
 
 

University of Birmingham

A flow velocity dependence of dynamic surface
tension in Plateau borders of foam
Clarke, Christopher; Spyropoulos, Fotis; Norton, Ian T.

DOI:
10.1016/j.jcis.2020.04.028

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Clarke, C, Spyropoulos, F & Norton, IT 2020, 'A flow velocity dependence of dynamic surface tension in Plateau
borders of foam', Journal of Colloid and Interface Science, vol. 573, pp. 348-359.
https://doi.org/10.1016/j.jcis.2020.04.028

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1016/j.jcis.2020.04.028
https://doi.org/10.1016/j.jcis.2020.04.028
https://birmingham.elsevierpure.com/en/publications/c369c778-6c3f-4f5b-a865-4502f4430017


 

1 
 

A Flow Velocity Dependence of Dynamic 
Surface Tension in Plateau Borders of Foam 

Christopher Clarke*, Fotis Spyropoulos and Ian T. Norton 

*Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, 
B15 2TT, UK 

Abstract 
Hypothesis 

Liquid drainage through foams is a multiscale process, that primarily occurs through channels 
known as Plateau borders (PBs). Recent experimental studies of isolated PBs have observed 
variations in channel surface tension, 𝛾, with liquid flow rate, 𝑄, for systems containing soluble 
low molecular weight surfactant (LMWS). The current study proposes that the dynamic surface 
tension (DST) could be responsible for this effect, where the residence time of surfactant 
molecules in the PB is similar to the time required for their adsorption to the channel interface. 

Experiments 

Profile geometries of isolated ‘ideal’ PB’s were created in a bespoke experimental setup at 
controlled forced liquid flow rates. Average surfactant residence times, 𝜏$%&, were calculated 
for solutions of Sodium dodecylsulfate (SDS), Tween 20 (T20) and Tween 80 (T80), and used 
to calculate corresponding average DST values in discrete regions of measured PB profiles. 
DST values were combined with microscale drainage theory to assess the potential physical 
implications on liquid flow. 

Findings 

Significant variations in the magnitude of 𝛾 were calculated based on surfactant characteristics, 
where only the rapid adsorption of SDS was sufficient to produce DST values approaching 
equilibrium. These findings seriously question assumptions of near equilibrium surface tension 
in LMWS foam systems above their critical micelle concentration (CMC). Furthermore, the 
presence of surface tension gradients identified using this discrete approach, highlights the need 
to further refine the current theory to a continuous approach incorporating Marangoni effects. 
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Introduction 
Background 
Foam drainage is a highly complex phenomenon that is the combined result of dynamic 
processes occurring over a range of different length-scales[1]. Because of its essential role in 
destabilising foams, those seeking foam longevity often aim to retard this process, typically 
employing basic assumptions regarding liquid flow to inform a trial and error approach to 
formulation development[2]. While this tactic has been met with measured success, the 
increasing demand for foams with specific functionality, using a limited range of ingredients, 
has necessitated a much more rigorous approach to understanding foam microstructure and its 
impact on microscale liquid flow[3]; which in turn drives macroscopic behaviour.  

At the microscale, liquid transport through foams primarily occurs through the interconnected 
network of channels between bubbles, known as Plateau Borders (PBs), and their junctions, or 
Nodes[4,5]. As these structures ultimately form the ‘building blocks’ of macroscopic foams, 
their microscale behaviour is scaled accordingly, thereby describing the overall functionality[6]. 
One common approach is to ‘build’ a picture of macroscopic foam drainage by ‘adding’ the 
hydrodynamic resistance of isolated channels and nodes in series[7]. It can be seen therefore, 
that any inaccuracies in the properties of these isolated systems propagate to a substantial 
degree of error when scaled to describe macroscopic systems. 

Modelling foam channels using a theoretical framework represents the substantial majority of 
research undertaken in the area of foam channel drainage. However, even using simplified 
models to represent real systems has proved challenging, with results often conflicting[7,8]. This 
is largely due to the wide range of co-dependent variables involved in the process, which 
dramatically increases the complexity of the systems studied. For example, the surface 
rheology of foam channels is dependent on the shear imparted on it by flow of bulk liquid[9]; 
however, liquid flow rates vary with bulk liquid rheology and channel widths, which are 
themselves dependent upon the surface rheology and surface tension[10,11]. As such, one cannot 
treat any of these variables in isolation without directly measuring or resorting to assumptions 
regarding the others. 

In addition to the difficulties faced by theoretical modelling, there are very few studies 
dedicated to the experimental measurement of microscale foam channels[12]. This means that 
any predictions that are made from microscale drainage models are difficult to assess for 
accuracy in real systems. This is largely due to the difficulties in effectively measuring such 
systems, which can be extremely difficult to isolate and effectively control in macroscopic 
foams[13]. 

More recently, studies of isolated PB and PB-Node geometries in bespoke experimental setups 
have provided an alternative to microscale measurements made from macroscopic foams. The 
superior control and repeatability provided by these systems has allowed for more detailed 
experimental studies into the co-dependence of PB bulk and surface parameters during 
microscale drainage. To date, isolated foam systems have been used to study a range of 
surfactants, including ionic and non-ionic low molecular weight (LMWS) systems[6,7,14-17], as 
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well as more limited investigations of protein and polysaccharide solutions[10]. While these 
studies have been able to identify fundamental differences in key parameters such as surface 
shear viscosity for different surfactant systems, the practical difficulties in measuring such 
systems still necessitate certain assumptions to be made. 

A major assumption that features heavily in both microscale and macroscale foam drainage 
concerns the PB surface tension, which is an important parameter for determining bubble and 
channel dimensions, but is not measured in-situ. Instead, foam surface tensions are generally 
approximated based on the results of more conventional  measurement techniques such as 
Wilhelmy Plate, Pendant Drop, Expanding Bubble, etc.[5]. It is generally considered, for 
example, that soluble LMWS solutions above their critical micelle concentration (CMC) 
produce foams with surface tensions approaching equilibrium, 𝛾% [18]. Recently however, 
measurements of isolated Tween 20 and Tween 80 PB geometries at constant liquid flow rates, 
have suggested this may not be the case, with the appearance of an apparent flow rate dependent 
surface tension[10]. 

The idea of time-dependent surface tension is certainly not new, and has been studied 
extensively for a wide range of surface-active species and concentrations[19-24], with solutions 
above the CMC being further influenced by the presence of micelles[25,26]. This dynamic 
surface tension (DST), 𝛾, is primarily governed by the rate of adsorption of surface active 
molecules/particles to the air-liquid interface, where transport of surfactant molecules is either 
dominated by convection or diffusion. The dominant effect can generally be identified by 
solving the convective diffusion equation and using the Péclet’s criterion to assess the relative 
magnitude of the terms[27,28]. In the case of soluble LMWS systems with static boundaries for 
example, adsorption is generally dominated by diffusion[20]. The rate of diffusion is highly 
dependent on the diffusivity of the LMWS species and the dimensions of the liquid channel, 
which therefore dictates how quickly surfactants are able to reduce surface tension when 
adsorbing at an interface. 

The application of DST models to Plateau borders with liquid flow becomes far more complex, 
partially because of the geometry of the PB cross-section, but also because of the surface 
velocity of the PB interface. While a detailed physicochemical approach to the problem of PB 
drainage has been put forward by Durand, et al.[11], a means of experimentally validating these 
findings at the scale of individual Plateau borders remains elusive. In the more simplistic case 
of flow in horizontal liquid films, more experimental data is available, where the Marangoni 
effect describes the influence of surfactants on the hydrodynamics of the system, preventing 
localised thinning and therefore improving film stability[27-31]. More recently, the experimental 
examination of vertical films draining under the force of gravity have yielded interesting 
findings relating to the stability of thin films due to forced liquid flow[32] that may have parallels 
with forced flow in Plateau borders. 

In the study of de Gennes[32], the impact of soap film drainage rates on surface tension and film 
stability is described. As the liquid flow increased, it was found that slower diffusing 
surfactants did not have time to adsorb at the air-water interface before exiting the film. These 
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films, with reduced surfactant concentration at the interfaces, were termed ‘Young’ films due 
to liquid flows being faster during the early stages of film drainage. It follows therefore, that 
such a mechanism is also likely to play a role in the stabilisation of PBs, where the inherently 
higher liquid flow rates would be expected to accentuate the effects seen by de Gennes[32]. If 
the majority of surfactant molecules were transported through the PB before being able to 
adsorb at the interface, then values of PB surface tension higher than 𝛾%  could be expected, 
potentially lowering PB stability. 

This study aims to provide a method that can assess the degree to which liquid flow rate could 
affect PB surface tension for high mobility surfactant species with well-characterised 
adsorption behaviour. The ability to control liquid flow rates through well-defined PB 
geometries using the experimental setup of Clarke, et al.[10] means that the ‘ageing’ of PBs 
should be effectively halted. As was shown for de Gennes[32] ‘young’ films, adjoining ‘young’ 
PBs could also suffer from reduced stability during the early stages of macroscopic foam 
drainage. As such, it is hoped that the current study will help to produce a more complete 
picture of the fundamental mechanisms underlying drainage and stability of LMWS 
macroscopic foams. Ultimately, this may prove valuable for researchers hoping to identify 
suitable surfactant species and concentrations for specific formulation applications. 

Theory 

Model Fitting to Geometric PB Profiles 
In previous studies by Clarke, et al.[10],[14], the geometries of vertical, isolated PB’s were 
measured at different forced liquid flow rates, 𝑄, and fitted with solutions to the standard 
drainage theory[13,17] (Equation (1)). This dynamic equation accounts for the liquid flow 
through a PB tangential to the vertical axis, 𝑍, with a radius, 𝑅, and the physical parameters 𝐼, 
𝐷, 𝜈, 𝑔, 𝛾, and 𝜌 denoting inertial and viscous flow parameters, kinematic viscosity, 
acceleration due to gravity, surface tension and bulk liquid density, respectively. The constant, 
𝑐, is a geometric factor (~0.161) which can be used to describe the thin-film PB cross-section 
with area, 𝑆 = 𝑐𝑅6 (See Figure 1c). The parameters 𝐷 and 𝐼 are dimensionless variables that 
describe the shape of the velocity flow field through the PB and ultimately depend on the 
surface rheology of the PB interface. Further information on these is given below and can also 
be found in the Supporting Information. The Supporting Information also gives a more 
complete description of Equation (1) and its derivation, in order to provide additional physical 
context. 

7$
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     The standard drainage theory  (1) 

As can be seen from Figures 1a) & 1b), measured PB profiles for LMWS systems have been 
shown to exhibit complex flow rate dependent geometries comprised of regions of relaxation 
and expansion. The geometric solution to Equation (1) for constant 𝐼 and 𝛾, as proposed by 
Clarke, et al.[10], was shown to account for both relaxation and expansion of the PB profile (see 
Figure 2) and is given by Equation (2). More information on the derivation and physical 
implications of Equation (2) can also be found in the Supporting Information of this study.  
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In this solution, the constant values of the inertial flow parameter, 𝐼, and surface tension, 𝛾, 
result in values for an initial PB radius, 𝑅a, according to Equation (3), that is located at a vertical 
offset, 𝑍J, from the top of the PB at 𝑍 = 0 (Figure 2). The PB equilibrium radius, 𝑅%, is defined 
by Equation (4), describing the lower limit of the PB radius, at which gravity and viscous 
dissipation are balanced[17]. The vertical distance over which 𝑅a transitions to 𝑅% is determined 
by the PB relaxation length, 𝐿, which is given by Equation (5). Finally, the variable 𝐿9, refers 
to the capillary length defined as 𝐿9 = b𝛾 𝜌⁄ 𝑔. 

𝑅a = c6de<
?

9?f
g
^ h⁄

          (3) 

𝑅% = c:;<
9>
g
^ V⁄

                        (4) 

𝐿 = e<?

69?>$Q@
− f

Vd>$Q
          (5) 

 

 
Figure 1. a) Typical low flow rate, 𝑄, PB vertical cross-section for LMWS systems. b) Typical 
high flow rate PB vertical cross-section for LMWS systems. c) Thin-film PB horizontal cross-
section with radius, 𝑅, and area, 𝑆. 

 

Figure 2 shows that Equation (2) takes the form of a curve with two solutions for 𝑅 for a given 
value of 𝑍, and demonstrates the application to PB profiles exhibiting regions of relaxation and 
expansion similar to that in Figure 1b. 

The study by Clarke, et al.[10] showed that a single set of physical variables for Equation (2) 
could be used to describe both expansion and relaxation regions of the PB, where it was 
assumed that the effect of variations in 𝑅 would be small within a single PB. However, it was 
found that the agreement between theory and data decreased sharply for PBs at flow rates close 
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to the transition point between profiles of the type shown in Figure 1a to those in Figure 1b 
(i.e. relaxation only to combined relaxation AND expansion). Furthermore, analysis of the 
fitting parameters indicated the counterintuitive result that an increase in surface concentration 
of surfactant at the PB interface acted to lower its surface shear viscosity, 𝜇&. As such, it was 
deemed necessary to account for the impact of variations in 𝑅 within a single PB in future 
studies. 

 

 

Figure 2. a) High magnification view of highlighted profile regions with visualisation of fitted 
curved overlaid. b) Low magnification PB profile image. c) Example of Equation (2) fit to 
profile data for a 182mM SDS solution at a flow rate of 100µl/min. Dashed blue lines indicate 
the position of key geometric variables. Grey shaded regions indicate poorly defined 
transitions/distortions, namely: i) the injection nozzle distortion around 𝑍 = 0, ii) the 
relaxation-expansion transition around 𝑍J, and iii) the PB to Node transition at 𝑙^.  

 

When one considers, the physical interpretation of the viscous and inertial flow parameters as 
describing the shape of flow velocity profiles through a horizontal PB cross-section, the need 
to account for 𝑅 dependence in a single PB becomes clear. Equations (6) and (7) show the 
relationship between the velocity field of liquid flow through the PB[17], 𝑢k⃗ (𝑥, 𝑦), and the 
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viscous and inertial flow parameters obtained by averaging across the horizontal PB cross-
section (see Elias, et al.[17] for details). At a constant liquid flow rate, the average flow velocity, 
𝑢p, through an ideal horizontal PB cross-section can be calculated from Equation (8), such that 
the dependence of both 𝐷 and 𝐼 on PB radius is taken into account[17]. Note that in Equation 
(6), ∆𝑢pppp describes the Laplacian of the velocity flow field averaged over the horizontal PB cross-
section. 

𝐷 = −𝑅6∆𝑢pppp 𝑢p⁄                     (6) 

𝐼 = 𝑢6ppp
𝑢p6r                      (7) 

𝑢p = 𝑄 𝑐𝑅6⁄                      (8) 

In order to address 𝑅 dependence during fitting, it was necessary to apply multiple fits of 
Equation (2) to PBs with regions varying significantly in average PB radius. This is a 
consequence of the discrete nature of Equation (2), which assumes constant values for all of 
the variables contained within the fitting region. In reality, a perfect fit to any real PB system 
would require the division of the PB into an infinite number of sections with an infinite number 
of solutions, however; this would obviously be impractical for experimental purposes. Instead, 
the criteria of an R-Squared value greater than 0.9 was used to designate a ‘good’ fit of a 
solution to a region of the PB geometry. This criterion meant that a maximum of four solutions 
to Equation (2) could provide a ‘good’ fit to the full length of any observed PB geometry. Note 
that these solutions neglected the distortion regions (i) and (ii) shown in Figure 2. 

The approximation of constant variables within each discrete fitting region of the PB has some 
important physical implications, particularly with regard to the assumption of constant surface 
tension. Using this method, it is possible to determine magnitudes and changes in surface 
tension over the length of the vertical PB based discrete changes in 𝛾 for each fitting region. 
However, as the overall gradient in surface tension, ∇𝛾, is neglected, this model also neglects 
contributions due to Marangoni stresses that would arise from these gradients. While the 
variations in 𝛾 are expected to be small for the systems that will be studied here, this is an 
important point for future studies, wherein a dynamic version of Equation (2) will be required 
in order to account for these effects. 

 

Dynamic Surface Tension as a Model Parameter 

In order to identify the potential impact of liquid flow rates, 𝑄, on the DST in these isolated 
PB systems, it is necessary to determine whether surfactant transport to the interface is 
dominated by convection or diffusion. Only then can an appropriate model describing 
surfactant adsorption rates be selected. 

In the case of immobile PB interfaces, the geometry of the channel cross-section is such that 
the Péclet number would be expected to vary between diffusion dominated and convection 
dominated surfactant transport depending on position (i.e. Péclet numbers varying between 
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𝑃% ≪ 1 and 𝑃% ≫ 1 respectively)[33]. This can be simply approximated based on the standard 
equation 𝑃% = 𝑈a𝐻 𝐷&⁄  where 𝑈a describes the fluid velocity relative to the immobile interface, 
𝐻 describes the channel width, and 𝐷& is the diffusion coefficient of the surfactant[33]. The 
channel width inside an ideal Plateau border with thin films varies between 0 < 𝐻 ≤
O√3 − 1R𝑅 giving a maximum range of 0 < 𝑃% < 𝑢O√3 − 1R𝑅 𝐷&r . Approximating 𝑢 based 
on the cross-sectional average shown in Equation (8), and with maximum flow rates 𝑄 =
(𝜗)10=^6, minimum radii, 𝑅 = (𝜗)10=~, and minimum surfactant diffusivity, 𝐷& = (𝜗)10=^6, 
yields a maximum range of 0 < 𝑃% < (𝜗)10~. 

Despite the significant potential variation between convective and diffusive surfactant transport 
shown, the case of an immobile interface is far from that expected for highly mobile, soluble 
LMWS species such as Tweens and Sodium dodecylsulfate (SDS) [10,14,20,34]. In these cases, 
the dominant flow profile is expected to be plug-flow, where 𝑈a → 0 (i.e. a stationary mode) 
as perfect plug-flow is approached. In this limiting case therefore, diffusion would be expected 
to be the dominant mode of surfactant transport. Indeed, in the majority of literature describing 
adsorption of LMWS systems, diffusion is found to be the dominant mode[20], with diffusion 
coefficients measured based on this finding[22]. 

While a far more in depth treatment of this problem is possible by solving the convective 
diffusion equation for the PB system, the treatment above was deemed sufficient for the 
purpose of this study using highly mobile LMWS systems exhibiting Plug-like flow[10,14]. As 
such, the Ward-Tordai (W-T) model for diffusion-controlled adsorption was adopted, which 
has been previously applied to successfully describe the kinetics of ionic surfactants with high 
surface concentrations[19]. 

The expressions describing the W-T model used here are given by Equations (9) and (10), 
expressing the short-time and the long-time approximation regions with ideal ionic activity 
(IIA) correction, respectively[19,35]. 

𝛾�J(𝑡) = 𝛾a − 2𝐶a𝑅>𝑇b𝐷&𝑡 𝜋⁄  Short Time Approximation                                 (9) 

𝛾UJ(𝑡) = 𝛾% + 𝑛𝑅>𝑇 c
�Q?

�P
g�

�
V:��

 Long Time Approximation with IIA Correction       (10) 

The surface tensions, 𝛾a and 𝛾% , describe the pure solvent surface tension (in this case water) 
and the equilibrium surface tension of the surfactant solution with concentration, 𝐶a, 
respectively. The molar gas constant is denoted by 𝑅>, while the temperature is given by 𝑇. 
The equilibrium surface excess, 𝛤% , describes the equilibrium concentration of surfactant at the 
air-water interface, and can be influenced by the electrostatic interactions of charged species. 
The correction factor, 𝑛, was introduced to the W-T long time approximation by Kinoshita, et 
al.[19] in order to account for the action of ionic surfactants. For non-ionic surfactants (e.g. 
Polysorbates) 𝑛 = 1, whereas for a univalent ionic surfactant in the absence of supporting 
electrolyte (e.g. SDS in aqueous solution) 𝑛 = 2. No IIA corrected form of the W-T short time 
approximation is currently available in the literature; however, such a derivation would only 
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be required for the analysis of charged species in their short time region. As the only charged 
species analysed in this study was SDS, it will be shown that its very small short time 
approximation region (𝑡 ≪ 10ms)[19] meant that only the IIA corrected long time 
approximation was required in this case. 

Having identified a suitable models of surfactant diffusion, it was necessary to identify a means 
of measuring values for 𝑡 that could be used in conjunction with the fitting of Equation (2) to 
measured PB profiles. Given that the fitting of Equation (2) required PB profiles to be broken 
down into discrete regions with constant surface tension, it was therefore necessary to measure 
an average value for 𝑡 over each discrete profile section. 

When surfactant solution is injected at constant 𝑄 directly into the PB at 𝑍 = 0, the resulting 
average velocity in a given PB section is dependent upon that region’s average radius, i.e. 𝑉 =
𝑢p(𝑅 = 𝑅p). Therefore, for a surfactant molecule travelling with the bulk liquid, its average 
residence time in that PB region,	𝜏$%&, can be approximated by the distance over velocity 
relationship shown in Equation (11). 

𝜏$%& ≈ 𝑐𝑅p6𝑍
𝑄r                     (11)  

While Equation (11) is a suitable approximation for a PB with an ideal cross-section (see Figure 
1c), this is not the case for the systems studied here. Instead, the PB cross-section becomes ill-
defined as it approaches the liquid injection nozzle at 𝑍 = 0, transitioning from an ideal 
geometry to an approximately cylindrical one[14,17] over a distance, 𝑍: (See Figure S1). 

 

 
Figure 3. Example of short time and long-time with IIA W-T approximations of DST for an 
uncharged surfactant species (Tween 20). Example data points were taken based on 𝛾(𝜏$%&) =
min	[𝛾�J(𝜏$%&), 𝛾UJ(𝜏$%&)]. Maximum and minimum values of surface tension are given by the 
surface tension of water, 𝛾a, and the equilibrium surface tension, 𝛾% , respectively. 
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In order to account for this effect, Equation (11) was amended to Equation (12), giving equal 
weight to the ideal and cylindrical geometries in the distortion region. PB radii in the distortion 
region were given the notation 𝑅:. 

𝜏$%& ≈
9$p?

<
(𝑍 − 𝑍:) + A

$�pppp
?(^�9Yh�)
h6<

E 𝑍:                 (12) 

Using the approximation that 𝑡 = 𝜏$%&, values for 𝛾�J(𝜏$%&) and 𝛾UJ(𝜏$%&) can be calculated 
using literature values of 𝐷& and 𝛤%  from Equations (9) and (10). The best approximation for  
𝛾(𝜏$%&) was then based on the minimum of the two values, such that 𝛾(𝜏$%&) =
min	[𝛾�J(𝜏$%&), 𝛾UJ(𝜏$%&)]. As can be seen in the example for an aqueous solution of Tween 
20 in Figure 3, this produced a natural transition between short and long time approximations 
at the crossover of Equations (9) and (10). At times below the crossover, DST was described 
by 𝛾�J , while above the crossover DST was described by 𝛾UJ . 

 

PB Surface Viscosity 

The previous studies by Clarke, et al.[10],[14] have consistently indicated that PB surface 
viscosity for LMWS systems exhibits a significant degree of surface shear thinning. Indeed, 
such a result has also been suggested by Gauchet, et al.[18] to account for their findings in 
addition to potentially be responsible for the large variation in literature values for SDS surface 
viscosity. This was proposed by Clarke, et al.[10] to be a consequence of variations in the PB 
surface tension, however; results counterintuitively indicated that surface shear viscosity 
decreased with increasing interfacial surfactant concentration[10]. In order to address whether 
the theory proposed here was able to account for this behaviour, it was necessary to calculate 
the surface viscosity, 𝜇&, and average liquid shear rate,	�̇�&� . 

PB surface viscosity can be calculated for an equilibrium PB by combining Equations (4), (13) 
and (14)[10,14].  

𝐷=^ = 𝑐 �0.02 + a.a�~~�P�P.�

a.6a�Y�PP.�?�
�                  (13) 

𝜇& = 𝐵a𝜇𝑅  (with 𝑅 = 𝑅%)                  (14) 

Equation (13) is the phenomenological expression proposed by Nguyen[36] to calculate the 
dimensionless Boussinesq Number, 𝐵a, from the viscous flow parameter, 𝐷. Subsequently, 𝐵a 
can be converted into its dimensional counterpart, the surface viscosity, using the dynamic bulk 
viscosity, 𝜇, via Equation (14). In previous studies, Equation (14) is presented in an alternative 
form, 𝑀 = 𝜇𝑅 𝜇&⁄ , where the dimensionless parameter,	𝑀, was one of four dimensionless 
groups first derived by Leonard, et al.[37] as a solution to the velocity profile through a Plateau 
border. This parameter was later described as the relative surface mobility by Kraynik[38] who 
noted that: ‘the use of surface viscosity to describe interfacial mobility should not be viewed 
as exact because the Boussinesq surface fluid is a relatively simple model of the interfacial 
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region’. Subsequently, Ba has been used to describe the inverse of the relative surface 
mobility[17,36] thereby yielding the form of Equation (14) presented here. 

In order to better understand the relationship between PB surface tension and 𝜇&, the 
dependence of surface tension on PB radius first had to be taken into account. As Equations 
(13) and (14) are only valid under equilibrium PB conditions (i.e. 𝜇&(𝑅 = 𝑅%)), it follows that 
a direct link to surface tension can only be made for the case 𝛾(𝑅 = 𝑅%). However, as the 
‘infinite’ PB geometry, 𝑅 = 𝑅% , is a theoretical ideal case, only approximations of the 
relationship between surface tension and surface viscosity could be made here. Therefore, only 
fitted surface tensions extracted from PB regions where the minimum radius, 𝑅¢£¤, approached 
the corresponding fitted 𝑅% (i.e. 𝛾(𝑅¢£¤ → 𝑅%)), were deemed suitable for analysis in this 
instance. 

Calculation of the average shear rates through equilibrium PB were undertaken using the 
approximation[17] shown below: 

�̇�&� ≈
<

9$Q¥
                                 (15) 

 

Experimental 
Preparation of Surfactant Solutions 
SDS (>99.9%) from Fisher Scientific (Loughborough, UK), Tween® 20 and Tween® 80 from 
Sigma-Aldrich (UK), were weighed and magnetically stirred at room temperature with 
15.0MΩ∙cm purified water. Stirring continued for a minimum of 30 minutes prior to use of the 
solution to ensure the complete dissolution of surfactant. 

These surfactants represent both charged (SDS) and non-ionic (T20/T80) species that are 
commercially significant and have therefore been well studied in literature[19,20,22,34,39-42]. 
Despite some variation in reported values of 𝐷& and 𝛤%  due to variations in the composition of 
Tween systems and the presence of impurities in SDS, these surfactants were still deemed the 
most suitable for the present study. This was partially due to the bulk of available literature 
examining their adsorption dynamics, but also in order to directly compare the findings of the 
revised analysis presented here with those in previous studies using this experimental 
setup[10,14]. Furthermore, the substantial difference in critical micelle concentration (CMC)[42,43] 
and rates of adsorption[19,22] between the Tweens and SDS were expected to yield observable 
differences in PB behaviour. It should be noted however, that in order to improve the precision 
of the current technique in future studies it will be necessary to select surfactants with highly 
consistent purity and composition. 

 

Characterisation of Surfactant Solutions 
Each surfactant solution was studied at two different concentrations (see Table 1). 
Concentrations of SDS were chosen to represent ~2× and ~20× the CMC according to 



 

12 
 

literature values[22,42-44], however it was necessary to amend this to ~10× and ~20× the CMCs 
of T20 and T80 due to the poor PB stability in the experimental setup at lower concentrations. 

Values for 𝐷& and 𝛤%  of each surfactant were taken from representative values produced by 
dedicated experimental studies of DST in literature[19,22]. These values can also be found in 
Table 1, where it can be seen that the diffusion coefficients for SDS were approximately 100× 
larger than those for the Tween systems, suggesting much faster rates of SDS adsorption than 
Tween adsorption. It should be noted here that the decreasing values of 𝐷& with increasing 
surfactant concentration made by Bąk, et al.[22] for the Tweens is in agreement with 
observations made by other authors for different non-ionic surfactants[45-48]. This decrease is 
most likely due to the increasing number of micelles formed with increasing surfactant 
concentration above the CMC[49], where monomer exchange with micelles increasingly 
dominates over monomer diffusion to the interface[50]. 

 

Surfactant 𝑪𝟎 [mM] 𝜞𝒆 [mol/m2] 𝒏 𝑫𝒔 [m2s-1] 

Tween® 20[22] 0.61 3.50	× 10=� 1 7.00	× 10=^6 

1.22 3.50	× 10=� 1 1.50	× 10=^6 

Tween® 80[22] 0.15 2.20	× 10=� 1 10.00	× 10=^6 

0.30 2.20	× 10=� 1 2.00	× 10=^6 

SDS[19] 17.40 6.75	× 10=� 2 5.30	× 10=^a 

182.00 6.75	× 10=� 2 5.30	× 10=^a 
Table 1. Characterisation of surfactant property variables for aqueous solutions of T20, T80 
and SDS based on representative literature values[19,22]. 

 

A Krüss Processor® Tensiometer K100 (Krüss GmbH, Germany) with density hook 
attachment and silicon density standard was used to measure liquid density, while surface 
tension was measured using a Wilhelmy Plate attachment.  The solution dynamic viscosity was 
measured using a Malvern Kinexus® Pro rheometer (Malvern Panalytical, UK) with Double-
Gap geometry, which provided excellent measurement sensitivity for the low viscosity 
solutions studied here. All measurements were carried out at 𝑇 = 295K, and presented data are 
average values with absolute errors of one standard deviation. 

 

The PB-Node Setup 
In order to create the isolated PB’s required for analysis at controlled liquid flow rates, the 
isolated PB-Node setup of  Clarke, et al.[14] was used. More details of this setup can be found 
in literature[10,14], however it relies on the principle of a closed tripod frame that can be 
withdrawn from surfactant solution to produce and arrangement of liquid films that terminate 
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in a spatially ‘ideal’ PB and node (see Figure 4). PBs were directly injected with additional 
surfactant solution at controlled liquid flow rates (20µl/min ≤ 𝑄 ≤ 180µl/min) and imaged, to 
create geometric PB profiles of PB radius, 𝑅, vs. height below the liquid injection nozzle, 0 ≤
𝑍 ≤ 𝑙^ (see Figure 2). 

 

 

Figure 4. The isolated PB-Node setup of Clarke, et al.[14]. a) Imaging setup showing camera, 
frame setup and rear light source. b) Images of PB/node profiles at different magnifications, 
with the highest resolution of 1.5µm per image pixel. Reprinted with permission from C. 
Clarke, A Lazidis, F Spyropoulos, and I. T. Norton, “Measuring the impact of channel length 
on liquid flow through an ideal plateau border and node system,” Soft Matter 15, 1879–1889 
(2019). Copyright 2019 The Royal Society of Chemistry. 

 

Model Fitting 
Due to difficulties in utilising automated fitting methods, as discussed in previous work[10], 
manual fitting of Equation (2) to PB profile sections was able to consistently produce good 
agreement between theory and experimental data. 

Measured PB profiles were divided into a maximum of four fitting regions, based on a coverage 
of the PB profile from 0 ≤ 𝑍 ≤ 𝑙^ with a minimum R2 value of 0.9 being required for each 
solution. These solutions did not include the distortion regions (i) and (ii) in Figure 2 as 
discussed above. Examples of dividing PB profiles into fitting regions in order to calculate 
their respective surfactant residence times, 𝜏$%&, can be found in Figure S2. 
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Results 

Solution Properties 
The measured surfactant solution parameters as well as those taken from representative 
literature are presented in Table 2. As anticipated, the dynamic viscosity of solutions was only 
slightly higher than that of pure water at ~8.9×10-4 Pa∙s at 25°C[51]. Values for the equilibrium 
surface tension were in good agreement with those found in existing literature[19,22,44,52-55]. This 
provided increased confidence that the literature values[19,22] for 𝛤%  and 𝐷& in Table 1 were 
reasonable representations of the surfactant behaviour in this study. A trend of decreasing 
surface tension with increasing surfactant concentration above the CMC was observed for all 
surfactants, however this variation was within the measurement errors shown for the tween 
systems and is often seen in literature for SDS systems[19,44,55]. This may represent the effect of 
trace impurities (e.g. lauryl alcohol), which are common in SDS systems. However, as the 
measured SDS surface tensions were almost identical to those measured by Kinoshita, et al.[19] 
from which 𝛤%  and 𝐷& were taken, these were still determined to be a good representation of 
the system in this study. 

 

 Surfactant 
Concentration 

[mM] 

Density 
[mg/ml] 

Viscosity 
[Pa·s] (10-4) 

Equilibrium 
Surface Tension 

[mN/m] 
Tween® 20 0.61 997.70 ± 0.30 9.56 ± 0.07 36.3 ± 0.2 
Tween® 20 1.22 997.90 ± 0.10 10.23 ± 0.48 35.9 ± 0.5 
Tween® 80 0.15 997.90 ± 0.10 8.84 ± 0.03 40.0 ± 0.5 
Tween® 80 0.30 997.60 ± 0.40 9.69 ± 0.23 39.2 ± 0.5 

SDS 17.40 998.70 ± 0.90 9.84 ± 0.05 37.9 ± 0.1 
SDS 182.00 1005.00 ± 0.50 13.65 ± 0.14 35.4 ± 0.1 

Table 2. Averaged measurements of surfactant solution bulk and surface properties. 

 

 

Relaxation-Expansion Model 
Fitting of Equation 2 to PB profiles was carried out in accordance to the theory and procedure 
outlined above. A maximum of four fits was applied to any one PB profile, providing an 
excellent description of its geometry. Average R2 values were consistently in excess of 0.9 for 
all liquid flow rates. This marked a significant improvement on previous fit quality[10], where 
flow profiles transitioning between types in Figure 1a and 1b were poorly characterised. Figure 
5 shows the fits applied to profiles of 17.4mM SDS, 0.61mM T20 and 0.15mM T80 at 𝑄 = 
20μl/min and 𝑄 = 100μl/min, with corresponding values for the inertial flow parameter, 𝐼, 
shown. 
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Figure 5. Fits of Equation (2) to PB profiles for: a), b) 17.4mM SDS; c), d) 0.61mM T20; and 
e), f) 0.15mM T80. a), c) and e) are for liquid flow rates of 𝑄 = 20μl/min. b), d) and f) are for 
liquid flow rates of 𝑄 = 100μl/min. Inset diagrams provide visualisations of the behaviour of 
𝐼 along the equivalent vertical PB cross-sections. 
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Inertial Flow Parameter 

Values for the inertial flow parameter, 𝐼, were shown to exhibit a strong linear relationship with 
1 𝑉6⁄ , taking the form  𝐼 = (𝑚 𝑉6⁄ ) + 1 with	𝑚 being the gradient of the straight line (see 
Figure 6). This appeared to reflect the 1 𝑢6⁄  dependence of 𝐼 in Equation (7). The intercept of 
1 is a key physical limit of, 𝐼, where the relationship measured here of 𝐼 → 1 as 𝐷 → 0 
represents the tendency of these systems towards ideal plug-flow through the PB. This was in 
line with the expected behaviour of high mobility surfactants.[34,56] Little discernible difference 
was observed in these relationships due to bulk surfactant concentration; however, a clear 
difference in gradient was seen between the Tween and SDS systems. The average gradient of 
SDS solutions compared to that of Tween solutions was 𝑚 = 0.003 and 𝑚 = 0.037 
respectively, suggesting flow profiles of Tween systems to be more Poiseuille-like than SDS. 

 

 

Figure 6. Values of the inertial flow parameter, 𝐼, as a function of the inverse square of the 
average flow velocity in the fitting region, 1 𝑉6⁄ . Linear fits to data take the form of 𝐼 =
(𝑚 𝑉6⁄ ) + 1 where 𝑚 is the gradient of the straight line. 

 

Dynamic PB Surface Tension 

PB residence times were calculated as outlined above, and then used to calculate PB DST using 
Equations (9) and (10), with 𝑡 = 𝜏$%&. As SDS has been extensively studied using other 
experimental techniques, it was possible to directly compare the DST values calculated here 
with those measured in literature[19,20]. DST calculated for 17.4mM SDS was the most 
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comparable, with measured literature DST available for 15mM and 10mM samples. This 
showed a very strong agreement (see Figure S3) and confirmed that only the IIA corrected 
form of the W-T long time approximation (i.e. Equation (10)) was required for this study. 

 

 
Figure 7. Calculated DST, 𝛾, of a) SDS, b) T20 and c) T80 based on the average PB residence 
time of surfactant molecules, 𝜏$%&. Errors are not shown for 𝛾, as data points would follow the 
lines of the W-T long and short time approximations shown for any changes in 𝜏$%&^/6. 

 

Figure 7 highlights the dramatic differences between 𝛾 for SDS and Tween solutions, which 
result from the faster adsorption rates of SDS. While SDS approached 𝛾%  within its PB 
residence times (𝛾 → 𝛾%), the Tween systems at many 𝑄’s remained closer to the surface 
tension of pure water (𝛾 → 𝛾a). This implied that for high fluid velocities, the rate of adsorption 
of T20 and T80 resulted in poor surfactant coverage of the PB interface. Indeed, this would 
explain why lower concentrations of Tweens than those used here were unable to produce 
stable PBs for analysis, and why even at higher concentrations, PBs of both T20 and T80 were 
more prone to collapse than those of SDS. 

When discussing PB stability, it must be remembered that the collapse of these systems is 
primarily attributed to the rupture of films adjoining the PB rather than the breaking of the PB 
itself. As the liquid flow rates through adjoining films are generally considered significantly 
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smaller than those through PBs[57], it could be expected that surfactant residence time in these 
films was higher and thereby resulted in lower film surface tension. In this instance, one would 
expect the presence of Gibbs Marangoni forces due to the resulting concentration gradient of 
surfactant between film and PB interfaces[58]. The questions concerning stability therefore, 
relate to the extent of this concentration gradient and the rate at which surfactants could diffuse 
from the adjoining film interfaces to those of the PB. When one considers that film drainage 
has also been shown to result in ‘younger’ interfaces, the suggestion is that in the very early 
stages of foam drainage, slower adsorbing LMWS may provide little contribution to foam 
stability. Answering such questions is beyond the scope of the current study, however could be 
highly relevant in assessing foamability and short timescale stability of LMWS foams. 

It has already been noted that the assumption of homogeneous surface tension in each of the 
separate PB fitting regions prevents an analysis that includes Gibbs-Marangoni Effects in this 
instance. However, it is clear from Figure 7 that the variation in surfactant residence times 
calculated here would result in vertical surface tension gradients, ∇𝛾, along the PB. Indeed, this 
was seen from the differences in surface tension between neighbouring sections of PB. As the 
surface coverage of the PB increases with increasing 𝑍 (i.e. increasing 𝑡), the resulting 
Marangoni stresses would be expected to oppose the concentration gradient, therefore opposing 
liquid flow. In this respect therefore, it would be expected that the role of Marangoni forces 
would decrease bulk flow velocities adjacent to the interface, thereby increasing surfactant 
residence times and reducing the surface tension gradient. While the results presented here 
therefore provide a good indication of the expected magnitudes of PB surface tension, a full 
dynamic equation describing the PB profile geometry is still required in order to enact precision 
measurements of the physical parameters described here. 

A more general issue regarding the calculation of PB surface tensions for PB profiles was the 
errors involved in calculating timescales, 𝑡. As can be seen from Figure 7a, the errors in 𝜏$%& 
for SDS would have had little impact on the calculated 𝛾 according to the W-T approximations. 
However, Figure 7b shows that the errors in 𝜏$%& for T20 and T80 could have resulted in 
decreases in γ of up to 15%, making this a significant source of error for these systems. As the 
bulk of the error in 𝜏$%& originated from the approximation of the PB geometry between 𝑍 = 0 
and 𝑍 = 𝑍: (see Figure S1), this highlights the need for the precise characterisation of the full 
PB geometry, regardless of the subsequent method of analysis. 

 

PB Surface Viscosity 

When comparing 𝛾 with PB surface shear viscosity, 𝜇&, Clarke, et al.[10] found the 
counterintuitive result that 𝜇& decreased with increasing surfactant concentration at the 
interface. Figure 8 shows that this was no longer the case when the theory proposed here is 
applied. The plotted data points represent values extracted from PB fitting regions where the 
minimum radius was approaching the equilibrium radius (i.e. 𝑅¢£¤ → 𝑅%). As discussed 
previously, the closer the values of 𝑅¢£¤ to 𝑅%, the more reliable the visual relationship between 
𝛾 and 𝜇&. As such, data points are categorised in to those whose 𝑅¢£¤ were ≤10% (green), 
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≤15% (orange) and ≤20% (red) greater than their 𝑅% values, therefore helping to provide an 
indication of the strength of the trends. 

The extrapolation of data trends in Figure 8 are clearly largely approximated, however; the 
purpose here was to show that relationships similar to those observed between surface tension 
and other surfactant concentration variables (e.g. bulk concentration, surface 
concentration[19,22]) fit well with the data here. Ultimately, this suggests the far more intuitive 
result that surface viscosity increases with increasing surfactant concentration at the PB 
interface. This relationship exists between the two extremes of a clean air-water interface with 
a surface viscosity of zero, and a surfactant saturated air-water interface with a corresponding 
maximum surface viscosity depending on the surfactant species. While maximum 𝜇& for T20 
and T80 could not be established based on the data here, the maximum 𝜇& for SDS was 
suggested to be ~1 × 10=²g/s. This is in line with the previous lower limit set by Clarke, et 
al.[14], as well as the high precision measurements made by Zell, et al.[34], whose studies of 
planar interfaces showed that soluble LMWS systems (including T20 and SDS) had surface 
viscosities lower than the measurement sensitivity of existing techniques (i.e. 𝜇& < 10=~g/s). 

 

 
Figure 8. Calculated DST, 𝛾, vs. calculated surface viscosity, 𝜇&, for concentrations of SDS, 
T20 and T80. Fill colours of data points represent how close values of 𝑅¢£¤ were to 𝑅% with 
𝑅¢£¤ ≤+10% (green), ≤ +15% (orange) and ≤ +20% (red). Black lines indicate suggested 
trends based on standard surface tension vs. surfactant concentration relationships.  
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It is also clear from the revised theory applied here, that the apparent surface shear thinning 
observed by Clarke, et al.[10],[14] for both SDS and Tween systems was likely to have been 
largely a result of the restrictions imposed on fitting variables in these cases. Data from this 
study showed that 𝜇& was virtually independent of average liquid shear rate at the 
concentrations and liquid flow rates studied, with any variations in 𝜇& that did occur being 
attributed to changes in surface tension (see Figure 9). 

 

 
Figure 9. Calculated surface viscosity, 𝜇&, vs. calculated average liquid shear rate, �̇�&�  for SDS, 
T20 and T80 solutions. 

 

Conclusions 
The novel experimental setup of Clarke, et al.[10],[14] was further investigated for the soluble 
surfactants SDS, T20 and T80. The hypothesis that increasing liquid flow velocity through 
ideal isolated Plateau borders of a foam microstructure could result in ‘younger’ PB interfaces 
was assessed using a novel analytical technique. Analysis of measured PB profiles indicated 
that the average timescales over which soluble LMWS molecules could reside in the PB were 
similar to those required for surfactant molecules to diffuse to the air-water interface. As such, 
the adsorption kinetics of each surfactant were shown to play a major role in the flow rate 
dependence of PB geometries and their stability. 
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The liquid flow rates resulting in the highest DST were always in the range 40µl/min< 𝑄 <100	
µl/min, which is within the range of liquid flow rates generally observed during macroscopic 
foam drainage. This implies that LMWS surfactants with longer adsorption timescales could 
have detrimental effects on macroscopic foam stability during the early stages of foam 
drainage. This effect is likely to be compounded by the adjoining ‘young’ films also formed at 
this stage[32]. 

The physical parameters derived from the present model each PB system were consistent with 
those expected for high mobility LMWS. Liquid flow profiles tended towards plug-flow, with 
surface shear viscosity for all systems at levels far below the measurement sensitivity of 
existing direct measurement methods, as proposed by Zell, et al.[34]. The increase in surface 
viscosity increased with surface surfactant concentration, while showing no discernible 
relationship to liquid shear rate. As such, the refinement of the model and fitting procedure in 
this study was able to address the counterintuitive findings of previous work[10,14]. 

The present study demonstrates how the geometric analysis of controlled, isolated, foam 
systems has the potential to yield precision data regarding their complex and dynamic nature. 
A static geometric profile solution is able to provide a good description of vertical PB profiles 
at constant liquid flow rates, however a complete approach requires that the dynamic nature of 
the interface be taken to account in a dynamic geometric profile equation. Only then can the 
full potential of this technique be realised. 

 

Supporting Information 
The following files are available free of charge. 

Figure S1. Characterisation of PB distortion between 𝑍 = 0 and 𝑍 = 𝑍:, where PB geometry 
transitions from an approximately circular to an ideal PB cross-section. Left – Image of PB 
distortion. Right – Schematics of the corresponding 2D and 3D cross-section geometries. 
(TIFF) 

Figure S2. Example of PB profile divided into PBs fitting regions to calculate their 
respective surfactant residence times, 𝜏$%&. (TIFF) 

Figure S3. Comparison of calculated DST, 𝛾, of 17.4mM SDS using the W-T long time 
approximation with IIA correction with 𝑡 = 𝜏$%&, in comparison to experimental values for 
10mM SDS[19] and 15mM SDS[20] from existing literature. (TIFF) 

 

Abbreviations 
CCD, Charged Coupled Device; CMC, Critical Micelle Concentration; DST, Dynamic 
Surface Tension; IIA, Ideal Ionic Activity; LMWS, Low Molecular Weight Surfactant; PB, 
Plateau border; SDS, Sodium dodecylsulfate; T20, Tween 20; T80, Tween 80; W-T, Ward-
Tordai. 
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Figure S1. Characterisation of PB distortion between 𝑍 = 0 and 𝑍 = 𝑍:, where PB geometry 
transitions from an approximately circular to an ideal PB cross-section. Left – Image of PB 
distortion. Right – Schematics of the corresponding 2D and 3D cross-section geometries. 

 

 

 

 

Figure S2. Example of PB profile divided into PBs fitting regions to calculate their respective 
surfactant residence times, 𝜏$%&. 
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Figure S3. Comparison of calculated DST, 𝛾, of 17.4mM SDS using the W-T long time 
approximation with IIA correction with 𝑡 = 𝜏$%&, in comparison to experimental values for 
10mM SDS[19] and 15mM SDS[20] from existing literature. 
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Derivation of Equation 1 

Equation 1 describes the standard drainage theory when applied to an ideal vertical PB with liquid flow 
field, 𝑢k⃗ . An abridged version of the full derivation provided by Elias et al.[17] is given here in order to 
provide context, although it is recommended that readers refer to Elias et al.[17] for further detail. 

Equation 1 is ultimately derived from the Navier-Stokes equation for fluid momentum (Equation S1) 
where 𝑃 is the pressure and 𝑓 is the external volume force. 𝑓 itself can be described as the summation 
of the two forces 𝑓µkk⃗  and 𝑓¶kkk⃗  (Equation S2), where the volume force, 𝑓µkk⃗ , includes a ‘line tension’ effect 
due to the minimisation of PB surface energy and 𝑓¶kkk⃗  is the elastic restoring force exerted on the PB by 
its three adjoining films. 

7·kk⃗
7�
= �⃗� + 𝜈∆𝑢k⃗ + O𝑓 − ∇kk⃗ 𝑃R/𝜌         (S1) 

𝑓 = 𝑓µkk⃗ + 𝑓¶kkk⃗            (S2) 

The surface free energy of the PB can be expressed as 𝐸& = −2𝛾𝑙^𝑐𝑅, where 𝑙^ describes the length of 
the PB. At this point, we must also introduce a curvilinear coordinate, 𝑠ºkkk⃗ , which follows any 
deformation in the PB, a vector tangential to the PB, 𝑡ºkkk⃗ , and a vector normal to the PB, 𝑛ºkkkk⃗ . The ‘line 
tension’, 𝑇k⃗ , of the PB is then expressed as: 

 𝑇k⃗ = »(¼�)
»µ½|¿�Àkkk⃗

= −𝛾𝑐𝑅𝑡ºkkk⃗           (S3) 

From this, we can derive the external volume force acting on the PB element between 𝑠º and 𝑑𝑠º as: 

𝑓µkk⃗ = c ^
9$?7&À

g 7Jk⃗
7&À

𝑑𝑠º = − f
$?

7$
7&À

𝑡ºkkk⃗ −
f
$
7�Àkkk⃗
7&À

       (S4) 

Finally a force per unit length exerted by the three films is introduced in the form of Equation (S5) 
where 𝜒 is a dimensionless vector and 𝑆 = 𝑐𝑅6 is the PB cross-sectional area. A specific derivation of 
𝜒 can be found in Elias et al.[17]. 

𝛾𝜒=S𝑓¶kkk⃗             (S5) 

At this point, we must also introduce the variables 𝐷 and 𝐼, which are defined in Equations (6) and (7) 
of the main manuscript, and describe the viscous and inertial terms of the fluid flow. These were 
obtained by averaging across the PB horizontal cross-section[17], and can ultimately be used to describe 
the shape of the liquid flow velocity profiles. 

𝐷 = −𝑅6∆𝑢pppp 𝑢p⁄                                   (6) 

𝐼 = 𝑢6ppp
𝑢p6r                          (7) 

When in the steady state, substituting Equations(S4), (S5), (6) and (7) into Equation (S1) becomes: 

𝐼O𝑢pk⃗ ∙ ∇kk⃗ R𝑢pk⃗ = �⃗� − :;
$?
𝑢pk⃗ − f

d$?
7$
7&À

𝑡ºkkk⃗ −
f
d$

7�Àkkk⃗
7&À

+ fÃkk⃗
d9$?

      (S6) 

As 𝑢pk⃗  is tangential to the PB axis, this can be rewritten as Equation S7, where the parameter, 𝜅, is 
introduced to describe the curvature in the vertical plane. 

𝐼 �𝑢p6𝜅𝑛ºkkkk⃗ + 𝑢p
7·�
7&À

𝑡ºkkk⃗ � = �⃗� − :;
$?
𝑢p𝑡ºkkk⃗ −

f
d$?

7$
7&À

𝑡ºkkk⃗ −
f
d$
𝜅𝑛ºkkkk⃗ +

fÃkk⃗
d9$?

     (S7) 
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In the ideal case of a vertical, undistorted PB, Equation S7 can be projected along the tangential vector 
to yield Equation 1, where the curvilinear coordinate 𝑠º becomes equivalent to the vertical coordinate 
𝑍. Here, the definition 𝑢p = 𝑄/𝑐𝑅6 is used to describe the relationship between liquid flow rate and 
average flow velocity across the PB horizontal cross-section. 

7$
78
= 9:;<=>9?$@

A?BC
?

D E=AF
?D?G
H E

            (1) 
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Derivation of Equation 2 

Equation (2) describes a full geometric profile solution to Equation (1) whose full derivation and 
explanation was conducted by Clarke et al.[10]. An abridged version is given here in order to provide 
context, although it is recommended that readers refer to Clarke et al.[10] for further detail. 

The variables: 𝐷, 𝜈, 𝑄, 𝑔, 𝑐, 𝐼, 𝛾 and 𝜌 in Equation (1) were substituted for 𝑅% and 𝐿 using Equations 
(4) and (5), along with an additional term, the capillary length, 𝐿9 = b𝛾 𝜌⁄ 𝑔.  

𝑅% = c:;<
9>
g
^ V⁄

                           (4) 

𝐿 = e<?

69?>$Q@
− f

Vd>$Q
            (5) 

Equation (S8) sets up the solution to this revised form of Equation (1) as an integral with the limits of 
the initial radius, 𝑅a, at 𝑍 = 0 to a radius 𝑅 at a distance 𝑍 from 𝑍 = 0. Solving Equation (S8) yielded 
Equation (S9); a complete geometric PB profile solution. 

∫ 𝑑𝑍8
a = ∫ W UF?

$($QY$)
+ UF?$Q

O$Q?Y$?R($QY$)
+ VU$Q@

$O$Q@=$@R
` ∙ 𝑑𝑅$

$P
                            (S8) 

𝑍 = 𝐿 𝑙𝑛 N$
@O$P@=$Q@R

$P@O$@=$Q@R
S + UF?

V$Q
W𝑙𝑛 N$

@($PY$Q)?O$P?Y$Q?R
$P@($Y$Q)?O$?Y$Q?R

S + 2 𝑡𝑎𝑛=^ N $=$P
$QO^Y$$P $Q?⁄ R

S`                           (S9) 

The minimum of Equation (S9) can be found at the coordinates [𝑍 = 0, 𝑅 = 𝑅a] where 𝑅a is described 
by Equation (3) in the main manuscript. 

Clarke et al.[10] subsequently demonstrated that the unusual shapes of PB profiles observed during their 
experiments could be explained by the presence a zero offset, 𝑍J, to Equation (S9), which resulted from 
the geometry of the adjoining node at [𝑍 = 𝑙^, 𝑅 = 𝑅¤a]. The inclusion of the offset yielded Equation 
(2). 

 


