

So dimµp1/3
> 1/2 as required. By Theorem 2.1 we may conclude Theorem 1.2.

Remark 4.1. Theorem 2.1 gives conditions guaranteeing the existence of a measure µp

whose dimension is maximal amongst the class of pushforwards of Bernoulli measures.

This doesn’t immediately imply the existence of a dimension gap at 1, it merely reduces

the question to showing that

(4.1) dimµp < 1 for all µp.

If there is a Bernoulli measure p whose pushforward satisfies dimµp = 1, then by a result of

Walters [7], we know that it is the unique absolutely continuous T -invariant measure. Since

µG(I12) 6= µG(I21), as can be verified by direct computation, µG cannot be the pushforward

of a Bernoulli measure. Therefore (4.1) holds and we have a dimension gap at 1. For a

general T, one might not necessarily have a nice closed form for the density. In this case

one can appeal to a cohomological argument. If there exists a p such that dimµp = 1,

then it follows from [7, Theorem 16] that any point satisfying T n(x) = x must also satisfy

− log |(T n)′(x)| =
n−1∑
i=0

φ((T i)(x)),

where φ(x) = log pi if pi > 0 and x ∈ Ii, and φ(x) = 0 if pi = 0 and x ∈ Ii. We remark

that the right hand side of the above does not depend on the order of the Ii visited by x.

Consequently, if y is another point such that T n(y) = y, and the orbit of y visits the same

intervals as x, then we must have |(T n)′(x)| = |(T n)′(y)|. If we have an explicit formula for

T, one can hope to verify whether |(T n)′(x)| = |(T n)′(y)| for all such x and y. If we can

find such an x and y satisfying |(T n)′(x)| 6= |(T n)′(y)|, it would follow that (4.1) holds for

all µp, and so we must have a dimension gap at 1.

Example 4.2. As an example to illustrate the above remark, consider {In}∞n=1, where I1 =

(0, 1/2) and T1(x) = 2x, I2 = (1/2, 3/4) and T2(x) = 4x mod 1, and I3 = (3/4, 0.861 . . .)

and T3(x) = 8x + tan(x − 3/4) mod 1. For n ≥ 4 we assume Tn is the unique affine

orientation preserving map sending In to (0, 1). We can choose In in such a way that

properties (1)–(5) hold and the corresponding s0 can be made arbitrarily small. Moreover,

by considering just T1 and T2 we can construct a Bernoulli measure whose pushforward

has positive dimension. Therefore we can assume that In have been chosen in such a way

that the hypothesis of Theorem 2.1 is satisfied.
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Consider x′ ≈ 0.817 such that (T1 ◦ T2 ◦ T3)(x′) = x′ and y′ ≈ 0.789 such that (T2 ◦ T1 ◦
T3)(y′) = y′. Both x′ and y′ are periodic points whose orbits visit the same intervals, albeit

it in a different order. Performing the relevant calculations we can show that (T 3)′(x′) ≈
72.036 and (T 3)′(y′) ≈ 72.012. By the above remark it follows that dimµp < 1 for any p.

Applying Theorem 2.1 we may deduce that there is a uniform dimension gap at 1.

Remark 4.3. Theorem 2.1 can be used in a general setting to determine the existence of

a dimension gap at 1. However, without knowing there exists a measure µp such that

dimµp > s0, we cannot apply Theorem 2.1 to determine the existence of a Bernoulli

measure whose dimension is maximal. It would be interesting to determine a general

condition by which one could establish the existence of such a µp. We remark that for a

map T satisfying (1)− (5) we can construct µp whose dimension can be made arbitrarily

close to s0 from below.

Remark 4.4. Theorem 1.2 and Theorem 2.1 establish the existence of a Bernoulli measure

whose pushforward has maximal dimension. It is natural to wonder whether this measure

is unique. We believe it is unique, however we are unable to prove it.
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