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Abstract: Extending current deterministic tools to incorporate significant stochastic wind power is becoming an important as 
well as challenging task for present-day power system decision-making. This paper proposes a novel probabilistic assessment 
method to assess the available transfer capability (ATC). Usually, a large number of ATC evaluations is needed to obtain 
accurate results using time-consuming Monte Carlo simulations (MCS). To alleviate the computation burden of probabilistic 
ATC, a statistically-equivalent surrogate model for the ATC solution is constructed by introducing canonical low-rank 
approximation (LRA). By implementing LRA for the base case and a set of enumerated contingencies, the uncertainties of 
wind power generation and load, as well as transmission equipment outages, are addressed in an efficient way. With the 
proposed method, the probability of ATC is characterised, and the most influential uncertain factors are identified, which 
helps to determine a suitable ATC level. The effectiveness of the proposed method is validated via case studies with a 
modified IEEE 118-bus system. 
 

1. Introduction 
The exploitation and utilisation of wind power are 

regarded as an effective way to tackle the challenges of 
climate change and the energy crisis. Due to its stochastic 
nature, the actual wind power generation can vary 
significantly from its scheduled value [1]. In order to integrate 
a high proportion of wind power into power systems, there is 
a pressing need to quantify the impact of its uncertainty on 
power system operation indices and, hence, ensure a secure 
and reliable transmission network. In order to utilise the 
transmission network rationally, the North American Electric 
Reliability Corporation (NERC) has defined the available 
transfer capability (ATC) as a measure of the power transfer 
capability remaining in the transmission network for further 
commercial activities over and above already-committed uses 
[2]. It quantifies the amount of power in MW that can be 
exchanged between areas without violating any security 
constraints in both pre- and post-contingency conditions. For 
electricity market participants, the information on the ATC 
serves as a reference for designing purchase and sale 
contracts, while for system operators, the precalculated ATC 
value can be used as a security indicator of the transmission 
infrastructure. 

Conventionally, ATC is evaluated by a deterministic 
approach, for instance, sensitivity-based power flow [3], 
continuation power flow (CPF) [4], repeated power flow 
(RPF) [5] and optimal power flow (OPF) [6]. It is widely 
recognised that the ATC calculation should accommodate 
reasonable uncertainties in the system conditions to guarantee 
flexible and reliable system operations [2]. In a power system 
with a significant proportion of wind power generation, 
where the principle of addressing uncertainty attracts more 
attention, probabilistic ATC calculation is considered to be 
more promising than deterministic methods [7-10]. Monte 
Carlo simulations (MCS) are widely used for assessing 
probabilistic ATC [11-14]. Even though the stochastic 

behaviors of ATC can be accurately characterized, the 
application of MCS to time-sensitive cases is not technically 
feasible due to it involves a huge number of ATC evaluations 
for the randomly sampled states to reach convergence. The 
efficiency of MCS can be improved by adopting variance 
reduction techniques that reduce the number of trials [15-16]. 
In recent years, polynomial chaos expansion (PCE) has been 
proved as a promising solution to alleviate the computation 
burden of MCS [17-18]. In PCE, a surrogate model for 
generating ATC samples is built up by a series expansion of 
multivariate orthogonal polynomials, and the probabilistic 
ATC evaluation is accelerated due to the simulations on the 
time-consuming original model are reduced. However, the 
necessary number of original model simulations increases 
exponentially with the dimension of inputs [19], which makes 
the efficiency merit of PCE disappears in those practical 
power system problems involving a great number of 
uncertain parameters concerning loads, generations and 
others. Besides MCS and PCE, small-sample methods, like 

Table 1 Probabilistic ATC methods comparison 
Method Attractive points Defects 

MCS 
It is accurate to characterize 
the stochastic behaviors of 
ATC.  

Heavy computation burden 
is involved to reach 
convergence. 

PCE 

It saves computation effort 
of MCS by employing a 
surrogate model to generate 
random samples of ATC. 

The advantage of efficiency 
disappears in high-
dimensional applications. 

PEM 

It carries out a few 
deterministic routines with 
selected points to estimate 
the statistical moments of 
ATC. 

The accuracy of series 
expansion to estimate the 
probability distribution of 
ATC is not guaranteed. 

bootstrap 

The statistical moments of 
ATC are estimated by 
repeated sampling from 
historical data.  

It is difficult to guarantee 
the validity of the results 
depending on the selected 
ATC samples.  
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point estimation methods (PEM) [20] and bootstrap methods 
[21], require fewer random samples of ATC but extra 
mathematical treatments. Although the computational effort 
is attractive, small-sample methods are not always accurate 
enough. For example, PEM would have bad performance 
when selecting unsuitable series to fit the probability 
distributions of random variables [22]. The pros and cons of 
these methods are summarized and compared in Table 1. In 
general, a probabilistic ATC method ensuring both accuracy 
and efficiency is still in need. 

Besides the aforementioned concern, the probabilistic 
ATC framework could be further improved by providing 
information about which uncertain factors would have the 
greatest effect on ATC variation. Such uncertainty 
importance measure can help to identify random variables or 
parameters needed for improved forecast or modelling, so 
that more reliable probabilistic ATC results can be provided 
[23]. Moreover, the quantification of uncertainty importance 
can also guide system operators towards taking effective 
control actions, for example installing energy storage next to 
important renewable energy plants identified to mitigate the 
ATC variability [24]. Several uncertainty importance 
measures are investigated in ref. [25], among which variance-
based global sensitivity analysis (GSA) is recognized as an 
applicable one in the context of power system. Because GSA 
is conducted with a large number of structural samples of 
random inputs [26], its computational burden has become a 
concern and prohibited its applications to problems including 
the ATC assessment.  

This paper addresses the needs above by developing a 
novel probabilistic ATC calculation method based on the 
low-rank approximation (LRA) technique. LRA offers a 
promising alternative to PCE for developing surrogate 
models based on the idea of canonical decompositions [27]. 
The canonical decompositions are typically used to compress 
and extract information of a tensor and have been used in a 
broad range of fields, like signal processing and data mining 
[28-30]. Recently, it also attracts interest in the probabilistic 
power flow problem [31]. The number of coefficients in 
canonical decompositions grows linearly rather than 
exponentially with the input dimension [32], making LRA 
more powerful in dealing with high-dimensional problems. 
The main benefits of the proposed method are:  

i. Under the base case and a set of transmission 
contingency cases, the LRA representation for the 
ATC solution is built and used as a surrogate model 
to calculate ATC coping with uncertain load and 
wind power. 

ii. The statistics and probability distributions of ATC， 
as well as the global sensitivity index (GSI) of 
random input are expressed according to the law of 
total probability, by which the discrete-distributed 
transmission status are analytically handled.  

Consequently, the proposed method improves the efficiency 
of the probabilistic ATC calculation while ensuring high 
accuracy.  

The remainder of the paper is organised as follows. 
The problem formulation of the probabilistic ATC calculation 
is provided in Section 2. Section 3 describes the 
implementation procedure of the canonical LRA. Section 4 
presents the realisation of the LRA-based probabilistic ATC 
assessment in detail, followed by numerical case studies on a 

modified IEEE 118-bus system in Section 5. Conclusions are 
drawn in Section 6. 

2. Probabilistic ATC Assessment   
2.1. Mathematical formulation for ATC 

According to the NERC definition, ATC can be 
expressed as the total transfer capability (TTC) less the 
transmission reliability margin (TRM), less the sum of 
existing transmission commitments (ETC) and the capacity 
benefit margin (CBM), that is: 

 ( )ATC TTC TRM ETC CBM= − − +   (1) 
where TTC indicates the maximum MW power that can be 
transferred over the transmission network without violating 
the security constraints for a set of defined pre- and post- 
contingency conditions; ETC is determined for a specific base 
case, which is a system operating state determined by 
parameters including load demands, generation outputs and 
network configurations, etc; TRM is defined as the amount of 
transfer capability necessary to ensure the reliable and secure 
operation of transmission networks under a range of 
uncertainties in system conditions; CBM is a locally applied 
margin reserved by load-serving entities to ensure access to 
generation from elsewhere in the interconnected systems to 
meet generation reliability requirements. 

In practice, TRM and CBM, as two transfer capability 
margins, are usually treated as fixed values or percentages of 
TTC to meet specific reliability requirements and are 
therefore neglected in some ATC calculation methods for 
simplicity [33]. In this paper, the determination of TRM is 
addressed in the probabilistic ATC scheme to accommodate 
the wind power uncertainty. It will be discussed in section 4. 

The ATC calculation for a deterministic case, e.g., the 
base case, can be expressed by the mathematical formulation 
below: 

 
Min  - ( )

 
( )=0,   ( ) 0

f
subject to

≤

u

g u h u
  (2) 

where u denotes the vector of the state and control variables. 
The model objective f(u) is to maximize the active power 
transferred through a transmission network or line without 
compromising system security, i.e., satisfying the constraints 
on g(u) and h(u). 

 
2.2. OPF based deterministic ATC evaluation 

In this paper, the OPF model incorporating the thermal 
and voltage security limits is used as the ATC calculator. 
Moreover, it is not difficult to include the dynamic stability 
limits by implementing the stability-constrained optimal 
power flow (SCOPF). In SCOPF, dynamic equations are 
converted to numerically equivalent algebraic equations and 
then integrated into the standard OPF formulation [34]. 

Specifically, the OPF objective function f(u) is 
expressed as: 

 ( )G G ,0( ) i i
i

f P P
∈

= −∑
SE

u   (3) 

The equality constraints g(u) include: 
1) the physical power flow equations: 

 
( )

( )
G W D

G W D

cos sin 0

sin cos 0

i i i i j ij ij ij ij
j i

i i i i j ij ij ij ij
j i

P P P V V G B

Q Q Q V V G B

θ θ

θ θ
∈

∈

 + − − + =



+ − − − =


∑

∑
  (4) 
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2) the load increase pattern: 
 D D ,0 D D D D ,0 D ,0,   / /i i i i i i iP P b Q P Q Pλ− = =   (5) 
The inequality constraints h(u) include: 
3) the generation capacity limits: 
 G ,min G G ,max , i i iP P P i≤ ≤ ∈ SE   (6) 
 G G ,0 , i iP P i= ∉ SE   (7) 
 G ,min G G ,max ,  i i iQ Q Q i≤ ≤ ∀   (8) 
4) the load demand limits 
 D ,0 D ,00,  ,    0,  i ib i b i≥ ∈ = ∉SI SI   (9) 
5) the voltage limits: 
 ,min ,max ,  i i iV V V i≤ ≤ ∀   (10) 
6) the thermal limits 
 2 2 2

L L L ,max ,  ij ij ijP Q S ij+ ≤ ∀   (11) 
where PGi and QGi are the active and reactive generations; PDi 
and QDi are the active and reactive load demands at bus i in 
the maximum-transfer case, respectively; PGi,0, PDi,0 and QDi,0 
are those in the base case; PGi,min and QGi,min, and PGi,max and 
QGi,max are the lower and upper bounds of the active and 
reactive generations at bus i, respectively; PWi and QWi are 
active and reactive wind generation, that remain unchanged 
in the base and maximum-transfer cases because wind power 
is non-dispatchable; λ is a scalar parameter representing the 
load increment; bDi is the constant specifying the load 
increase rate; Vi and θi are the voltage magnitude and angle of 
bus i; θij = θi − θj; Gij and Bij are the elements of the system 
admittance matrix; Vi,min and Vi,max are the lower and upper 
bounds of Vi; PLij and QLij are the active and reactive power 
on line i–j; and SLij,max is its apparent power capacity. SE and 
SI are the set of buses in the source and sink areas. 

With the OPF model above, the maximum-transfer 
case is established by solving the constrained nonlinear 
programming problem that provides the ATC of the 
transmission network. 

2.3. Probabilistic ATC using surrogate model 
The statistical and probabilistic properties of ATC are 

evaluated by the probabilistic method. Typically, it can be 
realised by the MCS procedure: 

i. Generate Nsim samples for wind generation, loads 
and network topologies by random sampling 

ii. Execute deterministic model simulation to evaluate 
ATC for each sample 

iii. Get statistics and probability distributions of ATC. 
The procedure above is quite time-consuming since a 

large number of repeated simulations is needed to achieve 
convergence so that a reliable result is obtained. The iteration 
can be terminated when MCS sim/ Nσ  is smaller than a 
specified level, where σMCS is the standard deviation of ATC. 
It provides a rule to decide whether the amount of simulations 
is sufficient or not. 

In order to improve the MCS-based probabilistic 
method, it is proposed to take advantage of a statistically-
equivalent surrogate model which is able to predict the ATC 
solutions with less computation effort. This procedure is 
illustrated in Fig. 1. The surrogate model, i.e., PCE or LRA, 
is built with results of a few rounds of deterministic ATC 
simulations in the first stage, and used for generating enough 
ATC samples subsequently in the second stage. Because Ned 
is far less than Nsim, the computation burden of the 
probabilistic ATC assessment is greatly alleviated.   

Ned input 
samples

Deterministic 
ATC model

Ned ATC 
samples

Construction 
process

Surrogate modelNsim input 
samples

Nsim ATC 
samples

ATC statistics and 
probabilities  

Fig. 1. Probabilistic ATC assessment with surrogate model 

3.  Canonical Low-Rank Approximation 
In this section, the general form for the canonical low-

rank representation of a computation model in the stochastic 
space is presented. Typically, it consists of four parts, as 
follows. 

 
3.1. Representation of input random variables 

In this step, the uncertainty sources are expressed in 
terms of the standard random variables (SRVs) ξ, e.g., 
Gaussian, Beta, Uniform, etc. The SRVs are statistically 
independent. However, the random variables modeling the 
uncertainties in the physical system, X = [X1, …, Xn]T might 
be correlated. To address the correlation issue, the copula 
theory [35] is employed in this paper. 

According to Sklar’s theorem, the joint distribution of 
X can be expressed as: 

 1 1( ) ( ( ), , ( ))n nF Cp F x F x=X x    (12) 
where FX is the joint cumulative distribution function (CDF) 
of X, Fi is the marginal CDF of Xi, and Cp denotes the copula 
function. 

Then, the correlated random variables are modeled by: 
iv. Determining the marginal distributions for each and 

every random variable Xi 
v. Selecting a suitable copula function to represent the 

dependence structure of multiple random variables 
X 

vi. Expressing X in terms of SRVs ξ with the principle 
of equal probability 

Consequently, the invertible transformation between 
X and ξ is established and denoted as ξ = T(X). 

 
3.2. Low-rank Approximation with Polynomial 

Basis 
For a computation model in the stochastic space, its 

output response Y can be approximately represented by a sum 
of rank-one functions: 

 
1

( ) ( )
r

l l
l

Y M b w
=

= ≈ ∑ξ ξ   (13) 

where scalars bl, l = 1, …, r, are normalising factors, and wl 
is the l-th rank-one function of ξ in the form of: 

 ( )

1

( ) ( )
n

i
l l i

i

w v ξ
=

=∏ξ   (14) 

where vl
 (i) denotes the i-th dimensional univariate function in 

the l-th rank-one function. 
The right-hand side of (13) constitutes a canonical 

rank-r decomposition of the original model which might not 
be unique. It is usually of interest to find a decomposition 
consisting of a small number of terms that approximates the 
output response with sufficient accuracy, which is known as 
the canonical LRA. 
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The LRA expressed by (13) is further realised by 
expanding vl

 (i) onto an orthogonal polynomial basis: 

 ( ) ( )
,

1 01

ˆ ( ) [ ( ( ))]
ipnr

i i
r l k l k i

l ki

Y M b z φ ξ
= ==

≈ = ∑ ∑∏ξ   (15) 

where ϕk
 (i), k = 0, …, pi, denotes the k-th degree univariate 

polynomial of the i-th input random variable ξi, and zk,l
 (i)is the 

expansion coefficient of ϕk
 (i) in the l-th rank-one function wl. 

The univariate polynomials ϕk
(i) are selected according 

to the marginal probability distribution of ξi, for example, 
Hermite polynomials for a Gaussian distribution, Legendre 
polynomials for a uniform distribution, and Jacobi 
polynomials for a Beta distribution [36]. 

 
3.3. Estimation of Model Constants 

When the approximation model has been built in the 
form of (15), the undetermined constants, including the 
normalizing factors {b1, …, br} and the polynomial 
coefficients { zk,l

(i) | i = 1, …, n, k = 0, …, pi, l = 1, …, r}, are 
solved as following. 

Firstly, a set of SRV samples ξed = {ξ(1), …, ξ(Ned)}, 
termed as the experimental design (ED), are randomly 
generated based on the joint probability distribution of X, and 
the corresponding responses yed = {y(1), …, y(Ned)} are 
evaluated by the original model, i.e., y(i) = M(ξ(i)), i = 1, …, 
Ned. 

Then, a sequence of pairs of correction-updating 
operators is performed, so that the approximation model with 
the solved normalising factors and polynomial coefficients is 
accurate enough to represent the original model concerning 
the ED samples. Specifically: 

1) In the t-th correction step, a new rank-one function 
wt is formed and added into the approximation model to 
minimize the residue of Y at the (t−1)-th step: 

ed
( ) ( ) ( ) 2

1
1

ˆ( ) arg  min  [ ( ) ( )]
N

m m m
t tw W

m

w y M w−∈
=

= − −∑X ξ ξ   (16) 

2) In the t-th updating step, the existing normalizing 
factors b = [b1, …, bt] are determined by solving the 
minimization problem below: 

 
ed

( ) ( ) 2

1 1

arg  min  [ ( )]
r

N t
m m

l l
m l

y wβ
∈

= =

= −∑ ∑b ξ
β R

  (17) 

The details of the solution process above are discussed 
in the literature [32] and omitted in this paper. However, it is 
worth mentioning here that LRA has two attractive features: 

i. The unknown constants to be estimated grow 
linearly with the dimension n of input random 
variables, i.e., r normalizing factors and r∙Σn 
i=1(pi+1) polynomial coefficients; 

ii. Only a series of small-size least-square regressions 
are involved in estimating the unknown constants in 
the sequential correction-updating scheme. 

 
3.4. Discussion 

So far, the LRA model is constructed based on the 
given parameters, i.e., rank r, polynomial degree pi and ED 
size Ned. The criteria for selection of the optimal parameters 
is not yet well established. In the existing literature, one 
solution is to specify a candidate set of parameters firstly, e.g., 
{1, 2, 3, 4, 5} for r and {2, 3, 4, 5} for pi. Then, the parameter 
selection is performed by progressively increasing the 
parameter and applying the error-based measure to select the 
best one [31].  The ED set is deemed insufficient if the final 

error measure is greater than a prescribed threshold, and 
should be enriched for a new investigation. It has been 
illustrated that the LRA with improper parameters would not 
predict the model response correctly [32], and therefore, leads 
to the invalid results. Although it seems setting r = 1or 2, and 
pi = 2 or 3, would be an appropriate choice for engineering 
applications, the optimal parameter selection is still an open 
question that calls for further investigations.  

4. Probabilistic ATC Assessment Based on LRA 
In this section, a probabilistic ATC method is 

developed by introducing LRA into the assessment scheme. 
The whole procedure has three stages as shown in Fig. 2.  

 

Wind power
model

Load demand
 model

Transmission line 
availability

Base case for transmission network 
(network configuration, generation 

dispatch, load increasing direction, …)
Contingency set

For case-m in the case list

Sampling for wind 
power and load demand

j = 1

Evaluate ATC 
for sample j

j = j + 1
Maximum j?

Get ATC statistics and 
distributions for case-i

All cases 
finished? m = m + 1

Global sensitivity 
analysis for ATC

Yes

NoYes

No

Preparation Stage 

Post-processing Stage

Calculation Stage  
Fig. 2. Proposed probabilistic ATC assessment procedure 

 
4.1. Preparation Stage 

In the preparation stage, the uncertainties existing in 
system operation are modeled as random variables according 
to the historical or forecasted data available. There are two 
kinds of uncertainty sources considered in this paper. 

The first category is the uncertainty of wind power or 
load demand which can be modeled as a continuous variable. 
While it is common practice to express uncertain customer 
behaviour, i.e., load increase rate/direction bD in this study, as 
a Gaussian random variable, wind power uncertainty can be 
modeled in two ways. One is to first represent the wind speed 
v with a probability distribution like a Weibull distribution; 
then, active wind generation PW is calculated by the energy 
conversion curve, i.e., PW = PW(v). The other is to represent 
wind generation as a summation of its forecast value PW,f and 
the corresponding forecast error εW, i.e., PW = PW,f + εW, in 
which εW is subjected to a conditional probability distribution 
on PW,f and modeled as a Beta random variable or other 
suitable types. 

The second category is the status or availability of 
transmission lines. The random line outage would cause a 
contingency that impacts ATC. Therefore, a set of 
contingency cases should be considered apart from the base 
case to ensure that the system can withstand the effects of the 
most restrictive line outage. In this paper, the contingency list 
is made by state enumeration until a termination rule, e.g., 
minimum contingency probability or maximum contingency 
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number. The probabilities of the base case C0 and the 
contingency Ck are calculated as: 

 
0

Pr( ) (1 ( )) ( )

Pr( ) 1 Pr( )
k

k
ij ij

k
C

C ij ij

C C

γ γ
∈ ∈

∈

 = − ⋅



= −


∏ ∏

∑
a uaL L

CL

  (18) 

where γ(ij) is the outage rate of transmission line ij, La and 
Lua are the collections of available lines and unavailable lines, 
respectively, and CL is the contingency set. 

Contingencies concerning generator outages can be 
handled in a similar way. However, generator outage might 
cause the redispatch of generations and loads. As a result, the 
base case condition for the ATC will be changed. 

According to the forecasted wind generations, load 
demands and facility status, a base case is defined based on 
the projected parameters concerning system configuration, 
generation dispatch, base scheduled transfers, etc. The load 
increase pattern and contingency are also specified for the 
next stage. 

 
4.2. Calculation Stage 

In the calculation stage, ATC is evaluated using the 
OPF model (3)~(11) for the base case at first. Then, the 
influence of uncertainties is addressed. For the base case and 
each contingency, wind generation PW and load increment 
rate bD are regarded as the input random variables, i.e., X = 
[PW; bD], of the OPF model whose LRA representation is 
constructed with a small number of model simulations. And 
then, the LRA is employed as the surrogate model to generate 
abundant ATC samples. The procedure is shown below. 

 
Procedure of probabilistic ATC with LRA 
For the base case and each contingency: 
1. Generate the ED samples (ξed, yed): 

a. Generate Ned samples in the SRV space: ξed = {ξ(1), …, 
ξ(Ned)}; 

b. Transform ξ to X with the copula: xed = T−1(ξed); 
c. Evaluate the ATC responses through the OPF model: 

yed = {y(1), …, y(Ned) }, y(j) = M(T−1(ξ(j))) = M(x(j)); 
2. Build the LRA representation of the OPF model using 

(ξed, yed); 
3. Sample ξ extensively, e.g., Nsp (>> Ned) samples, then 

employ the LRA as the surrogate model to evaluate the 
ATC response for all these samples. 

After traversing the case list: 
4. Store the LRA model and the ATC samples for all cases. 

 
In the LRA-based method above, the OPF model is 

simulated (1+k)∙Ned times, where k is the size of the 
contingency set. If the same amount of ATC samples is 
generated, saying (1+k)∙Nsp, the total number of OPF 
executions Nsim would equate the (1+k)∙Nsp in the MCS-based 
method. There are two reasons why it can significantly reduce 
the computation effort: (i) the number of OPF model 
simulations is reduced since Ned is far less than Nsp; (ii) it 
takes negligible time to evaluate the ATC response through 
the surrogate model since only linear algebraic operations are 
involved. 

 
4.3. Post-Processing Stage 

In the post-processing stage, the probabilistic ATC are 
characterised. According to the law of total probability, the 
probability density function (PDF) of ATC is expressed as: 

 
0

( ) ( ) Pr( )
k

m m
m

pdf ATC Cρ
=

= ⋅∑ y   (19) 

where ym is the ATC samples for the m-th case, and ρ(ym) 
denotes the conditional density function of ATC fitted with 
ym. 

The statistical moments, e.g., mean μATC and variance 
σ2

ATC, of ATC are calculated as: 

 ATC
0

E( ) Pr( )
k

m m
m

Cµ
=

= ⋅∑ y   (20) 

 2 2 2
ATC ATC

0

E( ) Pr( ) ( )
k

m m
m

Cσ µ
=

= ⋅ −∑ y   (21) 

where E denotes the expectation of samples. 
The probabilistic ATC calculation provides a range of 

ATC values with their probabilities instead of a deterministic 
value. Therefore, the probability-based or risk-based indices 
can be extracted and help system operators decide a proper 
ATC level [37]. For example, the TRM can be evaluated as: 

 0 ( )TRM ATC invcdf γ= −   (22) 
where ATC0 is calculated when the input random variables are 
set at the predicted values, invcdf denotes the inverse CDF of 
ATC, and γ is a percentile of the CDF specifying the risk level. 

Furthermore, variance-based GSA makes up the 
second part of the post-processing stage. Its purpose is to 
quantify the importance of each random input on ATC 
variability, so that the most influential uncertainty sources are 
identified. For each case Cm, m = 0, …, k, the GSI is defined 
by decomposing the variance of ATC into fractions which can 
be attributed to inputs or sets of inputs: 

 

~
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  (23) 

where Var denotes the sample variance, Sm.i denotes the GSI 
of the i-th input random variable Xi in the m-th case, Ym is the 
ATC response, and X~i is the sub-vector consisting of the 
variables in X except Xi. 

The expression (23) can be estimated in a numerical 
way, with the stored LRA model [38], specifically: 
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  (24) 

where x = {x(1), …, x(Ngsa)} is sampled according to the joint 
PDF of X, and gsa( )(1)

~ ~ ~{ ,  ..., }N
i i i′ ′ ′=x x x  is sampled according 

to the conditional PDF of X~i, when Xi = xi. 
Subsequently, Sm,i,  m = 0, …, k, are weighted to give 

the final sensitivity measure for the i-th input Xi: 

 .2
1 ATC

Pr( )Var( )k
m m

i m i
m

C
S S

σ=

 
= ⋅ 

 
∑ y   (25) 

The random inputs possessing larger weighted GSI 
values are supposed to have significant contributions to the 
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variability of ATC. Moreover, the sample size required in the 
numerical expression (24) is Ngsa∙(2n+2) for all n input 
variables in each case. Since the ATC responses are evaluated 
by the LRA surrogate model, instead of solving the nonlinear 
OPF problem, the GSIs can be calculated in a shorter time 
than conventional methods. 

5. Case Study 
Numerical tests were carried out on a modified IEEE 

118-bus system, whose basic parameters are available from 
the data files in ref. [39]. All tests were implemented in 
MATLAB on a PC with a 1.99-GHz Intel Core i7 and 16GB 
of RAM. The UQLab toolbox [40] was adopted for the 
construction of LRA and PCE. 

The system is divided into two areas, as shown in Fig. 
3, where Area-1 and Area-2 are the source area and sink area, 
respectively. 

 

Area-2

33 37
34 37
35 37
30 38
34 43
24 70
71 70

Area-1

 
Fig. 3. Decomposition of IEEE 118-bus system 

 
Twenty wind farms (WFs) of 100 MW each are 

connected to the network and replace conventional generators. 
These WFs are grouped into three sets, i.e., {1, 15, 18, 19, 32, 
36}, {42, 46, 55, 56, 62}, and {70, 74, 76, 85, 91, 92, 104, 
105, 110}. The normalised active wind generation is assumed 
to follow a Beta distribution. The associated parameters are α 
= 1.28, β = 2.97 for the first group, α = 2.63, β = 2.63 for the 
second group, and α = 3.78, β = 1.62 for the third group. In 
this paper, these parameters are selected according to ref. [41]. 
Moreover, the power outputs of WFs in the same group are 
supposed to be dependent and described by the Gaussian 
copula with a correlation coefficient of 0.5. 

Besides wind power, the load increase rates are 
modeled as normally distributed variables. The mean value of 
normal variables is the active load demand in the base case, 
and the standard deviation is defined as 5% of the 
corresponding mean. The load increase rates are independent 
of each other. 

Two test scenarios are designed as below: 
Scenario S1: Only active wind generation is 

considered as random variables. The total number of random 
inputs is 20. This case is designed to study the impacts of 
wind power uncertainty on transmission ATC. 

Scenario S2: Besides the WF outputs, the increase 
rates of loads with active powers greater than 10 MW are also 
assumed as random variables. The total number of random 
inputs is 110. This case is designed to test the capability of 
the proposed method in tackling high-dimensional problems. 

 
5.1. ATC Assessment Without Considering 

Contingencies 
In this study, only the uncertainties of load and wind 

powers are considered in the probabilistic ATC evaluation. In 
the proposed method, the LRA representation has been 
constructed with rank r = 1 and polynomial degree pi = 2. In 

order to assess the LRA performance as a surrogate model, 
the relative generalisation error measure of model responses 
is calculated for the samples in the validation set: 

 
vld

( ) ( ) 2

1vld

1[ ( ) ] / Var( )
N

i i
G sm om om

i

err atc atc
N =

= −∑ atc   (26) 

where atcsm and atcom are the ATC responses evaluated by the 
surrogate model and the original model, respectively. Nvld is 
the size of the validation set, set as 1 × 104 in this study. 

The LRA representations are built up separately under 
a range of ED sizes, varying from 1n to 10n where n is the 
number of input random variables. Because ED is generated 
randomly by simple random sampling (SRS), 100 trials of 
independent tests are conducted under each ED size. The 
maximum errG and the average errG curves versus the ED size 
Ned are plotted in Fig. 4. 
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Fig. 4. Error curves of the surrogate model in evaluating 
output response 

 
As indicated by the error curves, both the accuracy and 

robustness of LRA in evaluating ATC are improved with an 
increased ED size. However, further enrichment of ED 
samples contributes little to improve the performance of LRA 
above Ned = 5n. Therefore, the LRA representations 
constructed with 100 ED samples for scenario S1 and 550 for 
scenario S2 are regarded as the effective surrogate models 
and adopted for the following probabilistic ATC evaluations. 

Furthermore, the influence of parameters selected on 
the LRA performance is discussed. Under ED size Ned = 5n, 
the errG indexes of model built with different combinations 
of rank r and polynomial degree pi are presented in Table 2.  
The increased rank or polynomial degree leads to more terms 
added into the LRA model, which would require enriched ED 
set to determine those unknown constants in subsequence. 
According to the results in the table, the combination of r = 1 
and pi = 2 produces a better surrogate model.   

 
Table 2 Influence of parameters selected on surrogate model 

  pi = 1 pi = 2 pi = 3 

S1 
r = 1 2.00 × 10-2 1.54 × 10-2 1.92 × 10-2 

r = 2 8.71 × 10-2 6.48 × 10-2 3.61 × 101 

S2 
r = 1 4.65 × 10-2 4.10 × 10-2 7.09 × 10-2 

r = 2 2.41 × 101 1.65 × 101 3.57 × 102 

 
1) Statistical and Probabilistic Results of ATC: The 

MCS-based probabilistic ATC results serve as the benchmark 
for assessing the accuracy of the proposed method in 
estimating statistics and probabilities of ATC. In MCS, 5000 
times of the OPF-based simulations are conducted so that its 
result is converged. The statistical results of ATC provided 
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by LRA and MCS are listed in Table 3. The compared indices 
include the mean value μ, the standard deviation σ, and the 
inverse CDF value invcdfγ at cumulative probability γ.  

 
Table 3 ATC statistics evaluated by two compared method 

 method μ / MW σ / MW invcdf0.1 
/ MW 

invcdf0.5 
/ MW 

invcdf0.9 
/ MW 

S1 
MCS 737.67 82.08 637.83 728.46 852.24 

LRA 737.78 81.28 634.05 728.78 853.51 

S2 
MCS 607.14 47.33 547.64 605.85 669.29 

LRA 607.00 47.17 546.55 605.85 668.80 

 
The results in the table above reveals that LRA with 

the effective surrogate model can give similar ATC statistics 
to those of MCS. This can attribute to that the surrogate model 
is statistically equivalent to the OPF model in estimating ATC. 
Even though the accuracy of LRA is proved.  

The efficiency of the probabilistic ATC evaluation has 
been also evaluated and Table 4 presents the computation 
time cost by the proposed method. The total time cost ttotal is 
divided into three parts, where torg is consumed by evaluating 
actual ATC with the OPF model, tlra is the cost by solving 
LRA constants, and tsrg is the time spent in assessing ATC by 
the surrogate model. In comparison, the MCS consumes more 
than 910 s to finish the whole simulation procedure in both 
scenarios. 

 
Table 4 Time cost of LRA for the probabilistic ATC  

 Ned ttotal / s torg / s tlra / s tsrg / s 

S1 100 18.82 18.27 0.37 0.18 

S2 550 101.51 100.49 0.80 0.22 

 
As shown in Tab. 2, the time cost of LRA is only about 

2% and 11% of MCS. The calculation time is reduced 
because the surrogate model is more efficient than the OPF 
model in yielding a large quantity of ATC outputs. 
Specifically, in scenario S1, it takes around 913.39 s through 
the OPF model and 0.18 s through the surrogate model for 
5000 ATC simulations. Moreover, it also founds that the 
majority of the computational time is taken by torg. Therefore, 
although it can improve the accuracy of the surrogate model 
partly by enriching the ED as shown in Fig. 3, more time cost 
for the probabilistic ATC evaluation is also expected. 

2) Global Sensitivity Analysis of ATC: Taking 
scenario S1 as an example, sensitivity analysis is performed 
in the post-processing stage. With expressions (23) and (24), 
it needs 1.1 × 104 ATC responses evaluated for 20 random 
inputs for the base case when setting Ngsa = 500. Two methods 
are compared here: (i) PM represents that ATC is assessed by 
the effective surrogate, and (ii) CM represents that ATC is 
evaluated by solving OPF. The absolute difference between 
the GSI values calculated in two ways is visualized in Fig. 5, 
which verifies that LRA is capable of estimating the right 
indices. Besides that, PM and CM cost 0.4 s and 33 min to 
finish the analysis, respectively. The advantage in efficiency 
highlights that LRA is a better choice for performing GSA. 
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Fig. 5. Absolute difference of GSI values calculated in two 
ways 
 

The GSA results reveal that six WFs in the first group 
are significantly important and dominate the ATC variability. 
The index values of other WFs are close to zero. It can be 
justified by looking at the OPF solution showing that the 
thermal limits of lines 5–8, 23–32 and 30–38 prevent further 
growth of the power exchange between areas. The important 
WFs identified are close to these critical paths, and their 
generation variation would have a more significant influence 
on the fluctuation of power carried by the critical lines, as 
well as the ATC variability. 

Furthermore, the effects of correlation are also 
investigated, with wind generation supposed to be either 
dependent (S1-dpt) or independent (S1-idpt), respectively. 
Table 5 presents the GSIs for the influential WFs. In the 
independent case, even though the WFs are under the same 
marginal distribution, their levels of importance can differ 
from each other, as suggested by the distinct GSI values. 
However, once the correlated wind power is taken into 
account, it seems all these WFs have similar impacts on ATC 
variance. 

 
Table 5 GSA results under different input conditions 

 WF1 WF15 WF18 WF19 WF32 WF36 

S1-dpt 0.606 0.579 0.612 0.609 0.582 0.470 

S1-idpt 0.304 0.148 0.149 0.124 0.223 0.003 

 
3) Comparison with the PCE-Based Method: The 

second-order sparse PCE is built up by least-angle regression 
[15] and used as the compared surrogate model. The study is 
conducted for scenario S2. For the same ED set, the errG 
measures are evaluated for LRA and PCE, respectively. As 
shown in Fig. 6, LRA can achieve better accuracy when the 
ED size is relatively small, e.g., Ned < 12n here. However, the 
error of PCE decreases faster and would beat LRA when the 
ED size is large enough. The other attractive feature of LRA 
is that the time consumed for constructing the surrogate 
model remains approximately invariant as the ED size 
increases. In contrast, it takes much more time for PCE when 
the ED size is large. This is attributed to PCE involving the 
solution of a large-scale regression problem with the sparse 
technique, while a series of small-size regression problems 
are addressed by LRA when building up the surrogate model. 

 



8 
 

4n 8n 12n 16n 20n
Ned

G
er

r , s
m

st
 

Fig. 6. Accuracy and efficiency comparisons between LRA 
and PCE 

 
4) Comparison with the PEM-Based Method: With a 

classical PEM scheme, the total rounds of deterministic ATC 
simulations are 41 for scenario S1 and 221 for scenario S2, 
which are less than LRA and MCS. It demonstrates the merit 
of efficiency of PEM as a small-sample method. Taking 
scenario S2 as an example, the mean and standard deviation 
of ATC assessed by PEM are 607.10 MW and 47.54 MW 
respectively, which indicates that PEM and LRA have similar 
accuracy levels for calculating statistics of ATC. However, 
the performance of PEM evaluating probability distributions 
depends on the series expansion combined [42]. In contrast, 
not only the statistics but also probability distributions of 
ATC can be accurately estimated by the proposed method 
without using any series expansion. The CDFs of ATC 
generated by Gram-Charlier series (PEM-GCS) and Cornish-
Fisher series (PEM-CFS), as well as MCS and LRA are 
plotted in Fig. 7. The CDF curves in the figure clearly 
demonstrate that LRA performs better than PEM in terms of 
probability distribution evaluations.  

 

450 550 650 750 850
ATC/MW

0

0.2

0.4

0.6

0.8

1

F(
x)

MCS
LRA
PEM-GCS
PEM-CFS

 
Fig. 7. CDFs of ATC assessed by different methods 

 
5.2. ATC Assessment Including Contingencies 

This study is conducted to validate the effectiveness 
of the proposed method in tackling contingencies and to 
investigate the effects of line outages on transfer capability. 
In scenario S1, eight contingencies are included in the ATC 
evaluation, i.e., the N-1 outage of lines 2–12, 11–13, 23–24, 
25–27, 17–30, 26–30, 38–37 and 38–65. The contingency is 
selected in this way to lead to a remarkable reduction in ATC. 
In order to exhibit the impacts clearly, the probability of each 
contingency is set as Pr(Ci) = 0.005, i = 1, …, 8. 

In MCS, the OPF model is simulated 5 × 104 times. In 
the proposed method, the LRA representations are 
constructed for the base case and eight contingency cases 
respectively. In each case, the OPF model is executed 900 
times. The time consumed by the proposed method is only 
about 2% of that by the MCS. Besides saving computation 
effort, the proposed method can also provide an accurate 

estimation for probability distribution curves and statistics of 
ATC, as shown in Fig. 8 and Table 6. 
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Fig. 8. PDFs of ATC assessed by two methods 
 
Table 6 ATC statistics evaluated by two compared method 

 μ / MW σ / MW invcdf0.1 / 
MW 

invcdf0.5 / 
MW 

invcdf0.9 / 
MW 

MCS 728.34 95.63 625.57 725.61 850.18 

LRA 727.59 96.79 624.22 725.18 848.24 

 
And then, the GSIs for WFs are calculated for each 

case involved and then weighted to assess the WF importance. 
As shown by Table 7, both the values and rankings of the 
weighted GSI of a WF are different under each case. For 
example, WF1 is recognized as the most influential one when 
line 2–12 or 17–30 is out of service, and WF15 is more 
contributory to the ATC variation when line 11–13 is in the 
outage. 

 
Table 7 GSIs of WFs under the contingencies considered 

 WF1 WF15 WF18 WF19 WF32 WF36 

C0/BASE 0.606 0.579 0.612 0.609 0.582 0.470 

C1/2–12 0.986 0.289 0.376 0.342 0.308 0.346 

C2/11–13 0.412 0.797 0.586 0.658 0.370 0.418 

C3/23–24 0.613 0.564 0.664 0.578 0.567 0.485 

C4/25–27 0.460 0.455 0.555 0.479 0.806 0.484 

C5/17–30 0.729 0.565 0.611 0.584 0.499 0.470 

C6/26–30 0.622 0.547 0.667 0.592 0.593 0.478 

C7/38–37 0.587 0.606 0.654 0.564 0.539 0.565 

C8/38–65 0.551 0.519 0.645 0.569 0.549 0.575 

WEIGHTED 0.515 0.489 0.519 0.514 0.492 0.399 

 
According to the weighted indices, WF1, 15, 18, 19, 

32 and 36 are identified as the most significant uncertainty 
sources, while the other fourteen WFs are negligible as their 
GSIs are almost zero. This result can help to reduce the input 
random variables in the probabilistic ATC calculation. If only 
these six random variables are considered while setting the 
generation of the other fourteen WFs as constant at the 
forecast value, the probability distribution of ATC keeps 
almost unchanged, as illustrated in Fig. 9. This result 
confirms that the proposed weighted GSI is capable of 
identifying the most contributing variables. 

Finally, the probabilistic ATC calculation results are 
applied to decide a proper ATC level for the test system. If 
the uncertain factors are disregarded and fixed at their 
forecasted values, the ATC is evaluated as 746.89 MW. Then, 
the uncertainty of wind power is incorporated into the TRM, 



9 
 

that is equal to 129.91 MW using definition (22) at γ = 0.05. 
This margin is reserved as a countermeasure to the power 
variation of WF1, 15, 18, 19, 32 and 36, as discussed before 
and, consequently, ATC is reduced to 616.98 MW. 
Furthermore, if random line outages are also taken into 
consideration, the reserved TRM increases to 145.79 MW 
and ATC reduces 601.10 MW to ensure system security. 
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Fig. 9. PDFs of ATC under different random input 
conditions 
 

6. Conclusion 
This paper presents a novel probabilistic approach to 

evaluate ATC incorporating the uncertainties of load, wind 
power and transmission line failures. Numerical studies show 
that: 1) The proposed method can accurately and efficiently 
evaluate the probability distribution and statistics of ATC; 2) 
for high-dimensional problems LRA is better than either PCE 
or MCS, as it involves less computation effort while 
achieving comparable precision; 3) The weighted GSI 
provides a valid tool to identify the most influential random 
variables. The proposed method offers system operators a 
tool for deciding an appropriate ATC level for the 
transmission network.  
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