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 semi Blind Functional Source Separation (FSS) identify optimal spatial filter for BCI 
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Abstract 

Background and Objectives: An Error related Potential (ErrP) can be noninvasively and directly measured from the scalp through 

electroencephalography (EEG), as response, when a person realizes they are making an error during a task (as a consequence of a 

cognitive error performed from the user). It has been shown that ErrPs can be automatically detected with time-discrete feedback 

tasks, which are widely applied in the Brain-Computer Interface (BCI) field for error correction or adaptation. In this work, a semi-

supervised algorithm, namely the Functional Source Separation (FSS), is proposed to estimate a spatial filter for learning the ErrPs 

and to enhance the evoked potentials. 

Methods: EEG data recorded on six subjects were used to evaluate the proposed method based on FFS algorithm in comparison with 

the xDAWN algorithm. FSS- and xDAWN-based methods were compared also to the Cz and FCz single channel. Single-trial 

classification was considered to evaluate the performances of the approaches. (Both the approaches were evaluated on single-trial 

classification of EEGs.) 

Results: The results presented using the Bayesian Linear Discriminant Analysis (BLDA) classifier, show that FSS (accuracy 0.92, 

sensitivity 0.95, specificity 0.81, F1-score 0.95) overcomes the other methods (Cz - accuracy 0.72, sensitivity 0.74, specificity 0.63, 

F1-score 0.74; FCz - accuracy 0.72, sensitivity 0.75, specificity 0.61, F1-score 0.75; xDAWN - accuracy 0.75, sensitivity 0.79, 

specificity 0.61, F1-score 0.79) in terms of single-trial classification. 

Conclusions: The proposed FSS-based method increases the single-trial detection accuracy of ErrPs with respect to both single 

channel (Cz, FCz) and xDAWN spatial filter. 
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1. Introduction 

Brain-Computer Interface (BCI) is a noninvasive technology that enables communication between the user‟s brain 

and a digital device (e.g. smart wheelchairs, computers, or prosthesis), usually named agent. BCI allows the recognition 

of the user‟s intention by decoding the neural activity through electroencephalography (EEG) in order to control the 

agent and improve its performances. Reaching this goal implies high cognitive attention and effort, since the user is 

asked a considerable concentration on the stimuli provided while operating a BCI. 

In literature, many works analyzed the capability of the BCI to recognize erroneous behavior of agents directly from 

the user‟s brain signals [1–7]. Errors in the recognition of the user‟s intention elicit potentials called evoked Error-

related EEG Potentials (ErrPs). ErrPs were analyzed for the first time in 1990, in a study about choice-reaction tasks 

[8]; in the same work, the typical ErrPs waveform was defined. In this paradigm, the user monitors the agent‟s actions 

providing a feedback that can be used to improve the overall performance of the agent. ErrP is physiologically defined 

as a two components brain signal, consisting in negative and positive peaks, associated with the response monitoring 

and error detection processes. Both peaks originate in the anterior cingulate cortex, a frontal brain structure involved in 

the cognitive and affective brain processes [9]. Typically, the signal is generated within 500 ms from the erroneous 

agent decision, where the first component is a negative peak at almost 50-100 ms. After the negative peak, a positive 

peak is generated, further divided into fronto-central and centroparietal components [10]. 

The works [1,2] provide and explain some examples where ErrP signals are generated when a user monitors the 

performance of an agent, without performing a direct control. Unlike traditional BCI systems, the user does not provide 

continuous commands, but only monitors the agent‟s performance, thus making possible to tailor the agent‟s behavior 

to the user‟s needs and preferences [3]. Furthermore, in the experimental protocol proposed in [1], the user tried to 

move a cursor towards a target location (either using a keyboard or mental commands). Moreover, it showed the 

possibility to recognize and correct an erroneous decision of the agent exploiting the EEG signals. 

The application of ErrPs in BCI technology has increased during the last years, especially for the correction of the 

system behavior through what is called reinforcement learning. Precisely, the most common application of ErrP was 

done in BCI spellers, where during the spelling of a word, a character can be discarded if wrong [4]. ErrPs can be 

involved as a suitable alternative or a complementary signal for BCI systems, especially as supervision or feedback 

signal during the execution of the task [7]. ErrPs have turned out to be used for fixing this kind of problems, as 

demonstrated in an experiment carried in [5], where a biofeedback based on ErrPs is applied to a closed-loop system for 

the behavioral correction of a robot. The feasibility in using the ErrPs combined to BCI signals for correcting the 

erroneous commands was investigated in [6]; in addition, the authors in [11] found out that ErrPs are also elicited as a 

misinterpretation of user‟s intent. Another research [12] proposed the classification of error related potentials from EEG 

during a real-world driving task. While the subject was driving, a directional cue was shown before reaching an 

intersection and the proposed system infers whether the cued direction coincided with the subject‟s intention. Other 

works investigated the co-adaptation of human-agent using ErrPs and decoding of ErrPs in tasks with continuous 

feedback [13,14]. 

The most important challenge of non-invasive BCI applications relates to the performances, since the control cannot 

offer a constant level of assistance due to the weakness and noisy of EEG signals [15–17]. Consequently, the 

application of spatial filters to improve the Signal-to-Noise Ratio (SNR) and the single-trial classification is worthy of 

investigation. Spatial filters are proposed in the literature with the aim to increase the SNR by using a weighted sum of 

all electrodes rather than relying on a single, or a small sub-set, of EEG channels. Some examples of spatial filters are 

the so-called xDAWN and the Common Spatial Pattern (CSP) [15,18]. Variants and extensions of CSP are proposed in 

[18–20], trying to overcome the drawbacks of CSP and improve the classification of single-trial EEG. In [21,22], the 

authors proposed adaptive spatial filters, the former based on ensembles of CSP patches whereas the latter based on a 

combination of blind source separation and regression analysis. 

In this work, Functional Source Separation (FSS) has been considered to estimate a spatial filter for learning the 

ErrPs in BCI context. In order to enhance evoked ErrPs, FSS algorithm is designed by considering the ErrPs as a 

functional constraints [23–26]. A direct comparison between the FSS [23] and the xDAWN algorithm [15,27] is 

presented to show the capability of the spatial filters to enhance the evoked ErrPs. Moreover, a single-trial classification 

was reported to assess the performances of FSS with respect to xDAWN. Moreover, the FSS and xDAWN based 

methods are also compared with the single channels Cz and FCz, usually selected to monitor ErrPs [1], in terms of 

single-trial classification. 

Section 1 of this paper presents the experimental protocol, the spatial filters and the Bayesian Linear Discriminant 

Analysis (BLDA) classification algorithm used in the study. Section 2 exposes the idea of using the FSS as spatial filter 

for learning the ErrPs in BCI. Experimental results are presented in Section 3 including a qualitative evaluation of the 

spatial filters and the single-trial classification. In Section 4, we discuss the overall results and draw conclusion. Finally, 

in Section 5, we highlight the future works. 

 

                  



 

 

 

 

2. Materials and Methods 

In this section the experimental details are presented and the FSS and xDAWN algorithms, together with the BLDA 

classification algorithm, are described. The Fig. 1 shows the proposed procedure which consist of a training and a 

testing phase. A detailed description of each part is reported in the following sections. 

 
Fig. 1 Flowchart of the proposed procedure. 

2.1 Experimental protocol and dataset description 

The considered dataset, whose signals were acquired in the experimental protocols proposed by [1], served as an 

experiment on EEG ErrPs. Six subjects (mean age 27.83 ± 2.23 years standard deviation) performed two recording 

sessions (session 1 and session 2) separated by several weeks. Both session 1 and session 2 consisted of 10 blocks: each 

block was composed of approximately 50 trials and each trial was about 2000 ms long. In each trial, the user, without 

sending any command to the agent, only assessed whether an autonomous agent performed the task properly. In 

particular, the task consisted in a cursor reaching a target on a computer screen. Specifically, at the beginning of each 

trial the user was asked to focus on the center of the screen, while during the trial was asked to follow the movement of 

the cursor, knowing the goal of the task. Thus, ErrPs were elicited by monitoring the behavior of the agent. 

Practically, each user was seated in front of a monitor where the visual task was displayed, defined by a green and 

square moving cursor and by a blue (or red) square target. The target could be placed on the left or on the right of the 

cursor: in the first case it was blue, while in the second red. The working area consisted of 20 horizontal locations along 

the center of the monitor. At each time step (i.e., at each trial) the cursor moved horizontally of discretized steps toward 

the target location, either the left or right.  

                  



 

Once the target was reached, the cursor remains fixed until a new target location is drawn. The new location will be 

at no more than three positions away from the current one. If the new target location is outside of the working area, it 

was relocated at the center of the screen. The probability for the cursor to move in the wrong direction (i.e., opposite to 

the target location) was set to 0.20. In the paper, the Correct trials (C) refer to a successful reaching of the final target, 

whereas the Non-Correct trials (NC) refer to those trials where the cursor moves in the wrong direction and then fails to 

reach the target. The experimental protocol is shown in Fig. 2. 

During the acquisition, 64 electrodes were placed according to the standard (“International 10/20 system”) and EEG 

data were recorded by using a Biosemi ActiveTwo system at a sampling rate of 512 Hz. The data were re-referenced to 

common average reference. Off-line bandpass forward–backward filtering between 1 and 10 Hz (Butterworth second 

order filter) was applied [1]. Since lateral eye movements could be induced during the experiments, a semiautomatic 

Independent Component Analysis (ICA)-based procedure was applied [28,29]. In particular, ICA-based methods, as 

other Blind Source Separation (BSS) methods, decompose the EEG data in as many components (sources) as the 

number of EEG channels but with the property that those components are statistically independent [30–33]. Following 

ICA application, in the context of functional Magnetic Resonance Imaging (fMRI) [33,34] and fetal 

magnetoencephalography [31], we applied a modified version of [28] procedure to the filtered EEG data to classify 

artifactual components such as eye movements, cardiac artifacts, environmental and channel noise, without rejecting the 

contaminated epochs. This approach is based on spectral and statistical properties of the Independent Components 

(ICs). The pipeline consists of three main steps: (1) ICA application to the filtered EEG data (in this specific case we 

used fastICA [35]; (2) automatic Power Spectrum Density (PSD) correlation between FP1/FP2 channel (instead of the 

electrooculogram (EOG) that was missing in those recordings) and all the ICs estimated by fastICA, (p < 0.01) and 

kurtosis together with entropy properties to detect cardiac artifact and environmental/channel noise, respectively. More 

specifically, for the latter indexes (kurtosis and entropy) were applied to segmented (2 s long centered on the stimulus) 

data. For both indexes, segment distributions were normalized with respect to all ICs (mean 0 and standard deviation 1). 

Thus, standard deviation thresholds respect to the mean were applied (standard deviation threshold set at ±1.64) and, 

whether a percentage of segments (in our case the 33%) exceeded the threshold those ICs were marked as rejected. (3) 

A control cycle by the user was implemented as a third step based on the „discrepancy‟, i.e., the difference between the 

original EEG data and the reconstructed data using only the ICs marked as non-artifactual after automatic artifact 

detection (step 2). The goal of the control cycle was to have quick visual feedback on the automatic artifact 

identification quality. The control cycle is based on PSD and (Event-Related Potential) ERP visualization of the EEG 

raw data, cleaned data (i.e., data reconstructed with the non-artifactual components after step 2) and the discrepancy. 

The feedback was positive when discrepancy contained only artifacts and noise compared to EEG raw data and cleaned 

data. In case of negative feedback (i.e., presence of evoked activity in the ERP and/or brain rhythms in the PSD of the 

discrepancy), the entropy and kurtosis percentage thresholds were reduced and step (2) repeated using the new 

thresholds. 

In this work, the session 1 of each subject is used to train the considered spatial filters and the BLDA classifier, while 

session 2 is used to test the algorithms. 

 

Fig. 2 Experimental Protocol - The figure shows the timing and division into sessions, blocks and trials in which the experiment is 

articulated. Moreover, in the scheme a representation of the experiment scenario is also integrated, where the user is in front of the 

screen where the different trials are projected. 

                  



 

2.2 Functional Source Separation Algorithm 

The FSS [23,32,33,36–40] algorithm is part of semi-Blind Source Separation (sBSS) methods [41], which works 

with a priori information from the data (in this specific case EEG signals). In this scenario, the goal of FSS is to boost 

the separation of the signals of interest by using some characteristics of the original signal waveform. FSS, similarly to 

ICA, represents the EEG data   as a linear combination of   sources by a mixing matrix  . The cost function for the 

FSS (with respect to standard ICA) is defined as:        where   is the ICA statistical constraint, while   

represents the a priori information to maximize. The   weight (between these two parameters) should be chosen to 

maximize the functional constraint and, simultaneously, to minimize the computational time [32]. Furthermore, the FSS 

cost function   is optimized through the simulated annealing [42].  

In the experimental condition proposed in [1], the a priori information to be verified is the ERP around 300 ms 

activated during the target identification. Thus, we noticed that the functional source underlying the P300 processes that 

maximize the P300 response, is named FSP300. The functional constraints were defined as follows: 
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where    represents the evoked activity obtained by averaging the EEG signal on the stimulus (   );    is the time 

instant where the power of the EEG signal is maximum around 300 ms post-stimulus;             represents the 

window(s) where the signal amplitude is 50% of the maximum value before (after)   ; the baseline correction was 

chosen in the range from -500 to 0 ms. 

 

2.3 xDAWN 

The xDAWN spatial filter enhances the SNR through an unsupervised estimation of the evoked subspace, so that the 

evoked potentials are emphasized by projecting [15,27]. 

Let          be the matrix of the recorded EEG signals, where    is the number of samples and    the number of 

channels; the target stimuli elicited by evoked potential lead to the following model: 

 

        (2) 

 

where   is the noise term,   is the Toeplitz matrix and   represents the synchronous response with target stimuli. The 

spatial filter   is designed in such a way that maximizes the Signal-to-Signal plus Noise Ratio (SSNR) of  . This 

concept is formulated by the generalized Rayleigh quotient: 
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where  ̂             and the optimization problem in (3) can be solved by a QR factorization with a singular 

value decomposition. In order to improve the performance of the xDAWN algorithm, we considered the use of a 

regularization term during the learning stage [43]. 

The regularization operation allows overcoming the issues related to high dimensionality, where the applicability of the 

spatial filter is a demanding task since, in this situation, direct high dimension matrix operations are required [43]. In 

order to overcome these issues, the empirical, polled covariance matrices considered in the generalized Rayleigh 

quotient were replaced with: 
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where   is a hyperparameter to be set and the matrix   is both     and  ̂     ̂. The experimental results described 

in the paper refer to the xDAWN algorithm with the addition of the regularization term ( ). 

 

2.4 Bayesian LDA 

                  



 

The detection of the evoked ErrPs is performed by the BLDA classifier, which was used in [15] to detect the evoked 

related potentials spatially filtered by the xDAWN. In this paper, BLDA was adopted also to evaluate FSS-based spatial 

filter and the single-trial classification by using the channels FCz and Cz as well. 

Among the proposed classifiers for BCIs, BLDA [44,45] was chosen since it was efficient and fully automatic (i.e., no 

hyperparameters to adjust). 

BLDA aims to fit data   using a linear function of the form: 
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where      is the feature vector, assuming that the target variable is equal to           , where   is Gaussian 

noise. The objective of BLDA is to minimize the function: 
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where   and   are automatically inferred from data by using a Bayesian framework. 

 

2.5 Error-Related Potentials behavior 

Once the ErrPs were identified from Cz and FCz electrodes, ERP analysis at the average and single-trial level was 

performed to characterize and validate the quality of the results obtained for both sessions (session 1 and session 2) and 

C and NC conditions using the xDAWN and FSS algorithms. In particular, ERP analysis was performed on session 1 

and session 2 to evaluate the stability of ERP at different time periods and between NC and C. All the trials were 

windowed (-1000 to 1000 ms) and were baseline-corrected for the interval from -500 to 0 ms. Pointwise statistical 

analysis was performed on the ERP by two-sample permutations t-test using 5000 permutations. False Discovery Rate 

(FDR) was also used for multiple comparisons corrections. 

3. Results 

In this section, a qualitative and quantitative comparison among single channel (FCz and Cz), xDAWN and FSS 

spatial filter is presented. Afterwards, classification results among single channel (FCz and Cz), xDAWN and FSS are 

reported as well.  

3.1 Error-Related Potentials on Cz and FCz 

Consistently with previous studies [1,23], EEG error-related activity appears in fronto-central areas, as illustrated by 

the scalp topographical maps in Fig. 3. Fig. 3 also shows the grand average ERP for the C and NC conditions for Cz and 

FCz electrodes in both sessions (sessions 1: thick blue line and session 2: red dashed line). In particular, NC condition 

refers to the trials that elicited ErrPs (i.e., the cursor moves in the wrong direction) and C condition refers to the trials 

that did not elicit ErrPs (i.e., the cursor moves in the right direction). 

 

                  



 

 

In all cases shown in Fig. 3, the waveforms are characterized by a small positive peak near 200 ms after delivery of 

feedback for the NC and a negative one for the C, followed by a positive peak around 330 and 300 ms for the NC and 

C, respectively. It should be noted that for the NC a negative deflection around 260 ms is also shown. The stability 

observed between session 1 and session 2 of these signals is a key issue for their use especially for BCI applications. In 

fact, comparison of the ERPs for the two different recording days (session 1 and session 2) shows that the signal 

remains stable over several weeks (see Fig. 3). In particular, the first three ERP components for the NC (i.e., negative 

peak at 260 ms and two positive peaks at 200 ms and 330 ms) and the first two peaks for the C (i.e., negative peak at 

200 ms and the positive one at 300 ms) are stable between the two recording sessions. No significant difference was 

found between sessions (point-by-point permutation t-test at p < 0.05). 

On the other hand, statistically significant differences (point-by-point permutation t-test at p<0.05) between NC and 

C ERPs were found in both sessions (Fig. 4). 

 

3.2 Event-Related Potentials extracted by xDAWN and FSS 

 

Fig. 4 ERPs Non-Correct trials (NC) vs. Correct trials (C) - Grand average event related potentials between Non-Correct trials (NC: 
blue line) and Correct (C: red line) for session 1 (first row) and session 2 (second row). First column shows the ERPs on the Cz 
electrode for NC and C, and second column shows the ERPs on the FCz electrode for the NC and C as well. Shaded area of the same 
color highlights standard error. Horizontal black and magenta lines, on the bottom of the figure, indicate a significant group 
difference between NC vs. C for session 1 (first row) and session 2 (second row). Permutation t-test at p < 0.05 (black line); pFDR < 
0.05 (magenta line). 

Fig. 3 ERPs and topography map session 1 vs. session 2 - Grand average event related potentials between session 1 (blue thick line) 
and session 2 (red dashed line) for Non-Correct trials (NC: first row) and Correct trials (C: second row). First column shows the 
ERPs on the Cz electrode for the two recording sessions, and second column shows the ERPs on the FCz electrode for the two 
recording sessions as well. Last column shows scalp topographical maps at 300 ms for session 1 (blue square thick line) and session 2 
(red square dashed line). Shaded area of the same color highlights standard error. No sessions differences were observed between NC 
session 1 vs. NC session 2 and C session 1 vs. C session 2 (point-by-point permutation t-test at p < 0.05). 

                  



 

xDAWN and FSS (Fig. 5) as well as Cz and FCz electrodes show the stability between the two sessions (no 

significant difference was found, point-by-point permutation t-test at p < 0.05). Instead, statistical difference was 

observed comparing NC vs. C in both xDAWN and FSS algorithms. In particular, we can observe that only the FSS 

survives after the multiple comparison correction (pFDR<0.05), emphasizing that FSS at the average level is more 

robust in discriminating NC vs. C conditions (Fig. 6). 

 

 

 

3.3 Single-Trial Classification  

The use of ErrPs in practical BCI applications requires their accurate recognition on a single-trial basis. Following 

previous studies, we classify the signals using a classifier based on the BLDA, as described in [15,27]. 

Classification analysis was performed on Cz and FCz electrodes and using advanced source extraction algorithms 

such as FSS [23,41] and xDAWN. In this work, for xDAWN training, we considered  =0.8 since with this value we 

achieved the best classification accuracy in the training dataset. We assess single-trial classification of ErrPs using the 

first dataset to train the spatial filters and the BLDA classifier and the second dataset for testing. So the evaluation of 

Fig. 5 ERPs session 1 vs. session 2 - Grand average event related potentials between session 1 (blue line) and session 2 (red line) for 
Non-Correct trials (NC: first column) and Correct trials (C: second column). First row shows the ERPs for the xDAWN for the two 
recording sessions and second row shows the ERPs for the FSS for the two recording sessions as well. Shaded area of the same color 
highlights standard error. No sessions differences were observed between NC session 1 vs. NC session 2 and C session 1 vs. C 
session 2 (point-by-point permutation t-test at p < 0.05). 

Fig. 6 ERPs Non-Correct trials (NC) vs. Correct trials (C) - Grand average event related potentials between Non-Correct trials (NC: 
blue line) and Correct trials (C: red line) for session 1 (first row) and session 2 (second row). First column shows the ERPs for the 
xDAWN for NC and C and second column shows the ERPs for the FSS for the NC and C as well. Shaded area of the same color 
highlights standard error. Horizontal black and magenta lines, on the bottom of the figure, indicate a significant group difference 
between NC vs. C for session 1 (first row) and session 2 (second row). Permutation t-test at p < 0.05 (black line); pFDR < 0.05 
(magenta line). 

                  



 

classifier results, obtained on data recorded several weeks before, allows us to evaluate the feasibility of recognizing 

ErrP signals. 

Fig. 7 shows the Receiver Operating Characteristic (ROC) curves for classification using the training data (i.e., 

session 1). The methods FSS, xDAWN and the single channels Cz, FCz are compared. Fig. 7 shows the classification 

results for each subject, and Fig. 8 shows the ROC curves for classification using the testing data (i.e., session 2). It is 

clear that the FSS algorithm is able to detect the elicited ErrPs better than the other methods, whereas the xDAWN 

achieves comparable results to the single channels FCz and Cz. 

Table 1 shows in detail the classification accuracy and the Area Under Curve (AUC) for each subject and method 

using the training data (i.e., session 1). The results, shown in the Table 1, reveal how the FSS outperforms the other 

methods in terms of classification accuracy both in the case of NC and of C. Table 2 shows the classification accuracy 

for each subject and method using the testing data (i.e., session 2). The results of FSS, shown in Table 2, reveal that 

successful single-trial classification is achieved for both classes with higher detection of C (mean classification 

accuracy of 95% and 81% for C and NC, respectively). 

Best performances are observed for subjects 1, 2, 3, 4 and 5 for whom the recordings were about seven weeks apart 

for subjects 1, 2 and 3 and 200 days apart for subject 4 and finally 600 days apart for subject 5. In addition, it must be 

noticed that reasonably good performances are also achieved for subject 6, whose recordings were around 650 days 

apart. The comparison of the ERPs for the two different recording days shows that classification accuracy remains 

stable over a long time. 

Finally, Table 3 shows the overall performances in terms of accuracy, sensitivity, specificity and F1-score, revealing 

that the FSS-based spatial filter overcomes the other methods by about 20% in all indexes. 

It is worth noting that the average classification accuracy reached by the FSS algorithm outperforms the 

classification results obtained in [1]. 
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Fig. 7 ROC for classification by BLDA, training data (i.e., session 1) and single channel. The single channels are FCz, Cz and the 
best channel of FSS and xDAWN. (a) ROC for classification of ErrPs elicited by subject 1, (b) ROC for classification of ErrPs 
elicited by subject 2, (c) ROC for classification of ErrPs elicited by subject 3, (d) ROC for classification of ErrPs elicited by subject 
4, (e) ROC for classification of ErrPs elicited by subject 5, (f) ROC for classification of ErrPs elicited by subject 6. 
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Fig. 8 ROC for classification by BLDA, testing data (i.e., session 2) and single channel. The single channels are FCz, Cz and the best 
channel of FSS and xDAWN. (a) ROC for classification of ErrPs elicited by subject 1, (b) ROC for classification of ErrPs elicited by 
subject 2, (c) ROC for classification of ErrPs elicited by subject 3, (d) ROC for classification of ErrPs elicited by subject  4, (e) ROC 
for classification of ErrPs elicited by subject 5, (f) ROC for classification of ErrPs elicited by subject 6. 

 

Table 1 
Classification accuracy and area under curve of training data (session 1) 

     

Subjects FCz Cz xDAWN FSS 

S1 NC 0.88 0.83 0.78 0.98 

S1 C 0.85 0.80 0.83 1.00 

S1 AUC 0.93 0.86 0.89 0.99 

S2 NC 0.64 0.76 0.87 1.00 

S2 C 0.80 0.79 0.77 1.00 

S2 AUC 0.78 0.83 0.90 1.00 

S3 NC 0.81 0.76 0.86 0.99 

S3 C 0.84 0.80 0.81 1.00 

S3 AUC 0.89 0.85 0.91 1.00 

S4 NC 0.71 0.72 0.72 0.98 

S4 C 0.76 0.73 0.89 0.99 

S4 AUC 0.78 0.81 0.87 0.99 

S5 NC 0.78 0.71 0.81 0.99 

S5 C 0.75 0.75 0.81 1.00 

S5 AUC 0.83 0.80 0.87 1.00 

S6 NC 0.68 0.73 0.67 0.96 

S6 C 0.74 0.61 0.80 0.95 

S6 AUC 0.75 0.73 0.80 0.96 

AVG NC 0.75±0.09 0.75±0.04 0.78±0.08 0.98±0.02 

AVG C 0.79±0.05 0.75±0.07 0.82±0.04 0.99±0.02 

 

 

 

 

 

 

 

 

                  



 

Table 2 
Classification accuracy and area under curve of testing data (session 2) 

Subjects FCz Cz xDAWN FSS 

S1 NC 0.77 0.65 0.79 0.87 

S1 C 0.85 0.86 0.82 0.90 

S1 AUC 0.89 0.84 0.88 0.90 

S2 NC 0.53 0.61 0.67 0.81 

S2 C 0.77 0.78 0.76 1.00 

S2 AUC 0.71 0.79 0.79 0.93 

S3 NC 0.81 0.69 0.75 0.84 

S3 C 0.71 0.72 0.73 0.99 

S3 AUC 0.85 0.79 0.84 0.96 

S4 NC 0.63 0.61 0.51 0.80 

S4 C 0.70 0.71 0.75 0.95 

S4 AUC 0.73 0.68 0.67 0.89 

S5 NC 0.57 0.61 0.52 0.79 

S5 C 0.69 0.73 0.85 0.99 

S5 AUC 0.67 0.72 0.74 0.90 

S6 NC 0.37 0.61 0.41 0.76 

S6 C 0.76 0.63 0.84 0.84 

S6 AUC 0.63 0.66 0.70 0.82 

AVG NC 0.61±0.16 0.63±0.03 0.61±0.15 0.81±0.04 

AVG C 0.75±0.06 0.74±0.08 0.79±0.05 0.95±0.06 

 

Table 3 
Overall performances 

 

Accuracy Sensitivity Specificity F1-score 

T
ra

in
in

g
 

FCz 0.78 0.79 0.75 0.79 

Cz 0.75 0.75 0.75 0.75 

xDAWN 0.81 0.82 0.78 0.82 

FSS 0.99 0.99 0.98 0.99 

T
es

ti
n
g
 

FCz 0.72 0.75 0.61 0.75 

Cz 0.72 0.74 0.63 0.74 

xDAWN 0.75 0.79 0.61 0.79 

FSS 0.92 0.95 0.81 0.95 

 

4. Discussion 

In this study, a semi-supervised algorithm named FSS was proposed to improve the SNR at the single-trial level with 

the aim to better classify ErrPs, as response, when a person realizes they are making an error during a task. Accurate 

classification of those responses become crucially important in a BCI framework. The data used in this study, were 

presented in [1] and the results obtained by FSS were compared with those obtained by xDAWN [15,27] and single 

channels Cz and FCz [1,23], which are usually selected for monitoring ErrPs. Using BLDA, we found that the higher 

ErrPs classification was obtained by FSS with 92% of accuracy respect to the other methods that obtained lower 

accuracy (75% for xDAWN and 72% for Cz/FCz). 

The ErrPs morphology achieved by FSS was consistent with the results obtained from single channels Cz and FCz 

[1,23] and other spatial filter approach such as xDAWN [15,27] consisting of a small positive peak near 200 ms after 

delivering the feedback, followed by a negative deflection around 260 ms and another positive peak around 300 ms 

(Fig. 3 and Fig. 5). A strong ErrPs stability between session 1 and session 2 for all the methods tested was observed as 

well. Stability of the ErrPs among different days is essential for BCI applications [1,23]. In particular, comparison of 

the ErrPs for two different sessions (session 1 and session 2) shows that the signal remains stable over several weeks 

(Fig. 3 and Fig. 5). Differences, instead, were observed between Non-Correct trials vs. Correct trials in both xDAWN 

and FSS algorithms and channels Cz and FCz. Stronger difference between C and NC was observed for channel FCz 

and FSS algorithm with C vs NC difference surviving multiple comparison correction (pFDR<0.05) emphasizing  that 

FCz channel and FSS, at the average level, were more robust in discriminating C vs. NC conditions respect to xDAWN 

and CZ electrode (Fig. 4 and Fig. 6).  

However, the use of ErrPs in practical BCI applications requires their accurate recognition and classification at the 

single-trial level [15,27]. Classification results on the tested data (session 2) for each subjects, using BLDA and session 

                  



 

1 as training data, were reported in Table 2, while Table 3 reported the results as an overall performance. In both cases 

FSS-based spatial filter provides a better single-trial. 

Despite the obtained results are without a doubt in favor of FSS approach, those results have been still tested off-line. 

On the other hand, the results achieved by FSS are promising since were robust respect to the single subject 

performance. Instead, other studies have already highlighted how individual differences may affect the overall 

performance of the ErrPs mechanism [46–48]. An important point for EEG-based BCI application is the number of 

artifacts that are mixed in the EEG recordings. This aspect is not trivial especially for the algorithms that use all the 

EEG information for building the spatial filter, which might be corrupted by those artifacts. Fortunately, nowadays, 

different online algorithms for BCI artifact removal are available (e.g., [22,49,50]). The availability of these kind of 

algorithms for BCI, strongly increases the efficacy of the spatial filter algorithms and importantly decreases the 

computational time to estimate it. 

Using single channel approach might be, perhaps, a solution to avoid computational time. However, single channel 

solution has problems in all the cases the task under investigation involves a long range and distributed brain network 

[3,23,24]. In fact, although the noninvasive nature of electrophysiological techniques, such as EEG, provides the ability 

to directly measure large-scale neuronal activity, much still needs to be done in depicting it. Specifically, when an 

electrical potential is generated by a neuronal group, its activity is not only recorded from the electrode closest to this 

source but also from distant ones, due to the electric field propagation phenomenon. Consequently, each channel on the 

scalp derives its signal from more than one source [23,41,51,52]. This problem worsens with the increasing of the 

number of sources activated at the same time. Since the P300 definitely derives its activities from a broadly distributed 

network [53–56], picking a single channel or an average of channels based on a topographic map could be misleading, 

especially if the aim is to describe the whole neuronal communication system. In this regard, methods able to extract the 

under investigated neural source by combining the activity from all the electrodes (such as FSS and xDAWN), are 

suitable for overcoming possible misleading results by avoiding the choice of a single electrode or averaging group of 

electrodes. 

In this respect using ErrPs EEG dataset proposed by [1], as a benchmark, we tested channels approach (Cz, FCz) and 

spatial filter approach such as xDAWN vs. FSS. In conclusion, the results obtained by FSS respect to the other methods 

makes FSS a cutting-age tool for BCI. 

 

5. Future Works 

As future works it could be possible to put the algorithm online for the testing phase after an offline training phase, 

removing BCI signal artifacts and allowing the possibility to online detect the ErrPs. In this way the BCI system can be 

employed as an interface in an online task, during which a person realizes they are making an error as a consequence of 

a cognitive mistake. 
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