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A R T I C L E I N F O

Chemical compounds studied in this article:
Arachidonic acid (CID:444899)
5-HETE, (CID:5353349)
8-HETE, (CID:5283154)
12-HETE, (CID:5283154)
15-HETE, (CID:5280724)
9-HODE, (CID:5282945)
13-HODE, (CID:6443013)
LTB4, (CID:5280492)
LTC4, (CID:5280493)
LTE4, (CID:5280879)
9-oxoODE, (CID:9839084)
13-oxoODE, (CID:6446027)
PGD2, (CID:448457)
PGE2, (CID:5280360)
PGF2α, (CID:5280363)
PGI2, (CID:5282411)
TXA2, (CID:5280497)

Keywords:
Inflammation
mPGES-1
PGE2
PPARγ

A B S T R A C T

Many years have elapsed since the discovery of anti-inflammatories as effective therapeutics for the treatment of
inflammatory-related diseases, but we are still uncovering their various mechanisms of action. Recent bio-
chemical and pharmacological studies have shown that in different tissues and cell types lipid mediators from
thearachidonic acid cascade, play a crucial role in the initiation and resolution of inflammation by shifting from
pro-inflammatory prostaglandin (PG)E2 to anti-inflammatory PGD2 and PGJ2. Considering that until now very
little is known about the biological effects evoked by microsomal prostaglandin E synthase-1 (mPGES-1) and
contextually by peroxisome proliferator-activated receptor γ (PPARγ) modulation (key enzymes involved in
PGE2 and PGD2/PGJ2metabolism), in this opinion paper we sought to define the coordinate functional regulation
between these two enzymes at the “crossroads of phlogistic pathway” involved in the induction and resolution of
inflammation.

1. Opinion paper

Inflammation is a complex biological self-defense reaction triggered
by tissue injury or infection by pathogens [1]. This event is regulated by
the time- and cell type-dependent production of range of mediators
including cyto-chemokines and signaling molecules such as pros-
taglandins (PGs) [2]. From “a cellular point of view” neutrophils

dominate the initial influx of leukocytes followed by monocytes and
macrophages. The recruitment of inflammatory monocytes correlates
with a transient increase of pro-inflammatory mediators including,
cytokines, chemokines, PGs and leukotrienes (LTs) [3–5]. Indeed, in-
appropriate cellular survival function or their overactivation, in addi-
tion to lipid mediator overproduction, perpetuate inflammatory path-
ways and strengthens disease activity [6,7].
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From a "molecular point of view", cyclooxygenases (COXs) regulate
the initial steps of the inflammatory cascade. These enzymes catalyze
the conversion of arachidonic acid into intermediate PGH2 which un-
dergoes further conversion to PGE2 by three different PGE2 synthase
isoforms [8]. Both cytosolic PGE2 synthase (cPGES) and microsomal
PGE2 synthase-2 (mPGES-2) are constitutively expressed, whereas
mPGES-1 is an inducible isoform linked with COX-2 enzymatic activity
[9]. Inducible mPGES-1 plays a critical role in the final steps of PGE2
production without altering the levels of other PGs. The upregulation of
this enzyme and subsequent increase in PGE2 production plays a sig-
nificant role in the pathogenesis of several inflammatory conditions
including, rheumatoid arthritis, gouty arthritis and atherosclerosis
[10,11,12,13,14].

Conversely, PGE2 release can also be modulated by alternative
pathways, one such example is peroxisome proliferator-activated re-
ceptor gamma (PPARγ), a nuclear receptor stimulated by 15-deoxy-

Δ12,14-prostaglandin J2 (15d-PGJ2) [15]. During an inflammatory re-
sponse all PPAR isoforms (PPARα, PPARβ/δ, and PPARγ) can poten-
tially be stimulated by fatty acids, including polyunsaturated (PUFA),
and more potently by PGA2 and 15d-PGJ2 [16–18]. Upon PPARs acti-
vation, two major biological functions can follow: i) blocking of the
activation of p65 nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB, a transcription factor involved in inflammatory
processes) and overexpression of nuclear factor of kappa-light-poly-
peptide-gene-enhancer in B cells inhibitor alpha (IκBα a natural in-
hibitor of NF-κB); ii) increase in the production of active resolution
mediators including antioxidant enzymes such as catalase, superoxide
dismutase, and heme oxygenase-1 [19,20].

Several recent studies highlighted an indirect connection between
PPARs and PGs in the control of phlogistic processes [15,21,22], neu-
ropathic pain [23] and certain neurological disorders [24,25]. In par-
ticular, in mice genetically deficient for mPGES-1, it has been reported

Fig. 1. Schematic diagram of the key enzymes and related lipid mediators of the arachidonic acid cascade. In red are reported the main enzymes involved in the
production of pro- and anti-inflammatory, intermediate or final, mediators of the phlogistic response.

Fig. 2. Schematic representation of the link between the pro-inflammatory and anti-inflammatory systems in the arachidonic acid cascade. In healthy conditions state
(top left and right), the pro- and anti-inflammatory pathways state (middle left and right), are linked with each other in equilibrium. However, after noxious stimuli of
different nature, changes in this equilibrium prompt an endogenous response that helps the host deal with these challenges.
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that under basal conditions an elevation of PPARγ expression and
transcriptional activity associated with reduced PGE2 is observed [26].
Furthermore, a coordinate functional regulation between these two
enzymes was essential for the conversion of white-to-brown adipocytes
[27] and on the pathogenesis of fatty liver disease [28,29].

Collectively, these studies allow us to speculative suggest, that
mPGES-1 deletion not only decreases pro-inflammatory PGE2 but also
upregulates anti-inflammatory PPARs. Thus, mPGES-1 and PPARs
pathway may limit inflammation by multiple mechanisms [30].

Our opinion is that several biochemical and pharmacological studies
report and describe only a partial link between these two enzymatic
pathways. The molecular interaction between COXs and PGES iso-
enzymes, (which led to preferential functional coupling activity) is
correlated with NF-κB activity [8,9] through a subtle balance of lipid
mediators that, depending on the tissue and the type of pro-in-
flammatory insult, induce a balance between those we classically de-
fined as pro- or anti-inflammatory mediators (Fig. 1) [10,12,31,32].
Consistently, the upregulation of mPGES-1 expression and the in-
volvement of COX-2/mPGES-1/PGE2 cascade in terms of PGs produc-
tion has been extensively reported in pathological settings in which
PGE2 is implicated, such as fever, pain and inflammatory-based disease
[33,34] but, again, without any type of concomitant analysis in terms of
PGJ2 and/or PGD2 production and transcriptional activity.

Our aim is to give a general, but updated, picture of the manifold
pathways that link beneficial and detrimental molecular mechanisms
involved in the onset of inflammation (Fig. 2) and attempt to highlight
the therapeutic potential of this burgeoning field of research in both the
treatment of acute and chronic inflammatory-related disorders. Even if
the fully molecular mechanisms that explain how these phenomena are
achieved and regulated remain to be fully elucidated, it provides an
excellent starting point for researchers to unravel and further
strengthen our existing preliminary evidences for these novel molecular
interactions.
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