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Abstract 

Carbon monoxide (CO) is harmful to human health, yet there is limited evidence concerning 

emissions associated with biomass fuel cooking in occupational settings.  

Real-time 48-hour monitoring of CO concentrations at breathing height, was undertaken in 

staff and student kitchen and serving areas of two commercial canteens. We characterised two 

diurnal CO peaks coinciding with cooking activities. Peak CO concentrations of 255.5 ppm 

and 1-hour average of 76.3 ppm (IQR: 57.8–109.0 ppm) were observed in the student kitchen; 

the staff kitchen levels were 208.5 ppm, and 76.3 ppm (IQR: 52.5–114.0 ppm), respectively.  

High magnitude CO concentrations (8-hour average: 40.7 ppm SD: 40.0 ppm) which exceed 

World Health Organisation (WHO) Indoor Air Quality standards were observed. Further 

investigation of personal exposure and health impacts among kitchen staff are required, to 

inform interventions in this setting.  
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INTRODUCTION 

Wood, dung, agricultural residues, charcoal and coal, 1,2 are used by 3 billion people 

worldwide3–8 as a primary source of cooking fuel.9,10 Typically, these biomass fuels are 

relatively inexpensive and readily available,11–13 with the highest usage in Low and Middle 

Income Countries (LMICs).14 Rwanda is a rapidly developing country with a Gross Domestic 

Product (GDP) per capita of $748.3 in 201715 and a high prevalence of biomass fuel usage, 

presenting long-term health, environmental and economic issues. Incomplete biomass 

combustion in poorly ventilated settings2,16 produces carbon monoxide (CO), a colourless and 

odourless gas17 which reduces blood oxygen-carrying capacity causing tissue hypoxia18 and 

oxidative stress.19 In addition, biomass fuel collection and production contributes to increased 

carbon emissions, deforestation and environmental degradation,20 increasing, for example, the 

risk of land and mudslides hilly terrain around the capital Kigali.21  

University canteen environments, as an exemplar of commercial kitchens in other settings, 

present potential prolonged Household Air Pollution (HAP) exposure risk to staff and 

students who use them on a daily basis. Multiple stove use increases both the intensity and 

magnitude of emissions. There remains a paucity of evidence of exposure assessment in 

LMIC occupational kitchen settings; with an existing research focus on domestic rather than 

industrial cooking emissions, even though restaurants, hotels and schools typically rely upon 

traditional large cooking stoves22.  

In the UK, EU Indicative Occupational Exposure Limit Values (IOELVs) legislation defines 

CO Workplace Exposure Limits of 30 ppm (35 mg/m3) as an 8-hour Time Weighted Average 

(TWA) and short-term exposure limit 200 ppm (232 mg/m3).23 However, the World Health 

Organisation (WHO) Indoor Air quality (IAQ) guidelines for a domestic setting has a TWA 

limit value of 6.1 ppm (7 mg/m3) for 24 hours, 8.7 ppm (10 mg/m3) for 8 hours, 30.6 ppm (35 



mg/m3) for 1 hour  and 87.3 ppm (100 mg/m3) for 15 minutes of exposure.24 These levels 

along with short-term exposures of a magnitude (>200 ppm) are recognised to be seriously 

hazardous to human health. Exposure-response studies have shown acute and chronic health 

events18 as a result of oxidative stress from CO exposure above threshold values, which 

include exacerbation of symptoms of myocardial ischaemia,18 increased blood pressure25 and 

adverse pregnancy outcomes26 including low birth weight,26 as a result of chronic hypoxia of 

the placenta from biomass smoke exposure in pregnancy,27 and can be fatal at extreme 

concentrations.18 

This study aimed to characterise patterns of CO emissions associated with charcoal fuel 

cooking in; (i) the kitchen, and (ii) the serving area, of two commercial canteens 

(staff/student) in a tertiary educational setting in Kigali, Rwanda. 

MATERIALS AND METHODS 

Setting 

This observational study was conducted in the solid brick buildings of the staff and student 

canteens at the Nyarugenge Campus, University of Rwanda College of Science and 

Technology (UR-CST) (Figure 1). Each kitchen provides morning tea, lunch and dinner, with 

stoves being lit at 05:30 and 07:00 in the student and staff kitchens, respectively and main 

cooking sessions between 8:30-11:30 and 16:00-19:00. Morning tea involves brewing tea 

with milk and sugar. Lunch, the main meal of the day, and dinner consists mainly of beans, 

plantain, isombe (spinach, aubergine and cassava), umutsima (corn) and vegetables. A total of 

18 staff work in the student kitchens and 5 in the staff kitchen, on a rotating shift basis, with 

11 hour average shift duration. A total of 550 staff and students are catered for by the two 

kitchens each day, with the majority consuming their meals in a covered serving area. All 



study fieldwork was conducted in January 2019, at the end of the wet season, with the 

occasional rain shower in the afternoon and ambient temperatures of 18–29 ⁰C. 

The student kitchen was set up for mass catering with six large fixed wood fuel stoves, each 

with a diameter of 1 metre. Above each stove, on the wall behind, is a small opening window 

(0.5 m x 0.5 m) and ventilation bricks at a height of 2 m (Figure 2), with no other structural or 

mechanical methods of ventilation. The kitchen is directly adjacent to the canteen serving 

area, situated in the corner of the hall. The seating area was situated in the opposite corner to 

the serving area, with open, vented windows situated along one side opposite the kitchen.  

The staff kitchen area comprises of large portable charcoal stoves for cooking, in one 

enclosed room, with an open door leading into an enclosed courtyard (Figure 3). The two 

ends of the charcoal kitchen are constructed of two-thirds wall, and one-third wire fencing. 

The staff kitchen, also contained three gas cooking rings, located in an adjacent room. The 

kitchen connects to the staff canteen via stairs, leading upwards to a well-ventilated serving 

area with adjacent open balcony. The canteen dining area is an open plan area, along with a 

covered balcony.  

Data Collection 

Carbon Monoxide  

Real-time CO concentration measurements were taken at 1-minute intervals for a 48-hour 

duration using electrochemical EasyLog EL-USB-CO Carbon Monoxide Data loggers (Lascar 

Electronics Ltd, Erie, PA), with an accuracy of ±7ppm and lower Limit of Detection (LOD) 

of 3 ppm; and a temperature range of -10 to +40°C. Monitoring was performed at a fixed 

location in each setting. In the student and staff kitchens, monitors were located at a respirable 

height of 150 cm and distance of 100-150 cm from the main cooking stove. The monitors in 

the canteen were positioned at the serving desk, as this being a common area is visited by 



staff and students, positioned at a vertical height of 100-150 cm (respirable height). All 

monitoring commenced at 18:00 on a weekday and was performed at 1-minute intervals for a 

continuous period of 48 hours (Wednesday to Friday evening), therefore capturing two full 

days of cooking activities. CO levels below the lower LOD were assigned a value of 1.5 ppm 

(one half the lower LOD). Data were downloaded using EasyLog USB software (Lascar 

Electronics Ltd) to a text file for data cleaning prior to statistical analyses. Instrument 

calibration was undertaken by the manufacturer with accompanying laboratory calibration 

certificate. 

Kitchen characteristics  

Kitchen characteristics were observed and recorded by local trained fieldworkers (final year 

undergraduate students at the University of Rwanda), including location of windows, doors 

and vents and number of stoves. Information on cooking characteristics, including timing of 

stove lighting and details of meal preparation was collected verbally from catering staff and 

by observation during daily fieldwork visits.  

Statistical analysis 

We calculated descriptive statistics for average (arithmetic mean, geometric mean, median) 

and peak CO concentrations in each monitoring location, with real-time concentrations 

averaged over the total sampling and 8-hour and 11-hour shift durations respectively. With 

two 11-hour periods being assigned to cover the main working hours (06:00-17:00 and 09:00-

22:00). All statistical analyses were performed in Stata v15,28 including descriptive statistics 

and time-series analyses to identify peak and average (mean and median) CO concentrations. 

8-hour time weighted averages (TWA) were calculated as the average of all data points (1-

minute intervals) for the specified 8-hour time frame. Pearson’s correlation was used to 

measure the association between CO concentrations in the kitchen and serving area. A Man-



Whitney U test was used to compare CO concentration between hourly average and shifts 

averages within each sampling area. 

Ethical approval 

Ethical approval for this study was gained through the University of Rwanda, approval 

number: No 317/CMHS IRB/2017. 

RESULTS 

Variation in CO across 48 hours 

Student Kitchen and Canteen 

CO levels in the student kitchen were observed to increase rapidly at 06:00 (Figure 4), 

coinciding with initial morning stove lighting. Figure 4 shows two distinct daily periods of 

high CO levels between 08:00–16:00 and 16:00–23:00 respectively, depicting the two main 

cooking periods. Each peak is characterised by a rapid increase in CO concentration, followed 

by a gradual decline, with levels remaining elevated above precooking levels between 

cooking events. The highest CO value was recorded on Friday at 11:00 with a 1-minute value 

concentration of 255.5 ppm, with the lowest background concentration of 1.5 ppm during 

nocturnal hours. We observed a large variation in CO levels across 48-hours, with a median 

value of 13 ppm (IQR: 3.5–40.0 ppm) (Table 1). CO concentrations at the student canteen 

serving area, were moderately associated with concentrations in the kitchen area (r = 0.38, 

p<0.001), but at lower average levels, with peak 1-minute concentration of 41.5 ppm 

observed at 19:53.  

Staff Kitchen and Canteen 

Figure 5 shows CO concentrations increasing from 08:00 with highest recorded concentration 

208.5 ppm between 09:00-10:00. CO levels decreased from late morning, with a second 



smaller evening peak occurring at around 19:00. The average (median) 48-hour staff kitchen 

was 1.5 ppm (IQR: 1.5–18 ppm) (Table 1), which is below the lower LOD. Peak staff canteen 

serving area magnitude was 15 ppm, with levels increasing during cooking periods (09:00–

13:00).  

Average hourly concentration 

Student Kitchen and Canteen 

Due to observed daily variations in CO levels, hourly average (median) values provide a more 

accurate indication of continuous personal concentration levels. Nocturnal levels are lower 

than daytime average concentrations (p<0.001), below the lower LOD at 1.5 ppm for four 

hours overnight (Appendix 1). The peak hourly average concentration 76.3 ppm (IQR: 57.8–

109 ppm), occurs at 10:00–11:00, with a large increase from 09:00 (22.8 ppm, IQR: 18–29 

ppm) and remaining elevated until midday (67.5 ppm, IQR: 53.3–83.3 ppm) (Figure 6). The 

evening peak occurs at 18:00–19:00 (61.3 ppm, IQR: 42–77.8 ppm). Corresponding peak 1-

hour averages occur in the student canteen at 10:00–11:00 (CO: 6.3 ppm IQR: 4–8 ppm) and 

17:00–18:00 (CO: 1.8 ppm IQR: 0–3 ppm), correlating with temporal changes in kitchen 

concentrations. However, these peak 1-hour average concentrations are not significantly 

different to the hour before or after, apart from the student canteen 10:00-11:00 (U=5.3, 

p<0.001) and 17:00-18:00 (U=-7.4 p<0.001). 

Staff Kitchen and Canteen 

The staff kitchen has the highest 1-hour average at 09:00–10:00 (76.3 ppm, IQR: 52.5–114 

ppm - Figure 7) (U=3.7, p<0.001), with a second non-significant peak of lower magnitude at 

18:00–19:00 (15.3 ppm IQR: 1.5–30 ppm, U=-1.0, p=0.32) and nocturnal concentration 1.5 

ppm (Appendix 2). Average hourly concentrations in the staff canteen were 1.5 ppm.  

Average 8-hour and 11-hour concentrations  



The greatest 8-hour average concentrations occurred during the first cooking periods (06:00–

14:00) in both student (mean 40.7 ppm, SD: 40.0 ppm) and staff (mean 34.7 ppm, SD: 35.8 

ppm) kitchens respectively (Table 2). However, the first shift in the student kitchen was not 

significantly different from the afternoon shift (U=-1.7, p=0.08). The highest mean 8-hour 

concentration for the serving area was recorded in the student serving area during the 

afternoon shift at a concentration of 7 ppm (SD: 8.2 ppm), but was not significantly different 

from the morning shift (U=1.5 p=0.14). In comparison, the greatest 11-hour average (Table 2) 

concentration occur in between 09:00-22:00 in the student kitchen (mean 43.5 ppm, SD: 35.4 

ppm) and 06:00-17:00 in the staff kitchen (mean 25.0 ppm, SD: 29.9 ppm). The student 

serving area held the greatest 11-hour average concentration between 09:00-22:00 (mean 5.9 

ppm, SD: 6.6 ppm). An 11-hour limit level was calculated from the WHO IAQ limit levels, at 

8.2 ppm (9.4 mg/m3). 

DISCUSSION 

To the best of our knowledge, this is the first study to obtain primary pollutant measurements 

in a commercial catering setting in Rwanda, where biomass fuel combustion represents over 

85% of overall energy consumption.29 Although high CO levels (TWA range of 4.9–50 ppm) 

have previously been reported within domestic settings in sub-Saharan Africa,30–33 our 

findings suggest workplace CO concentrations are of a greater peak intensity and longer 

duration. Peak kitchen concentrations during lunch (Student = 255.5 ppm and Staff = 208.5 

ppm) and dinner (Student = 170.0 ppm and Staff = 74.5 ppm) cooking sessions, with the 

calculated 8-hour average exceeding the WHO domestic IAQ 8-hour time-weighted average 

(TWA) limit values which emphasises the concentrations are hazardous for human health.  

Through use of real-time monitoring we identified two characteristic diurnal CO peaks 

coinciding with cooking activities, consistent with temporal patterns reported in domestic 



biomass fuel settings.34–37 Peaks are characterised by a rapid increase in CO emissions 

coinciding with stove lighting and cooking onset,38 followed by gradual decline and plateau 

above background values for several hours after the main cooking periods (Figures 4 and 5). 

In the student kitchen nocturnal CO levels remained elevated above background values, at a 

range of 1.5–30.5 ppm. These high-intensity, prolonged duration pollutant episodes differ 

from temporal patterns reported previously in domestic settings which are typically 

characterised by short intensity peaks.3,39,40 However, to the best of our knowledge, there are 

no previous time-series investigations of CO levels associated with wood and charcoal stoves 

in occupational environments, therefore limiting detailed comparisons. Indicative differences 

may reflect cooking period and quantity and number of stoves deployed in a commercial 

canteen environment in comparison to single meal preparation in a domestic kitchen. The 

observed increase in CO levels at the end of cooking sessions in our study may reflect 

extinguishing the stoves3,39,41. Temporal and spatial differences may be attributable to fuel 

moisture content, fuel density or ventilation34,38,42,43, therefore further detailed investigation of 

the relative contribution of these factors is merited in this setting.  

8-hour average CO levels observed in canteen serving areas used by both university staff (1.6 

ppm SD: 0.7 ppm) and students (4.4 ppm SD: 5.4 ppm), were lower than respective kitchen 

concentrations and did not exceed WHO 8-hour IAQ limit values, reflecting increased 

distance from the pollutant source, creating greater dispersion.44 The main difference in the 

level of ventilation between the two areas was the opportunity for circulating airflow through 

the entrance and balcony doors in the staff serving area and that the staff serving area was not 

directly connected to the kitchen, being separated by a stairway. However, concentrations in 

the student serving area were elevated above background levels and the high number of 

students attending for meals suggests a potentially greater population exposure level among 



this group compared to university staff; although the health effects, if any, at this level of 

exposure are unclear.  

Exposure comparisons between studies is difficult due to varying micro environments, 

differing sampling strategies, including position, duration and calibration of monitoring 

devices.45 There are some limitations to our work. Our observations were obtained by 

monitoring sessions of 48-hour duration in each study location but we did not attempt to 

account for variability in weather conditions or ventilation; therefore no dispersion 

modelling46 could be undertaken. Although a 48 hour assessment of diurnal variation is 

relatively short in duration, it highlights regular periods in exceedance of the WHO guideline 

values, within a commercial biomass burning canteen setting. However, alternative sources of 

CO emissions were not investigated, but the kitchen and canteen settings were away from 

major roads and there were no electricity generators in close proximity to the study location 

suggesting these potential influences were of minimal relevance in this setting. Smoking 

prevalence is low in Rwanda, with a 4.7 % smoking prevalence in 15–49 year olds;47 and 

therefore was not considered as a major source in this context. 

Absolute individual exposure cannot be inferred from this study, which is required to estimate 

the potential health harms, as we did not perform personal monitoring of staff which may 

yield different results to fixed site measurements.48 However the monitoring location (1 m 

height, 1.5 m distance from the stove) was selected to represent typical breathing height 

during cooking and serving tasks. Further investigation of personal exposure assessment 

among catering staff, including investigation of health and cognitive symptoms would provide 

more detailed understanding of the occupational risks of biomass fuel cooking in this setting.  

Our findings indicate the need for effective and sustainable harm reduction strategies in 

catering environments using charcoal or wood fuel, such as through structural or behavioural 



modification or transition to a cleaner energy source (e.g. LPG). Transition would require 

financial investment and staff training and cultural acceptability, for instance, to address 

potential changes in food taste and logistical considerations for safe storage and usage.  

CONCLUSION 

Our findings indicate that charcoal and wood fuel combustion in this commercial catering 

setting in Rwanda was associated with 8-hour average kitchen CO concentrations which 

exceed WHO 8-hour IAQ guidelines and are of a hazardous level for human health. Further 

investigation of personal exposures and health impacts among catering staff would improve 

the evidence base concerning occupational exposure risks in this setting.  
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APPENDICIES 

Appendix 1: Descriptive statistics by place of measurement at each hour of the day in the 

student kitchen and serving area 

Appendix 2: Descriptive statistics by place of measurement at each hour of the day in the staff 

serving area and kitchen 

Tables  

Table 1: 48-hour average CO concentration in the Staff and Student kitchen and serving areas 

 

Number of 

observations 

Arithmetic 

Mean (SD) 

Geometric 

mean (SD) Median (IQR) Minimum Maximum 

Student 

Kitchen 2880 
27.4 (34.0) 11.8 (1.4) 13.0 (3.5, 40.0) 1.5 255.5 

Student 

Serving area 2880 
4.4 (5.4) 3.0 (0.8) 3.0 (1.5, 4.5) 1.5 41.5 

Staff 

Serving area 2880 
1.6 (0.7) 1.5 (0.2) 1.5 (1.5, 1.5) 1.5 15.0 

Staff 

Kitchen 2880 
15.1 (25.9) 4.8 (1.5) 1.5 (1.5, 18.0) 1.5 208.5 

Number of observation recorded by one monitor 

Arithmetic Mean = Arithmetic Mean CO (ppm) concentration across 48 hours 

Geometric Mean = Geometric Mean CO (ppm) concentration across 48 hours 

SD = standard deviation of the mean 

Median = Median CO (ppm) concentration across 48 hours 

IQR = Interquartile range of concentrations across 48 hours 

(Min, Max) = the minimum and Maximum CO (ppm) concentration across 48 hours 

 

Table 2: Descriptive Statistics by place of measurement per 8  and 11 hours 

8 hour average 

 Student Kitchen Student Serving Area 

 Mean (SD) (Min, Max) Mean (SD) (Min, Max) 

06:00 - 14:00 40.7 (40.0) (1.5, 255.5) 4.5 (2.2) (1.5, 17.0) 

14:00 - 22:00 37.9 (31.5) (3.0, 178.5) 7.0 (8.2) (1.5, 41.5) 

22:00 - 06:00 3.5 (3.6) (1.5, 30.5) 1.7 (0.6) (1.5, 4.5) 

           

 Staff Kitchen Staff Serving Area 

 Mean (SD) (Min, Max) Mean (SD) (Min, Max) 

06:00 - 14:00 34.7 (35.8) (1.5, 208.5) 1.7 (1.2) (1.5, 15.0) 

14:00 - 22:00 9.2 (11.2) (1.5, 74.5) 1.5 (0.3) (1.5, 8.0) 

22:00 - 06:00 1.5 (0.1) (1.5, 3.5) 1.5 (0.0) (1.5, 1.5) 

11 hour shift average 

 Student Kitchen Student Serving Area 

 Mean (SD) (Min, Max) Mean (SD) (Min, Max) 

06:00 – 17:00 38.0 (38.6) (1.5, 205) 3.9 (2.4) (1.5, 14.5) 

09:00 – 22:00 43.5 (35.4) (1.5, 223.5) 5.9 (6.6) (1.5, 41.5) 

 Staff Kitchen Staff Serving Area 

 Mean (SD) (Min, Max) Mean (SD) (Min, Max) 

06:00 – 17:00 25.0 (29.9) (1.5, 128.5) 1.5 (0.4) (1.5, 5.5) 

09:00 – 22:00 20.3 (27.7) (1.5, 180) 1.6 (0.8) (1.5, 13.5)   
Mean = Arithmetic Mean CO (ppm) concentration within the defined time period 

SD = standard deviation of the mean 

(Min, Max) = the minimum and Maximum CO (ppm) concentrations within the defined time period 

 



Figures 

 

Figure 1: Outside view of the staff and student canteen 
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Figure 4: Variation in 1-minute CO concentrations (ppm) levels across 48 hours (Wednesday–Friday) 

within the student kitchen (Black line) and student serving area (Grey line) showing two diurnal 

cooking peaks in 12 hours. Reference denotes the UK occupational standard of 30 ppm. 
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Figure 5: Variation in 1-minute CO concentrations (ppm) across 48 hours in the staff kitchen (Black 

line) and staff serving area (Grey line) showing two cooking phases in 12 hours. Reference line 

denotes the UK occupational standard of 30 ppm.  
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Figure 6: A box plot illustrating the average (median) hourly concentration of CO concentrations 

(ppm) in the student serving area by daytime working hour (06:00–22:00). Boxes represent the 

interquartile range, with the middle line indicating the median. Outliers are illustrated with points. 30 

ppm reference line denotes UK occupational standard. (Numerical tables in Appendix 1)  
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Figure 7: A box plot illustrating the average (meidan) hourly concentration of CO concentrations 

(ppm) in the staff serving area by working hour of the day (06:00–22:00). Boxes represent the 

interquartile range, with the middle line indicating the median. Outliers are illustrated with points. 30 

ppm reference line denotes UK occupational standard. (Numerical tables in Appendix 2) 
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