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Singular covariance matrices are frequently encountered in both machine learning and

optimization problems, most commonly due to high dimensionality of data and insuffi-

cient sample sizes. Among many methods of regularization, here we focus on a relatively
recent random matrix theoretic approach, the idea of which is to create well-conditioned

approximations of a singular covariance matrix and its inverse by taking the expectation

of its random projections. We are interested in the error of a Monte Carlo implementa-
tion of this approach, which allows subsequent parallel processing in low dimensions in

practice. We find that O(d) random projections, where d is the size of the original matrix,
are sufficient for the Monte Carlo error to become negligible, in the sense of expected

spectral norm difference, for both covariance and inverse covariance approximation, in

the latter case under mild assumptions.

Keywords: Singular covariance; precision matrix; curse of dimensionality; random pro-
jections; Monte Carlo error.

Mathematics Subject Classification 2010: 68T99, 15B52, 15A15

1. Introduction

Dealing with singular covariance matrices, and obtaining well-conditioned, invert-

ible approximations thereof, represent common issues in many high dimensional

learning and optimization settings, where the available sample size is too small rel-

ative to the feature dimension of the data. In machine learning, examples include

classification and clustering with multivariate Gaussians, least squares regression,

and Gaussian graphical models [30,24]. In large scale black-box optimization, sim-

ilar problems are encountered by the class of model-building algorithms known as

Estimation of Distribution Algorithms [19], which are particularly prone to the

curse of dimensionality on high dimensional search spaces [16].

Many methods have been proposed, the problem is closely related to regulariza-

tion [7,10], which has been extensively studied. For covariance matrices, a common

idea is to have some restriction on the number of free parameters that describe the

covariance structure. Two major branches of methods include rotation-sensitive
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methods, for example methods based on sparsity or structured sparsity restrictions

– these assume that only few features correlate with each other – and rotation-

invariant methods, such as the Ledoit-Wolf estimator [20], ridge regularization, and

more recently proposed random projection ensembles [22].

This paper is concerned with the latter approach, which is computationally

attractive and only requires cheaply collected random projections of the data. In

addition, the lack of a-priori structural assumptions also means that such methods

remain appropriate when there are no known or justifiable structural assumptions

to exploit. For instance, gene or protein association networks often present complex

and dense interactions between many genes or proteins at some stage of disease

development [18,13], making sparsity assumptions unjustified.

In this vein, Marzetta et al. [22] proposed two general-purpose approaches that

take a given non-random positive semi-definite singular covariance matrix and use

its random projections to construct a non-singular approximation of it, or of its

inverse, defined in the form of matrix expectations.

The authors [22] conducted a detailed theoretical analysis on these matrix ex-

pectations. However, in practice a Monte Carlo average would be employed instead

– that is, a finite ensemble that averages estimates from multiple random projec-

tions. To give some examples, the covariance approximation ensemble scheme is

encountered in optimization heuristics [16] where its role is to drive the search for

a global optimum within a high dimensional search space. The inverse covariance

approximation scheme is encountered in machine learning for Fisher discriminant

analysis in high dimensional / small sample settings [9], or in learning an ensemble

of compressive OLS regressors [28]. This paper is concerned with the question of

how large the finite ensemble needs to be so that the error of the Monte Carlo aver-

age and its expectation is below a user-specified threshold in terms of the expected

spectral norm difference.

In formal terms, given a non-random d×d singular, positive semi-definite, rank

ρ < d matrix M , and an integer k, we consider the following covariance and inverse

covariance approximators:

covk(M) = ER[RTRMRTR] (1.1)

cov−k (M) = ER[RT (RMRT )−1R] (1.2)

where R is a random k× d, matrix with i.i.d. Gaussian N (0, σ2) entries. Following

the literature, R is called a random projection matrix, and the interesting case is

when k < ρ− 1. The original definitions in [22] employed Haar distributed random

matrices rather than Gaussian, however when d is large the rows of R are nearly

orthogonal anyway, due to concentration of measure, so in practice orthogonaliza-

tion of the rows of R may be omitted to save computation time. Also observe that

in the case of cov−k (M), eq. (1.2) is not affected by whether R has orthogonal rows

or not.

Let R1, R2, ..., Rm be independent copies of R. We are interested in the following
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matrix averages:

ˆcovk(M) =
1

m

m∑
i=1

RTi RiMRTi Ri (1.3)

ˆcov−k (M) =
1

m

m∑
i=1

RTi (RiMRTi )−1Ri (1.4)

The question we study is how large m needs to be so that ER[‖covk(M)− ˆcovk(M)‖],
and ER[‖cov−k (M)− ˆcov−k (M)‖] respectively, are below some pre-defined threshold?

In [15] we presented initial findings about the inverse covariance approximator,

eq. (1.4). This version goes into more depth and detail, and contains additional

results about the covariance approximator, eq. (1.3). The latter is able to explain

previous empirical observations about the sufficient ensemble size [16] that eluded

previous analysis.

1.1. Context and Summary of Main Results

In covariance estimation, it is known from the work of [26] that, for general dis-

tributions with support on the sphere of radius
√
d the required sample size isa

m = O(d log d), but for many distributions m = O(d) is sufficient. A lot of progress

has been made in the past few years on identifying distributions of the latter kind

[1].

Relatively recently, work by [29] extended such results to the matrix-covariance

setting – that is, instead of random vectors consider random matrices and their

covariance – and gave some generic conditions under which m = O(d). This order

has been known for a long time for sums of certain well-behaved matrix distribu-

tions, such as sub-Gaussians [3]. However, the classical Ahlswede & Winter ma-

trix concentration inequalities [3] employed on ˆcovk in only lead to an estimate of

m = O(d log d), while practical experience suggested the conjecture of m = O(d)

[16]. Moreover, in the case of ˆcov−k , the presence of matrix inverses combined with

the singularity of M give rise to a heavy tailed sub-matrix, and it is far from obvi-

ous whether an ensemble size of m = O(d) could possibly suffice under realistically

reasonable assumptions.

We summarize below our main results. These will be formally stated in Theo-

rems 4.1 and 5.1 respectively. Throughout our analysis, k and ρ are fixed integers,

k < ρ− 1, and M is a fixed d× d positive semi-definite matrix of rank ρ < d with

condition number in its range space, κ(M) ≡ λmax(M)/λρ(M), upper bounded

independently of d. The ambient dimension d is typically large. We will use the

notations ρ ≡ rank(M), and ρ̄ ≡ d − ρ ≥ 1, and ‖ · ‖ with a matrix argument will

denote the spectral norm.

aThe uniform distribution on canonical basis vectors in Rd is an illustrative example where the

necessity of O(d log d) points to obtain a non-singular covriance w.h.p. follows from the coupon
collector problem.
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• For any ε ∈ (0, 1), in order to ensure ER [‖ ˆcovk(M)− covk(M)‖] ≤ ε ·
‖covk(M)‖, it is sufficient to take m = O(d).

• Suppose that 3 ≤ ρ < d, ρ > k + 1, and ρ − k + 1 > a log(ρ̄) + a

for some constant a > 0. For any ε ∈ (0, 1), in order to ensure

ER
[
‖ ˆcov−k (M)− cov−k (M)‖

]
≤ ε · ‖cov−k (M)‖ it is sufficient to take m =

O(d).

The requirement that appears in the second statement, ρ− k + 1 > a log(ρ̄) + a is

rather mild. Essentially it says that M must have rank at least logarithmic in its

null-space dimension ρ̄. For instance, if M arises from a sample covariance, then

ρ is always no larger than the sample size; thus, roughly speaking, a setting with

exponentially many irrelevant features relative to the sample size can still satisfy

this requirement.

2. Tools

This section lists and develops some re-usable analytic tools, which will be employed

for proving our results. The next two subsections present techniques that help

reduce the problem from the ensemble level to the individual matrix level. The

remaining two subsections contain tools to deal with the latter.

2.1. A specific result from random matrix theory

The following result due to [29] gives sufficient conditions for a finite average of

low-rank covariance matrices to approach their expectation with O(d) (as opposed

to O(d log d)) independent terms.

Definition 2.1 ([29]). A positive semi-definite random matrix U = UT of dimen-

sion d× d and E[U ] = Id satisfies the matrix strong regularity (MSR) condition if

∃η, cMSR > 0 constants such that,

Pr {‖AUA‖ ≥ t} ≤ cMSR

t1+η
,∀t ≥ cMSR · rank(A),∀A orthogonal projection in Rd

For our purposes, the random matrix U will be the generic term of ˆcovk or

ˆcov−k subjected to an isotropic transformation, and will be defined in Section 3, eq.

(3.1). The projection matrix A is deterministic and should not be confused with

the random projections.

Theorem 2.1 ([29]). Let U be a d×d positive semi-definite random matrix having

E[U ] = Id and satisfying the MSR for some η, cMSR > 0, and let U1, U2, ..., Um be

independent copies of U . Then, ∀ε ∈ (0, 1), for m = C1 · d
ε2+2/η , we have:

E[‖ 1

m

m∑
i=1

Ui − Id‖] ≤ ε (2.1)

where C1 is a constant that depends only on η and cMSR.
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2.2. Splitting device

The setting of Theorem 2.1 closely resembles our problem at a high level, however

the structure of the matrices of our interest will need different treatment for different

sub-matrices. As we shall see later in the analysis, this is due to the singularity of M

that induces different distributions on its range space and its null space respectively.

We write the generic term U as the following:

U =

[
V Z

ZT W

]
(2.2)

where V and W are ρ×ρ and ρ̄× ρ̄ positive semi-definite sub-matrices respectively.

With the aim to prove a MSR condition, we take an arbitrary d× d projection

matrix of rank r ∈ {1, ..., d}. This necessarily has the form A = BT (BBT )−1B

where B is an r × d full row-rank matrix. We need to develop an upper bound on

Pr {‖AUA‖ ≥ t} for all t > cMSR · r. The following lemma implies that we can

split this problem and it is sufficient to have the MSR condition separately on the

block-diagonal sub-matrices of U .

Lemma 2.1. For U defined in eq. (2.2), there exists a ρ× ρ projection matrix A1

and a ρ̄ × ρ̄ projection matrix A2, both of rank r in Rρ and Rρ̄ respectively, such

that:

‖AUA‖ ≤ ‖A1V A1‖+ ‖A2WA2‖ (2.3)

We note that, in the original problem, r takes values in {1, 2, ..., d} – however,

in the resulting two terms it is sufficient to consider r ∈ {1, ..., ρ} and r ∈ {1, ...ρ̄}
respectively, since for r > ρ we can choose A1 to have ‖A1V A1‖ = ‖V ‖, and likewise

A2 for r > ρ̄ to have ‖A2WA2‖ = ‖W‖. Hence, Lemma 2.1 implies that if both V

and W satisfy the MSR condition then U satisfies MSR.

Proof. [Proof of Lemma 2.1] Recall that A is a projection matrix. Let us rewrite

the matrix norm of interest as the following:

‖AUA‖ = ‖BT (BBT )−1BUBT (BBT )−1B‖
= ‖(BBT )−1/2BUBT (BBT )−1/2‖
≡ ‖BUBT ‖ (2.4)

where we introduced the notation B ≡ (BBT )−1/2B.

Now, decompose the r×d matrix B as a sum of two matrices, of which the first

matrix contains the first ρ columns of B and zeros in its last ρ̄ columns, and the

second matrix has zeros in its first ρ columns followed by the remaining ρ̄ columns

of B.

B =
[
B1 0

]
+
[

0 B2

]
(2.5)

= (B1B
T
1 )1/2

[
B1 0

]
+ (B2B

T
2 )1/2

[
0 B2

]
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where we used the notations Bi ≡ (BiB
T
i )−1/2Bi, i ∈ {1, 2}. That is, we ortho-

normalized the nonzero sub-matrices. Using these, we now construct a new positive

semi-definite matrix of size 2r × 2r:

Ũ ≡
[
B1 0

0 B2

]
·
[
V Z

ZT W

]
·
[
BT

1 0

0 BT
2

]
(2.6)

This is clearly positive semi-definite since the d×dmatrix in the middle was assumed

to be positive semi-definite.

By definition, the matrix norm of interest, eq. (2.4) is:

‖AUA‖ = max
x∈Rr,x 6=0

xT (BBT )−1/2

[
(B1B

T
1 )1/2

(B2B
T
2 )1/2

]T
· Ũ ·

[
(B1B

T
1 )1/2

(B2B
T
2 )1/2

]
(BBT )−1/2x

xTx

(2.7)

and by observing that

(BBT )−1/2

[
(B1B

T
1 )1/2

(B2B
T
2 )1/2

]T
·

[
(B1B

T
1 )1/2

(B2B
T
2 )1/2

]
(BBT )−1/2

= (BBT )−1/2
(
B1B

T
1 +B2B

T
2

)
(BBT )−1/2

= (BBT )−1/2BBT (BBT )−1/2

= Ir

and denoting y =

[
(B1B

T
1 )1/2

(B2B
T
2 )1/2

]
(BBT )−1/2x, we have:

eq.(2.7) ≤ max
y∈R2r,y 6=0

yT Ũy

yT y
= ‖Ũ‖. (2.8)

This inequality holds because y takes values in a larger space than x.
We are now ready to split up the original matrix norm of interest. By definition,

and by construction, we have:

eq.(2.8) = ‖Ũ‖

=

∥∥∥∥[ B1VBT
1 B1ZB

T
2

B2Z
TBT

1 B2WBT
2

]∥∥∥∥
≤ ‖B1VBT

1 ‖+ ‖B2WBT
2 ‖

= ‖(B1B
T
1 )−1/2B1V B

T
1 (B1B

T
1 )−1/2‖+ ‖(B2B

T
2 )−1/2B2WBT2 (B2B

T
2 )−1/2‖

≤ ‖A1V A1‖+ ‖A2WA2‖ (2.9)

where Ai ≡ Bi(BiBTi )−1/2Bi, i ∈ {1, 2} are projections in Rρ and Rρ̄ respectively.

The inequality (2.9) is not difficult to check, see e.g. [14].
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2.3. Upper bound on the spectral norm of a matrix-variate T

Let P and Q be two independent random matrices with i.i.d. standard normal

entries, of size k×ρ, and k× r respectively, and assume that k < ρ−1. Noting that

PPT ∼ W(ρ, Ik) is a Wishart matrix independent of Q, by Theorem 4.2.1 from

[11], the matrix J := (PPT )−1/2Q has a zero mean matrix-variate T-distribution,

Tk×r(0, Ik, Ir, ν) with degrees of freedom

ν = ρ− k + 1. (2.10)

Here, and throughout this paper, we refer to the parameterization from [11], so the

k × r matrix J has the following probability density:

p(J) =
Γk
(
ν+k+r−1

2

)
πkrΓk

(
ν+k−1

2

) det(Ik + JJT )−
ν+k+r−1

2 (2.11)

where Γp(a) ≡ π
p(p−1)

4

∏p
i=1 Γ

(
a+ 1−i

2

)
is the multivariate Gamma function. A

property of this matrix-distribution is that JT ∼ Tr×k(0, Ir, Ik, ν), by Theorem

4.3.3 in [11].

The goal of this section is to obtain a polynomially decaying upper bound on

the largest eigenvalue of JTJ = QT (PPT )−1Q:

Pr

{
‖QT (PPT )−1Q‖ · ρ− k − 1

k
≥ t
}
≤? (2.12)

where the multiplier on the l.h.s. ensures that the scaled positive semi-definite

matrix is isotropic.

We should note that the matrix-variate T is different from a multivariate t vector

re-shaped into a matrix [8]. Instead, the matrix-variate T-distribution implies that

both the rows and the columns of J are statistically dependent on each other, so

existing bounds on the spectral norm of random matrices are not readily available.
We have:

Pr

{
‖QT (PPT )−1Q‖ · ρ− k − 1

k
≥ t
}

= Pr

{
‖JT J‖ · ν − 2

k
≥ t
}

= Pr
{
‖JJT ‖ · (ν − 2) ≥ tk

}
≤ Pr

{
Tr(JJT )(ν − 2) ≥ tk

}
= Pr


k∑
j=1

‖Jj‖2 · (ν − 2) ≥ tk

 (2.13)

where Jj denotes the j-th row of J , and the vector norm in the last line is the L2

norm.

By Theorem 4.3.9 in [11], all marginal distributions of the rows (and columns)

of J are multivariate t with the same degree of freedom ν. In particular, Jj above is

distributed as a multivariate t with ν degrees of freedom – in the parameterization

we are using, the pdf of this random vector is given by plugging k = 1 into eq.
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(2.11). It is then easy to check that Jj
√
ν − 2 is isotropic – indeed, its variance

matrix exists since k < ρ− 1 (hence ν ≥ 2) and it evaluates to Ir.

The following lemma bounds the squared norm of a multivariate t-distributed

random vector.

Lemma 2.2 (Chernoff-type bound on square norm of t distributed ran-

dom vectors). Let x ∼ Td(0, Id, ν). Then ∀t > d,

Pr
{
‖x‖2 > t

}
≤
(
d

t

)− d2 (d+ ν

t+ ν

) ν+d
2

(2.14)

Proof. [Proof of Lemma 2.2] We use the following representation of the multivari-

ate t-distribution (see e.g. [21]): If y ∼ Np(0,Σ) and s2 ∼ χ2
ν independent of y, then

y
√
ν
s ∼ Tp(0,Σ, ν).

Take y ∼ N (0, Id) a standard Gaussian vector and u ∼ N (0, Iν) independent of

y – so ‖u‖2 ∼ χ2
ν . We have:

Pr
{
‖x‖2 > t

}
= Pr

{
‖y‖2

‖u‖2
>
t

ν

}
(2.15)

= Pr

{
‖y‖2 > t

ν
‖u‖2

}
(2.16)

= Pr

{
exp

(
λ‖y‖2

)
exp

(
− t
ν
λ‖u‖2

)
> 1

}
,∀λ > 0 (2.17)

≤ E
[
exp(λ‖y‖2)

]
E

[
exp

(
− t
ν
λ‖u‖2

)]
,∀λ > 0 (2.18)

= (1− 2λ)−
d
2

(
1 + 2λ

t

ν

)− ν2
∀λ ∈ (0, 1/2) (2.19)

We optimize the bound in λ by solving the stationary equation:

∂

∂λ
=

2λt(d/ν + 1)− t+ d

(1− 2λ)d/2(1 + 2λt/ν)ν/2+1
= 0

which gives

λ =
t− d

2t(d/ν + 1)

Since t > d, this is in the interval (0, 1/2) as required, for any positive value of ν.

After plugging back, the RHS of eq. (2.19) becomes:(
1− t− d

t(d/ν + 1)

)−d/2(
1 +

t− d
ν(d/ν + 1)

)−ν/2
=

(
d(t+ ν)

t(d+ ν)

)−d/2(
t+ ν

d+ ν

)−ν/2
=

(
d

t

)− d2 (d+ ν

t+ ν

) ν+d
2
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Remark 2.1. Lemma 2.2 is tight in the sense that in the limit when ν → ∞ it

recovers a Chernoff bound for the square norm of Gaussian random vectors:

lim
ν→∞

(
d

t

)− d2 (d+ ν

t+ ν

) ν+d
2

=

(
d

t

)− d2
exp

(
− t− d

2

)
≥ Pr

{
‖y‖2 > t

}
(2.20)

where y ∼ N (0, Id)

Remark 2.2. For finite ν, the r.h.s. in Lemma 2.2 tightens with increasing ν,

which agrees with the intuition that concentration is better with higher degrees of

freedom. More formally, it is straightforward to see that we can bound:(
d

t

)− d2 (d+ ν

t+ ν

) ν+d
2

≤
(
t

d

) d
2

exp

(
− t− d

2
· d+ ν

t+ ν

)
(2.21)

where the fraction d+ν
t+ν ≤ 1 for all ν since t > d, and reaches 1 as ν →∞.

Since k is finite, using Lemma 2.2, and noting that Jj
√
ν − 2 ∼ Tr(0, Ir, ν), we

can further bound the right hand side (RHS) of eq. (2.13) for all t > c · r, where

c > 1 is a constant, as the following:

eq. (2.13) ≤
k∑
j=1

Pr
{
‖Jj ·

√
ν − 2‖2 ≥ t

}
(2.22)

≤ k ·
(
t

r

) r
2

·
(
r + ν

t+ ν

) ν+r
2

(2.23)

2.4. Upper bound on the norm of log-concave random vectors

A large family of distributions, known as logarithmically concave distributions ex-

hibits concentration that is stronger than what is required for MSR. Proposition

8.5 in [29] showed MSR for random matrices whose vectorized form is a log-concave

random vector, based on Paouris’ inequality, which gives a tail bound on the norm

of any log-concave random vector.

The definition below is in fact Borell’s characterization of this class of distribu-

tions [5]. For more background and useful properties see e.g. [27].

Definition 2.2. A random (vector) variable having a density p() is said to be

log-concave if the function − log p() is convex.

The following inequality is due to Paouris [25,2].

Theorem 2.2 ([25]). If X is an isotropic log-concave random vector in Rd, then

there exists an absolute constant c > 0 s.t. for any ε ≥ 1,

Pr
{
‖X‖ ≥ cε

√
d
}
≤ exp(−ε

√
d) (2.24)
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3. Reductions for ˆcov±
k

We shall use the notation ˆcov±k (and cov±k ) to refer to collectively to the covariance

approximator ˆcovk (and covk) and the inverse covariance approximator ˆcov−k (and

cov−k ). Further, denote by U±(M) the isotropic transformation of the generic term of

the matrix sum in ˆcov±k (M), from eqs. (1.3)-(1.4), as the following:

U±(M) ≡ E[RT (RMRT )±1R]−1/2 ·RT (RMRT )±1R · E[RT (RMRT )±1R]−1/2(3.1)

These two random matrices given in eq. (3.1), i.e. U(M) and U−(M) will play the role

of the matrix U that appeared in Definition 2.1. It is straightforward to check that

both satisfy E[U±(M)] = Id.

We shall observe a series of properties and reductions leading on to establishing

that MSR holds for U±(M).

Lemma 3.1 (M can be assumed diagonal w.l.o.g.). Let M = LΛLT be the

singular value decomposition of M , so Λ is the d × d diagonal matrix of the non-

negative eigenvalues of M , and LLT = LTL = Id. We have:

E[‖ 1

m

m∑
i=1

U±i(M) − Id‖] = E[‖ 1

m

m∑
i=1

U±i(Λ) − Id‖] (3.2)

Proof. We will refer to a generic term of the sum by dropping the index i. Since R

has i.i.d. Gaussian entries, it has the same distribution as RL. We can check that

U±(M) has the same distribution as:

U±(M) ∼ L · U
±
(Λ) · L

T (3.3)

Indeed, since RL has the same distribution as R, we have

E[RT (RMRT )±1R]−1/2 =
(
LE[LTRT (RLΛLTRT )±1RL]LT

)−1/2
(3.4)

=
(
LE[RT (RΛRT )±1R]LT

)−1/2
(3.5)

= LE[RT (RΛRT )±1R]−1/2LT (3.6)

where in the last line we used the fact that, for diagonal Λ, the matrix

E[RT (RΛRT )±1R] is diagonal [16,9,22], in other words E[RT (RMRT )±1R] has the

same eigenvectors as M .

Plugging this back into the definition of U±(M) confirms eq. (3.3), and we have:

E[‖ 1

m

m∑
i=1

U±i(M) − Id‖] = E[‖L(
1

m

m∑
i=1

U±i(Λ) − Id)L
T ‖]

= E[‖ 1

m

m∑
i=1

U±i(Λ) − Id‖]

Next, we shall therefore aim to obtain a result of the form of eq. (2.1) for terms

U±i of the form U±(Λ), in other words, we can identify M with Λ without loss of

generality (w.l.o.g.). Note also that U±(Λ) is isotropic, i.e. it satisfies E[U±(Λ)] = Id.
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Take a d × d projection matrix of rank r ∈ {1, ..., d}. We shall now use our

splitting device, Lemma 2.1. Denote by Λ the ρ×ρ diagonal matrix of the non-zero

eigenvalues of M , and we split R as R =
[
P S

]
into the k × ρ matrix P and the

k × ρ̄ matrix S, where ρ̄ = d− ρ. We can express U±(Λ) as the following:

U±(Λ) =

[
V ±(Λ) Z±(Λ)

Z±T(Λ) W
±
(Λ)

]
(3.7)

where

V ±(Λ) = E[PT (PΛPT )±1P ]−1/2 · PT (PΛPT )±1P · E[PT (PΛPT )±1P ]−1/2(3.8)

W±1
(Λ) = E[ST (PΛPT )±1S]−1/2 · ST (PΛPT )±1S · E[ST (PΛPT )±S]−1/2 (3.9)

Z±(Λ) = E[PT (PΛPT )±1P ]−1/2 · PT (PΛPT )±1S · E[ST (PΛPT )±1S]−1/2(3.10)

Therefore, by Lemma 2.1 we have

‖AU±(Λ)A‖ ≤ ‖A1V
±
(Λ)A1‖+ ‖A2W

±
(Λ)A2‖ (3.11)

Before proceeding to bound each term on the r.h.s., one more simplification will

be handy. We shall assume that κ(Λ) ≡ ‖Λ‖ · ‖Λ−1‖ is bounded by some constant

independent of d. This is reasonable, since this is the condition number of the

non-random ρ× ρ matrix Λ, and ρ < d.

Lemma 3.2 (Taking Λ = Iρ only changes the constants). Assume that κ(Λ)

is bounded by a constant independent of d. Then,

‖A1V
±
(Λ)A1‖ ≤ κ(Λ) · ‖A1V

±
(Iρ)A1‖ (3.12)

‖A2W
±
(Λ)A2‖ ≤ κ(Λ) · ‖A2W

±
(Iρ)A2‖ (3.13)

where Iρ is the ρ-dimensional identity matrix.

Proof. [Proof of Lemma 3.2] Recall that Λ is the ρ×ρ diagonal matrix of non-zero

eigenvalues of M , so Λ =

[
Λ 0

0 0

]
.

Using the Rayleigh quotient inequality combined with Poincaré inequality (The-

orem 4.2.2., Corr. 4.3.16 in [12]) we have the following bounds: ∀x ∈ Rρ,

xTPT (PΛPT )±1Px = xTPT (PPT )−
1
2 [(PPT )±

1
2PΛ · PT (PPT )±

1
2 ]±1(PPT )−

1
2Px

≤ xTPT (PPT )±1Px · ‖Λ±1‖

Likewise,

xTPT (PΛPT )±1Px ≥ xTPT (PPT )±1Px · ‖Λ∓1‖.

In consequence, for the upper diagonal block we have:

‖A1E[PT (PΛPT )±1P ]−
1
2 · PT (PΛPT )±1P · E[PT (PΛPT )±1P ]−

1
2A1‖

≤ ‖E[PT (PΛPT )±1P ]−1‖ · ‖A1P
T (PPT )±1PA1‖ · ‖Λ±1‖

≤ ‖E[PT (PPT )±1P ]−1‖ · ‖A1P
T (PPT )±1PA1‖ · ‖Λ±1‖ · ‖Λ∓1‖

= κ(Λ)‖A1V(Iρ)A1‖
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In the last line we used the fact that E[PT (PPT )±1P ] is a spherical matrix.

By the same arguments, for the lower diagonal block we have:

‖A2E[ST (PΛPT )±1S]−
1
2 · ST (PΛPT )±1S · E[ST (PΛPT )±1S]−

1
2A2‖

≤ ‖E[ST (PPT )±1S]−1‖ · ‖A2S
T (PPT )±1SA2‖ · ‖Λ±1‖ · ‖Λ∓1‖

= κ(Λ)‖A2W(Iρ)A2‖

since E[ST (PPT )±1S] is also spherical. This concludes the proof.

The advantage of Lemma 3.2 is that it allows us to work with a matrix expec-

tation that has a closed form. Let M0 ≡
[
Iρ 0

0 0

]
. The expectation that appears in

cov−k (M0) has a closed form expression (this would not be the case with a generic

diagonal matrix argument). In addition, the expectations in both approximators

cov±k (M0) are spherical matrices. This will come in handy in the proof, as well as

in the remaining analysis. In particular, straightforward computation gives:

E[V +
(Iρ)] = σ4k(ρ+ k + 1)Iρ; E[W+

(Iρ)] = σ4ρkIρ̄; E[Z+
(Iρ)] = 0 (3.14)

E[V −(Iρ)] =
k

ρ
Iρ; E[W−(Iρ)] =

k

ρ− k − 1
Iρ̄; E[Z−(Iρ)] = 0 (3.15)

Lemma 3.2 implies that, if V ±(Iρ) satisfies the MSR with η, cMSR > 0, then V ±(Λ)

satisfies the MSR with η and cMSR · (κ(Λ))
1+η

. Likewise, if W±(Iρ) satisfies the MSR

with η′, c′MSR > 0, then W±(Λ) satisfies the MSR with η′ and c′MSR · (κ(Λ))
1+η′

.

In the sequel, with the choice M := M0 we will omit the lower index (Iρ) from

our notations of U±, V ±,W±, Z±.

The remaining sections complete the analysis separately for ˆcovk and ˆcov−k re-

spectively. As the sign associated with the approximator will be clear from the

section titles, we may omit the upper indexes.

4. Main Result for ˆcovk

Theorem 4.1 (Sufficient ensemble size for ˆcovk). Let M be a d × d rank

ρ < d positive semi-definite matrix having κ(M) ≡ λmax(M)/λρ(M) bounded above

independently of d. For any ε ∈ (0, 1), and any choice of η > 0, there exist constants

c > 0, and C1(c, η) > 0, such that, taking an ensemble of size m ≥ C1(c, η) · d
ε2+2/η

ensures that:

ER [‖ ˆcovk(M)− covk(M)‖] ≤ ε · ‖covk(M)‖ (4.1)

Proof. [Proof of Theorem 4.1] We shall make use of the notations and results de-

veloped so far. We work with the isotropic transformation of the generic term of

ˆcovk, which is U+
(M) (defined earlier in eq. (3.1)), and for the rest of this subsec-

tion we omit the upper index. The plan is to show that this matrix satisfies the



Sufficient Ensemble Size for Random Matrix Theory based Handling of Singular Covariances 13

MSR condition with some c, η > 0. This will then imply, by Theorem 2.1, that

ER

[
‖ 1
m

∑M
i=1 Ui,(M) − Id‖

]
≤ ε, and rearranging gives the form stated in eq. (4.1).

To this end, by Lemmas 3.1 and 3.2, it is sufficient to show MSR for the simpler

matrix U ≡ U(Iρ). Take any projection matrix in Rd, and t ≥ c · r where r is the

rank of A. By Lemma 2.1,

Pr {‖AUA‖ ≥ t} ≤ Pr {‖A1V A1‖+ ‖A2WA2‖ ≥ t} (4.2)

≤ Pr {‖A1V A1‖ ≥ t/2}+ Pr {‖A2WA2‖ ≥ t/2} (4.3)

where A1 and A2 are rank r projection matrices in Rρ and Rρ̄ respectively.

It now remains to show that both terms satisfy MSR. Lemma 4.1 below shows

this is indeed the case, for any choices of η, η′ > 0. Hence, by Lemma 2.1, U satisfies

MSR. This completes the proof of the theorem.

Lemma 4.1. For any choices of η, η′ > 0, there exist constants cMSR, c
′
MSR in-

dependently of d s.t. W and V from eq. (4.3) satisfy the MSR condition with

(cMSR, η), and (c′MSR, η
′) respectively.

Proof. [Proof of Lemma 4.1] Recall, by eq. (3.14) we have:

E[RT (RM0R
T )R] = σ4

[
(k2 + k + ρk)Iρ 0

0 ρkIρ̄

]
(4.4)

Therefore,

U = σ−4

 PT (PPT )P · 1
k(ρ+k+1) PT (PPT )S · 1

k
√
ρ(ρ+k+1)

ST (PPT )P · 1

k
√
ρ(ρ+k+1)

ST (PPT )S · 1
ρk

 (4.5)

≡
[
V Z

ZT W

]
We need a polynomially decaying upper bounds on the following tail probabil-

ities, corresponding to MSR of the block-diagonal sub-matrices V and W respec-

tively.

Pr

{
‖A1P

T (PPT )PA1‖ ·
1

σ4k(ρ+ k + 1)
≥ t
}
≤ ? (4.6)

Pr

{
‖A2S

T (PPT )SA2‖ ·
1

σ4ρk
≥ t
}
≤ ? (4.7)

where A1, A2 are rank-r projection matrices. Both V and W are isotropic, as we

have E[V ] = Iρ, and E[W ] = Iρ̄.

We start with W , as this is the matrix whose dimensions ρ̄× ρ̄ = (d−ρ)×(d−ρ)

depend on d. A2 is a projection matrix in Rρ̄, of rank r ∈ {1, ..., ρ̄}, so it must have

the form A2 = BT2 (B2B
T
2 )−1B2 for some full row-rank matrix B2 of size r × ρ̄.

Therefore we can absorb A2 into S:

‖A2S
T (PPT )SA2‖ = ‖(B2B

T
2 )−1/2B2S

T (PPT )SBT2 (B2B
T
2 )−1/2‖

= ‖QT (PPT )Q‖ (4.8)
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where Q := SBT2 (B2B
T
2 )−1/2, and since S has i.i.d. Gaussian entries, the k × r

matrix Q also has i.i.d. Gaussian entries with unchanged variance. We have:

Pr

{
‖QT (PPT )Q‖ · 1

σ4ρk
≥ t
}
≤ Pr

{
ρ∑
i=1

PiQQ
TPi ≥ σ4ρkt

}
(4.9)

≤ ρ · Pr
{
‖QT p‖2 ≥ σ4kt

}
(4.10)

where p has the distribution of a generic column of P .

Clearly, the vector QT p has dependent entries. However, notice that its distri-

bution QT p ∼ GALr(2Ir, 0, k/2) follows a generalized Laplace distribution, of the

form described in [23,17], and that it has covariance matrix is E[QT ppTQ] = σ4kIr.

Therefore, QT p/σ2
√
k is isotropic log-concave; this can be checked e.g. by checking

that the negative log of the density function is convex. A simpler alternative is to de-

duce it from the equivalent representation given in [23], together with known prop-

erties of log-concave distributions: Take another, r-dimensional standard Gaussian

vector z ∼ N (0, Ir) independent of p; then the distribution of QT p is the same as

that of ‖p‖·z. Both the chi-distribution and the Gaussian belong to the log-concave

family of distributions, and the product of independent log-concave distributions is

also log-concave [27].

Therefore, by Theorem 2.2, there exists a constant c > 0 s.t. for any ε ≥ 1 we

have:

Pr
{
‖QT p‖2/(σ4k) ≥ c2ε2r

}
≤ exp(−ε

√
r) (4.11)

Rearranging, this is equivalent to the r.h.s. of eq. (4.10) being bounded as:

ρ · Pr
{
‖QT p‖2 ≥ σ4kt

}
≤ ρ exp(−

√
t/c) (4.12)

independently of r, for any t ≥ c2r, where c is the absolute constant from Paouris’

inequality.

This exponential inequality is stronger than the polynomial inequality that we

need to conclude the MSR condition of the random matrix ST (PPT )S. It implies

the existence of the required constant cMSR for any choice of η > 0, so the MSR

holds.
Moving on to the upper diagonal block matrix, A1 is a projection matrix, so

‖A1‖ = 1, and we have:

Pr
{
‖A1(PTP )2A1‖ ≥ σ4k(ρ+ k + 1)t

}
≤ Pr

{
ρ∑
i=1

‖Pi‖2 ≥ σ2
√
k(ρ+ k + 1)t

}
(4.13)

As the columns Pi are statistically independent,
∑ρ
i=1 ‖Pi‖2 ∼ χ2(ρk) is chi-square
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distributed with ρk degrees of freedom. Applying the Chernoff bound we get:

eq. (4.13) ≤

(
σ2
√
k(ρ+ k + 1)t

ρk

) ρk
2

exp

(
−
√
t

2
σ2
√
k(ρ+ k + 1)− ρk

)

≤ exp

−1

8

[
σ2

√
k(ρ+ k + 1)t

ρk
−
√
ρk

]2
The last line applied the inequality log(1 + ε) ≤ ε − ε2/2. The exponential factor

dominates, and since kρ is constant, there exist c′MSR, η
′ > 0 constants s.t. for

t ≥ c′MSRr the r.h.s. be bounded by c′MSRt
−(1+η′).

5. Main Result for ˆcov−
k (M)

We shall now deal with the inverse covariance, or precision matrix approximator.

Theorem 5.1 (Sufficient ensemble size for ˆcov−k ). Let M be a d × d rank

ρ < d positive semi-definite matrix having κ(M) ≡ λmax(M)/λρ(M) bounded above

independently of d. Suppose that 3 ≤ ρ < d, ρ > k + 1. For any ε ∈ (0, 1), and

any choice of η > 0, there exist constants a, c > 0, and C2(c, η) > 0, such that,

if ρ − k + 1 > a log(ρ̄) + a, then taking an ensemble of size m ≥ C2(c, η) · d
ε2+2/η

ensures that:

ER
[
‖ ˆcov−k (M)− cov−k (M)‖

]
≤ ε · ‖cov−k (M)‖ (5.1)

The high level proof strategy is similar to that seen before, however the two

sub-matrices involved in the analysis will turn out to belong to different families

of matrix distributions, and consequently require different treatment. In particular,

the sub-matrix that corresponds to the null-space of M is outside the log-concave

family of distributions, and instead it follows a matrix-variate T distribution. We

will employ the bounds we developed in Section 2.3 to show that it satisfies the

MSR condition under the stated assumptions.

Proof. [Proof of Theorem 5.1] The isotropic transformation of the generic term

of ˆcov−k is U−(M), defined in eq. (3.1). Next, we shall establish the MSR condition

for this matrix under the conditions in the theorem statement. Then, Theorem 2.1,

and rearranging yield eq. (5.1) as required.

As before, by Lemmas 3.1 and 3.2, it is sufficient to show MSR for the simpler

matrix U− ≡ U−(Iρ). To this end, take an arbitrary projection matrix in Rd, and

t ≥ c · r where r is the rank of A. By Lemma 2.1, we have:

Pr
{
‖AU−A‖ ≥ t

}
≤ Pr

{
‖A1V

−A1‖+ ‖A2W
−A2‖ ≥ t

}
(5.2)

≤ Pr
{
‖A1V

−A1‖ ≥ t/2
}

+ Pr
{
‖A2W

−A2‖ ≥ t/2
}

(5.3)

where A1 and A2 are rank r projection matrices in Rρ and Rρ̄ respectively.



16 Ata Kabán

Recalling the form of these matrices from eq. (3.15), we have:

U− =

 PT (PPT )−1P · ρk PT (PPT )−1S ·
√
ρ(ρ−k−1)

k

ST (PPT )−1P ·
√
ρ(ρ−k−1)

k ST (PPT )−1S · ρ−k−1
k


≡
[
V − Z−

Z−T W−

]
Observe that the two diagonal blocks belong to different classes of matrix-valued

distributions. The block V − has all of its non-zero eigenvalues equal to ρ/k, whereas

the block W− has a heavy tailed matrix-variate distribution. The matrix norm of

our interest is dominated by the latter. Also note that W− is isotropic, as E[W−] =

Iρ̄, but it is not log-concave.

Let us deal with the easy submatrix first. The matrix V − ≡ PT (PPT )−1P · ρk
satisfies MSR trivially, with any choice of η > 0, e.g. by Proposition 8.5 in [29]. It

remains to ensure that MSR holds for W−.

As before, A2 is a projection matrix in Rρ̄, of rank r ∈ {1, ..., ρ̄}, necessarily of

the form BT2 (B2B
T
2 )−1B2 for some full row-rank matrix B2 of size r × ρ̄. We can

absorb A2 into S, since:

‖A2S
T (PPT )−1SA2‖ = ‖(B2B

T
2 )−1/2B2S

T (PPT )−1SBT2 (B2B
T
2 )−1/2‖

= ‖QT (PPT )−1Q‖ (5.4)

where Q := SBT2 (B2B
T
2 )−1/2, and since S has i.i.d. standard Gaussian entries, the

k × r matrix Q also has i.i.d. standard Gaussian entries. Hence, J := (PPT )−1/2Q

has a matrix-variate T-distribution. In particular, J ·
√

(ν − 2)/k ∼ Tk×ρ̄(0, Ik, Iρ̄, ν)

with ν = ρ− k + 1. Hence, as a consequence of Lemma 2.2, i.e. eq. (2.23) we have

for all t > r:

Pr
{
‖A2W

−A2‖ ≥ t
}
≤ k ·

(
t

r

) r
2

·
(
r + ν

t+ ν

) ν+r
2

≤ k ·
(
t

ρ̄

) ρ̄
2

·
(
ρ̄+ ν

t+ ν

) ν+ρ̄
2

(5.5)

Finally, for this to imply MSR, we need to require that the r.h.s. of eq. (5.5) is

upper bounded by c · t−1−η for some c > 0 constant. The following remark shows

that this is indeed the case under the conditions in the theorem statement.

Remark 5.1. There exists a constant c > 0 for any choice of η > 0 s.t.(
t

ρ̄

) ρ̄
2

·
(
ρ̄+ ν

t+ ν

) ν+ρ̄
2

≤ c · t−1−η,

provided that ν > a log(ρ̄) + a for some constant a.

The proof of this remark is due to [4] and is reproduced in the Appendix for

completeness.

As k is fixed, it can be absorbed into c. Therefore, recalling that ν = ρ−k+1, and

ρ̄ = d−ρ, a sufficient condition for MSR in our case is that ρ−k+1 ≥ Ω(log(d−ρ)).

The proof is complete.
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Fig. 1. Numerical experiment for the covariance approximator ˆcovk(M) where M has rank ρ = 50.

We observe the required ensemble size grows linearly with d, for all choices of k tested.

6. Numerical demonstration

In this section we give an empirical demonstration of our findings, namely that the

ensemble size m only needs to grow linearly with d for the random projection based

finite ensemble covariance and inverse covariance approximators to become close to

their expectations.

We took a fixed singular matrix M of rank ρ = 50, and generated independent

random Gaussian matrices R1, R2, ..., Rm (with variance of entries set to 1/k) and

computed the following:

ε :=
‖ 1
m

∑m
i=1R

T
i (RiMRTi )±1Ri − E

[
RT (RMRT )±1R

]
‖

‖E [RT (RMRT )±1R] ‖

We increased the ensemble size m progressively until ε reached below a pre-defined

threshold. We varied d, and ran 15 independent repetitions of this experiment for

several values of k.

Figures 1 and 2 present the ensemble sizes required, for ˆcovk and ˆcov−k respec-

tively. The ensemble sizes (m) on the vertical axis in these figures represent averages

computed from the 15 independent repetitions, and the error bars depict the inter-

quartile range. The best linear fits are also superimposed. We should note that the

absolute magnitudes on the vertical axes are not comparable between the plots of

ˆcovk and ˆcov−k , since the construction of these matrices is quite different.

We see from Figures 1 and 2, as expected from our theoretical results, that for

each choice of k, the required ensemble size displays a growth that is linear in d.

These simulations suggest that our concentration bound is tight order-wise, and
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Fig. 2. Numerical experiment for the inverse covariance approximator ˆcov−
k (M), where M has rank

ρ = 50. Again, we observe for all choices of k tested, the required ensemble size grows linearly
with d.

provides useful guidance on setting the ensemble size in practice, especially when

one is interested to monitor various performance metrics as dimension increases, to

test the scalability of algorithms. Based on our results, in practice one may therefore

set m to a constant multiple of d, where the choice of the magnitude of this constant

depends on the available computational resources. Indeed, a constant as low as 1 or

2 was observed to work well in the continuous optimization application described

in [16].

In addition, although not addressed by our theoretical analysis, the numerics

suggest that a choice of k around the middle of its allowed range produces lower

error and lower slope for ˆcov−k , in agreement with previous empirical experiences

in classification [9]. Too low values of k induce high error due to over-smoothing,

while too high values of k display large variability as the degree of freedom ν of

the heavy tailed random sub-matrix becomes low, implying weaker concentration

properties. On the other hand, for ˆcovk, low values of k induce high error for the

same reason of over-smoothing, but higher values of k remain stable. This was

intuitively expected, as the matrix distribution is better behaved, no heavy-tailed

sub-matrix is involved. In this case, the problem of setting of k in practice may also

depend on the purpose, as higher values of k are computationally more expensive.

7. Conclusions and future work

We quantified the Monte Carlo error of two random matrix theory based approaches

that deal with singular covariance matrices. From this we deduced the number of in-
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dependent random projections that ensure that the finite ensemble gets sufficiently

close to the associated matrix expectation. We found that the ensemble size only

needs to grow linearly with the dimension of the positive semi-definite input matrix,

both in the case of covariance approximation and in the case of inverse covariance

approximation, in the latter case under mild assumptions.

Further work of interest includes the question of what is the optimal choice of

k. As already noted in [22], this is difficult to answer. For instance, if the singular

covariance M is a low-sample estimate of a non-singular true covariance, the ap-

proximation error between the latter and the converged ensemble (as considered in

[22]), the Monte Carlo error of the finite ensemble (as considered in this work), and

the availability of computational resources in practice all contribute to this choice.

Nevertheless, a better understanding of each component offers some guidance.

Another worthwhile avenue for further research is to extend the analysis to

non-Gaussian random projections. In particular, we can show that the multivariate

t-distribution with ν degrees of freedom belongs to the family of −1/ν-concave

distributions (definitions may be found in e.g. [5,6]), which suggests this may be

feasible.
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Appendix

The following proof of Remark 5.1 is reproduced from MathOverflow [4]. Let t, r, ν ≥
1, of which ρ̄ can be unbounded, ν = ρ− k + 1 can be constrained to be larger than
some threshold that may depend on ρ̄ in some mild way, such as logarithmically. We
need to show that: ∃c, η > 0 constants independent of ρ̄ s.t. ∀t > ρ̄ · c,

L(t)
def
=

(
t

ρ̄

)ρ̄/2(
ρ̄+ ν

t+ ν

)(ρ̄+ν)/2

· c−1 · t−1−η ?
≤ 1

In fact, this will be shown to hold for any choice of η > 0, for some constants c and
a, if ν > a log(ρ̄) + a.

Taking logarithms and derivatives w.r.t. t, the unique maximum of L(t) is found

at tmax =
ν(ρ̄+2+2η)
ν−2−2η . If a ≥ 3 + 2η then tmax

ρ̄ ≤ (3 + 2η)2; so tmax falls outside the

range t > cρ̄ if c > (3 + 2η)2, and one only needs to verify L(t) ≤ 1 for t = cρ̄:

L(cρ̄) = cρ̄/2 ·
(
ρ̄+ ν

cρ̄+ ν

)ρ̄/2+ν/2

· cη ρ̄1+η ?
≤ 1

Case 1.
We use of the following inequality: (1− y

x+y )x <
√

3
−y

if x ≥ y/2 > 0. Therefore:(
ρ̄+ν
cρ̄+ν

)ρ̄/2+ν/2
=
(

1− (c−1)ρ̄/2
cρ̄/2+ν/2

)ρ̄/2+ν/2
<
√

3
−(c−1)ρ̄/2

, and hence:

L(cρ̄) = cρ̄/2 ·
(
ρ̄+ν
cρ̄+ν

)ρ̄/2+ν/2
· (cρ̄)1+ηc−1 < cρ̄/2 ·

√
3
−(c−1)ρ̄/2 · cη ρ̄1+η

Noting that c√
3
c−1 → 0 as c→∞, so given η, the inequality holds for every ρ̄ if

c is large enough, provided x ≥ y/2, that is ν ≥ (c− 3)ρ̄/2.
Case 2.

Now assume a log(ρ̄) + a < ν < (c− 3)ρ̄/2 for some a. Rewrite:

L = c−ν/2 ·
(

ρ̄+ ν

ρ̄+ ν/c

)ρ̄/2+ν/2

· cη ρ̄1+η ?
≤ 1

Now, we make use of the inequality: (1 + x
y )y < ex if x, y > 0. Therefore:(

ρ̄+ ν

ρ̄+ ν/c

)ρ̄/2+ν/2

=

(
ρ̄+ ν

ρ̄+ ν/c

)ρ̄/2+ν/(2c)

·
(

ρ̄+ ν

ρ̄+ ν/c

)(1−1/c)ν/2

=

(
1 +

(1− 1/c)ν/2

ρ̄/2 + ν/(2c)

)ρ̄/2+ν/(2c)

·
(

ρ̄+ ν

ρ̄+ ν/c

)(1−1/c)ν/2

< e(1−1/c)ν/2 ·
(

ρ̄+ ν

ρ̄+ ν/c

)(1−1/c)ν/2

Now it suffices to prove:

c−ν/2 ·
(
e · ρ̄+ν

ρ̄+ν/c

)(1−1/c)ν/2
· cη ρ̄1+η

?
≤ 1.

Raising to the power of 2/ν, and rearranging, yields:

e1−1/c · ρ̄+νcρ̄+ν ·
(
ρ̄+ν/c
ρ̄+ν

)1/c
· cη2/ν · ρ̄(2+2η)/ν

?
≤ 1.

Since ν < (c − 3)ρ̄/2 =⇒ ρ̄+ν
cρ̄+ν < 1/3, and since

ρ̄+ν/c
ρ̄+ν < 1, it is sufficient to

prove e1−1/c

3 · c2η/ν · ρ̄(2+2η)/ν
?
≤ 1

Finally, ν > a log(ρ̄) +a =⇒ ρ̄(2+2η)/ν < e(2+2η)/a. One can now choose a such

that e
3 · c

2η/a · e(2+2η)/a < 1.


