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Economic modelling of robotic disassembly in
end-of-life product recovery for remanufacturing

Abstract

The key to fully achieving the benefits of remanufacturing lies in the efficient

and cost-effective reuse of components from end-of-life (EoL) products. Un-

like recycling and disposal, remanufacturing contributes to a firm’s profits and

reduces environmental impacts. Maximising the economic value of recovery op-

tions while meeting environmental regulations is of prime importance. This

paper proposes a novel model to design the robotic disassembly process (RDP)

for EoL products. An optimisation decision-making model has been designed

to find the near-optimal solution that achieves the best economic performance

of the process while simultaneously yielding the optimal disassembly level, or

“stopping point”, disassembly sequence plan, and recovery option for the com-

ponents in a framework. Furthermore, the model helps the robotic cell to re-plan

the ongoing disassembly process. To do so, it recalculates the economic outputs,

making decisions about the re-planned optimal disassembly level and the reas-

signed recovery option for the components: reuse, remanufacturing, recycling or

disposal. The model was been tested using a case study based on a gear pump.

The results demonstrate the effectiveness of the proposed model and provide

insights into recovery practices for remanufacturing.

Keywords: End-of-life, Remanufacturing, Robotic disassembly, Partial

disassembly, Disassembly sequence planning, Recovery option

1. Introduction

The increasing number of end-of-life (EoL) products is a major concern for

governments around the world due to the enormous quantity of waste materials
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being generated each year. Moreover, population growth, together with the

reduction in product lifetime due mainly to consumer’ behaviour, will lead to

a significant increase in products to be disposed of in the next decade (UNEP,

2017). Therefore, effective solutions to counter this trend and more research on

ways of recovering EoL products and their components are required.

Remanufacturing is “the process of returning a used product to at least

its Original Equipment Manufacturer’s (OEM) performance specification from

the customers’ perspective, and giving the resultant product a warranty that

is at least equal to that of a newly manufactured equivalent” (Matsumoto and

Ijomah, 2013). Remanufacturing has significant implications for environmental

preservation and firms’ profits through the use of recovered components to be as-

sembled into remanufactured products, saving on raw materials, manufacturing

costs and energy consumption, in addition to reducing environmental impacts.

Because components to be remanufactured must be previously disassembled,

disassembly is a critical and unavoidable step in the recovery of EoL products.

Disassembly Sequence Planning (DSP) is the part of the disassembly process

focused on designing a detailed disassembly plan for removing specific compo-

nents or sub-assemblies from a whole product or assembly (Lambert, 2003; Zhou

et al., 2018). Due to its high associated costs, disassembly has emerged as a

key issue in determining the success of remanufacturing as a recovery option.

Owing to its complexity, disassembly is usually conducted by humans. How-

ever, there is currently growing interest in robotic disassembly on account of

its potentially higher efficiency and lower costs. In the literature, few studies

have addressed the DSP problem in the framework of robotic disassembly for

remanufacturing, mainly because of the high degree of uncertainty in both the

disassembly process and in the condition of the returned products to be disas-

sembled (Kalayci and Gupta, 2013; Liu et al., 2018). This gap in the literature

opens up an opportunity for research.

Furthermore, partial disassembly is a growing focus of attention compared

to traditional research centred on the complete disassembly process (Rickli and

Camelio, 2013; Smith et al., 2016). Complete disassembly is expensive and, in
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most cases, unnecessary. Thus, another key issue to address is that of identifying

the optimal disassembly level that determines the highest profitability of the

process, and the optimal sequence to reach that threshold.

Mathematical programming methods are unsuitable for solving the problem

of disassembly sequence planning as it is a Non-Deterministic Polynomial (NP)

complete problem (Ghoreishi et al., 2013). Moreover, the difficulty of calcula-

tion increases with the number of components and parts in the product being

disassembled. This type of problem lends itself to the application of intelligent

optimisation algorithms and metaheuristic methods, as they can find near op-

timal solutions through the use of a reasonable number of resources (e.g. CPU

time). To approach the disassembly problem by using metaheuristic algorithms,

we need to provide two main components: a computational representation for

potential solutions and an evaluation function to score their efficiency. By us-

ing these two components, the metaheuristic algorithm will make an intelligent

randomized exploration of the search space guided by the scores returned by

the evaluation function. In the problem at hand, potential search spaces are

the space of permutations, where metaheuristics has been successfully applied

to many problems (e.g. travelling salesman problem) or has been used to define

more complex structures in order to accommodate other information features,

such as the destination of each disassembled component. In addition, the evalu-

ation function used in this case is simply the probability multi-objective function

defined to compute the profit obtained in each disassembly sequence. As proof

of the suitability of this family of algorithms for the disassembly problem, we

can find different approaches in the specific literature, such as the Genetic Algo-

rithm (GA) (Go et al., 2012; Gonçalves et al., 2005; Ren et al., 2018), Ant Colony

Optimisation (ACO) (Dorigo et al., 2006), Particle Swarm Optimisation (PSO)

(Poli et al., 2007), Artificial Bee Colony (ABC) (Karaboga, 2005), Bees Algo-

rithm (BA) (Haj Darwish et al., 2018; Liu et al., 2018; Pham and Castellani,

2015; Pham et al., 2005, 2006), multi-objective optimisation decision-making

models (Aydemir-Karadag and Turkbey, 2013; Gunantara, 2018; Meng et al.,

2017; Ondemir and Gupta, 2014; Rickli and Camelio, 2013; Zhang et al., 2017),
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or the integer programming model (Yu and Lee, 2018).

Considering the above, research on robotic disassembly must focus on how

to select the optimal disassembly level, while designing the most appropriate

disassembly sequence plan, with a decision-making process for component re-

covery options. The purpose of this paper is to fill the gap in the literature

while also determining: (1) the optimal disassembly level, (2) the disassem-

bly sequence plan, (3) the recovery option for the components of the product

to be disassembled, and (4) the re-planning of the optimal disassembly level.

A decision-making model has been designed to select the optimal solution to

achieve the best economic profit from the robotic disassembly process, identify-

ing both the “stopping point”, which defines the most appropriate disassembly

level, and the recovery option (reuse, remanufacturing, recycling or disposal)

for the components. Furthermore, the model is able to re-plan the disassembly

process using the information on the previously completed stages. Thus, the

disassembly level in a partial disassembly strategy can be modified according to

the process uncertainties and the condition of the product (or its components)

to be disassembled.

The rest of the paper is organised as follows. Section 2 reviews the related

literature that defines the background to our work. Section 3 describes the model

and the associated formulation. Section 4 proposes the resolution algorithms to

test the model. Section 5 is devoted to presenting the experimental case, the

results of which are presented and discussed in Section 6. Finally, Section 7

concludes the paper and proposes future research.

2. Literature Review

In the literature, Disassembly Planning is defined as a Non-deterministic

Polynomial (NP) complete problem (Ghoreishi et al., 2013) covering three main

sub-problems: Disassembly Sequence Planning (DSP), Disassembly Line Bal-

ancing (DLB) and Disassembly Path Planning (DPP) (Ghandi and Masehian,

2015). In this research work, we focus on the DSP problem, which involves
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searching for all possible disassembly sequences and the selection of the opti-

mal solution from among these. Numerous studies on the DSP problem have

been published in recent decades. The works by Lambert (2003) and Zhou

et al. (2018) include extensive surveys on disassembly sequencing drawing on

the foundations of disassembly theory, considering the component-oriented ap-

proach, product-component approach and the hierarchical tree approach. There

are also valuable research works considering the two major disassembly modes:

complete disassembly (Gupta et al., 2004; Kongar and Gupta, 2006; Li et al.,

2002) and partial disassembly (Rickli and Camelio, 2013, 2014; Smith et al.,

2016; Zhang et al., 2007).

Complete or total disassembly is impractical and expensive in most cases,

and unnecessary in many others (Smith et al., 2016). Thus, interest in par-

tial/selective disassembly has recently increased, giving rise to an extensive

body of literature (Zhou et al., 2018). Feldmann et al. (2001) was the first

to define the optimal disassembly sequence as the balance between ‘no disas-

sembly’ and ‘complete disassembly’, suggesting the disassembly process should

be stopped at a level referred to as “stopping point”. The work by Smith et al.

(2016) performs a cost-benefit and rule-based analysis to find the optimised dis-

assembly sequence based on this approach. The study by Rickli and Camelio

(2013) proposes a trade-off between profitability and environmental impact in

a partial disassembly sequence strategy, and Rickli and Camelio (2014) address

the impact of EoL product quality uncertainty on partial disassembly sequences.

Multi-objective techniques are applied by Percoco and Diella (2013) in partial

disassembly planning. Furthermore, destructive operations are also considered

in selective disassembly sequence planning by Wang et al. (2017).

Traditionally, the disassembly process has been managed manually, due

mainly to its complexity and the high upfront costs of the machinery and facili-

ties needed. However, robotic and autonomous disassembly has recently become

the subject of greater attention because of its high efficiency and lower disas-

sembly time and costs for large series. Robotic disassembly can also be used

to replace human labour in difficult and hazardous tasks. The first significant
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efforts in automatic disassembly were the studies by Hesselbach (1994) who re-

covered valuable materials from printed circuit boards in an automatic cell, and

Büker et al. (2001), who used machine vision to automatically remove wheels

from used cars. Later research in robotic disassembly includes the works by Gil

et al. (2007), defining a robotic system using several robots in a parallel and a

cooperative way, and Torres et al. (2009), designing an automatic cooperative

disassembly robotic system using a task planner based on decision trees. Fur-

thermore, the works by Elsayed et al. (2010), using a Genetic Algorithm (GA)

for disassembly sequencing of EoL products in robotic disassembly, and ElSayed

et al. (2011, 2012) proposing an intelligent automated disassembly cell for on-

line (real time) selective disassembly, were considered significant contributions

to the automatic disassembly literature. More recent works by Vongbunyong

et al. (2012, 2013, 2015) represent additional achievements in robotic disassem-

bly, mainly in the use of cognitive robotics and vision-based systems focused

on the reduction of the uncertainties and the variations existing in the auto-

matic disassembly process. It is also worth highlighting the work by Barwood

et al. (2015), which adopts key features in reconfigurable systems to increase

flexibility and automation in recycling activities, using an especially designed

robotic cell for the disassembly of electrical car components. These and other

efforts have focused on the reduction of the existing uncertainties in the disas-

sembly process, mainly originated by the condition of the returned products to

be disassembled.

Decision-making models have been widely used in the optimisation of dis-

assembly processes for remanufacturing. In the literature, disassembly process

planning is assumed to involve three decision variables, as follows: (a) Disas-

sembly level : decision on whether more disassembly operations are performed

or not at each stage of disassembling a product (b) Disassembly sequence: the

design of the disassembly sequence operations (c) EoL recovery option: decision

on how each component or sub-assembly is to be dealt with (e.g., reuse, reman-

ufacturing, recycling, disposal, etc.) (Lambert, 2003; Ma et al., 2011; Santochi

et al., 2002). Economics is the main driver in most of the extensive research on
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decision-making models for disassembly. The work by Johnson and Wang (1998)

was one of the first to take into account economic factors in the scheduling of dis-

assembly operations for Material Recovery Opportunities (MRO), while Jovane

et al. (1998) defined a framework for solving the computer-aided disassembly

planning problem by the maximisation of a profit rate function of time. More

recent are the studies by Ilgin and Gupta (2010), analysing the economic bene-

fits of sensor embedded products and conventional products in a multi-product

disassembly line; Rickli and Camelio (2014), evaluating disassembly sequences

based on profit standard deviation and profit probability as well as the tradi-

tionally used expected profit; and Song et al. (2014), proposing a disassembly

sequence planning method to reduce additional efforts of removing extra parts

in selectable disassembly using a disassembly cost criteria. In addition to eco-

nomic factors, the work by Meng et al. (2017) includes environmental and social

criteria to address the disassembly problem from the three dimensions of sus-

tainability, proposing multi-objective optimisation decision-making of quality

dependent product recovery for sustainability, involving the selection between

end-of-life product remanufacturing and dismantling.

All of these research works provide significant insights into decision-making

models for disassembly. However, most consider resolving the disassembly se-

quence and deciding on the recovery option for the components as separate

issues. Furthermore, none addresses the problem within a robotic disassembly

framework, using a partial sequence strategy with re-planning capability. This

is the gap in the literature that the present study aims to fill: an optimisation

model to make efficient decisions in partial disassembly processes strategies with

regard to process and product uncertainties.

3. Model description and formulation

3.1. Model approach

The economic making-decision model proposed in this paper consists of five

stages, as shown in Figure 1.
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Stage 1: Disassembly 
plan formulation

Modified space 
Interference matrix

Interference
matrix analysis
Precedence matrix (C)

Stage 2: Disassembly model 
formulation

Fitness function
Disassembly process gains
Disassembly process costs
Economic profit

Problem formulation

Constraints

Constructive 
Greedy Algorithm 
(CGA)

Stage 3: Resolution Algorithms

Hill Climbing 
Algorithm (HCA)

Genetic Algorithm 
(GA)

Selection of the 
near optimal 

solution

Disassembly 
sequence planning

Stage 4: Model performance

Re-planned optimal 
disassembly level

Re-assigned 
recovery mode for 
components

Ongoing 
process 
information

Stage 5: Re-planning

In each disassembly step, update economic profit 
and the recovery mode of the disassembled 

components according to the observed deviations

Optimal 
disassembly level

Recovery mode for 
components: REU, 
REM, REC or DIS

End

Input data
CAD model
Comp info and data
Recovery feasibility
Ongoing process info

Start

Figure 1: Overview of the five-stage optimisation decision-making model
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At the start of the process, complete information about the product and

its components is provided to the model. CAD design is deployed to better

inform the model about the product configuration and in order to define the

disassembly plan formulation. Furthermore, data concerning the components is

required to complete the following steps. In addition, the model permits a first

selection of the final use of the components according to the user’s preference

for recovering certain parts of the product, to be reused, remanufactured or

recycled, or whether the user intends’ to dispose of some of the parts.

The first stage of the model focuses on the definition of the disassembly plan

formulation, where the space interference matrix along the six directions (X+,

X-, Y+, Y-, Z+, Z-) and the interference matrix to generate the feasible dis-

assembly process are proposed (Jin et al., 2015, 2013). From the information

provided by the interference analysis of the product to be disassembled, the

precedence matrix C = (ci,j) is defined as an n x n matrix such that ci,j = 1

if item i must be disassembled before item j, and ci,j = 0 if this is not neces-

sary. The second stage is devoted to defining the disassembly problem to be

optimised. In this step, the near optimal solution (OS) based on a cost-benefit

analysis is proposed. The third stage of the model proposes the resolution of

the robotic disassembly optimisation problem by means of the selected algo-

rithms. The fourth stage is devoted to the performance results. Following this,

a sensitivity analysis of the main variables of the process is performed in order

to determine how the evolution of key parameters impact on the economic per-

formance of the process. Finally, the fifth step performs the re-planning of the

optimal disassembly level (stopping point) of the process. It is well supported

by the information from the ongoing process. If differences emerge between

the performance of the ongoing process compared to the model solution, or the

real condition of the disassembled components differs from the solution pro-

posed by the model, the economic outcomes of the process could be affected. In

consequence, the optimal disassembly level may be modified in relation to the

initial solution. In addition, the recovery mode of certain components could be

reassigned.
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Once the model is applied, the disassembly process outcomes are obtained.

First, the model provides the optimal disassembly level (stopping point). From

this, an initial solution to the disassembly sequence planning is obtained. Based

on this DSP, and on the input data, the model identifies the components to be

reused (REU), remanufactured (REM), recycled (REC) or disposed of (DIS).

Additionally, the solution provides the main optimised process parameters such

as process time, process costs and economic profit. Finally, the model is also

able to re-plan the optimal disassembly process level according to the product

and process uncertainties, and depending on the stages that have been not yet

completed. In this way, the optimal disassembly process level and the decision

concerning the components that have not been disassembled can be modified in

line with the updated information.

3.2. Model formulation

The assessment of the economic profit (PR) can be expressed as follows, in

Eq. 1,

PR = DSG − DSC (1)

where DSG refers to the total disassembly process gains and DSC expresses the

total disassembly process costs.

3.2.1. Disassembly process gains

The disassembly process gains are expressed as:

DSG =
n∑
i=1

2∑
m=1

RPi ri,m αi +
n∑
i=1

RRi ri,3 αi −

−
n∑
i=1

CDi ri,4 αi −
n∑
i=1

CDi ri,4 (1− αi) =

=
n∑
i=1

2∑
m=1

RPi ri,m αi +
n∑
i=1

RRi ri,3 αi −
n∑
i=1

CDi ri,4

(2)

where:
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• i is the indicator of each component of the product to be disassembled

and varies from 1 to n.

• m is the indicator of the recovery mode:

– 1 if component i is assigned to be reused.

– 2 if component i is assigned to remanufactured.

– 3 if component i is assigned to be recycled.

– 4 if component i is assigned to be disposed of.

• RPi is the retail price, measured as the income obtained from component

i being reused or remanufactured for a new product.

• ri,m is an indicator of the recovery mode: 1 if mode m is assigned to

component i.

• αi is an indicator that takes the value of 1 if the component i is disassem-

bled, and 0 otherwise.

• RRi is the revenue obtained from component i being recycled

• CDi is the disposal cost of component i.

3.2.2. Disassembly process costs

The disassembly process costs are obtained as follows:

DSC = COP + CRC + COH + CDP (3)

where:

• COP is the total operation costs of the disassembly process.

• CRC is the total recovery costs of the components that will be reused,

remanufactured or disposed of.

• COH is the total overhead costs of the company, and is assigned to all the

components to be disassembled in the overall disassembly process.
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• CDP is the total depreciation costs of the machinery, and is assigned to

all the components to be disassembled in the overall disassembly process.

Next, the concept and equations used to obtain the different costs are ex-

plained.

Disassembly operation costs. These include the costs of all the operations de-

signed to perform the disassembly process. This depends on the total time of

the disassembly process and the cost per unit of time, as follows:

COP = tT ct (4)

where:

• tT is the total time spent by the robot to perform the disassembly process.

• ct is the cost per unit of time.

The total time, tT , to perform the disassembly process is determined as

follows:

tT =
n∑
p=1

tp +
n∑
p=1

n∑
q=1

tp,q =

=
n∑
p=1

tp +
n∑
p=1

n∑
q=1

tB(xp,M, xq) γp,q +
n∑
p=1

n∑
q=1

tC(xp, xq) (1− γp,q) (5)

where:

• tp is the basic time to perform the disassembly operation xp.

• tp,q is the total moving time between the disassembly points of adjacent

operations xp and xq.

• tB(xp,M, xq) is the moving time between the disassembly points of adja-

cent operations xp and xq if the robot is required to change the tool in

the tool magazine M.

• γp,q is an indicator taking the value of 1 if operation xq requires the robot

to change the tool in tool magazine M once the previous operation xp has

been completed, and 0 otherwise.
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• tC(xp, xq) is the moving time between the disassembly points of adjacent

operations xp and xq if the robot is not required to change the tool in tool

magazine M.

The moving time tB(xp,M, xq), if the robot is required to change the tool

in tool magazine M, is defined as follows:

tB(xp,M, xq) = tB1(xp,M) + tB2(M) + tB3(M,xq) +

+ tB4(xp,M) + tB5(M,xq)

(6)

where:

• tB1(xp,M) is the moving time between the disassembly point of the oper-

ation xp and the tool magazine M. It is calculated by dividing the length

between the disassembly point of xp and M (obtained from the length

matrix L), by line velocity ve of the industrial robot’s end-effect, as shown

in Eq. 7.

tB1(xp,M) =
L(xp,M)

ve
(7)

Length matrix L = (li,j) is a symmetric (n+1) x (n+1) matrix such that:

- For i=1,. . . ,n and j=1,. . . ,n, li,j is equal to the distance between the

disassembly points i and j.

- For i=1,. . . ,n, li,(n+1) is equal to the distance between the disassem-

bly point i and tool magazine M.

- For j=1,. . . ,n, l(n+1),j is equal to the distance between tool magazine

M and disassembly point j.

- In particular, li,i=0 for all i=1,. . . ,n+1

• tB2(M) is the tool change time the robot uses in tool magazine M and

depends on the tool type. It is obtained from tool change matrix MC =
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(mci,j), defined as a symmetric n x n matrix such that mci,j = tB2 if the

disassembly operation between item i and item j requires changing the

tool in tool magazine M, and mci,j = 0 otherwise.

• tB3(M,xq) is the moving time between tool magazine M and disassembly

point of the operation xq. It is calculated by dividing the length between

M and the disassembly point of xq (obtained from the length matrix L)

by linear velocity ve of the industrial robot’s end-effect, as shown in Eq. 8.

tB3(M,xq) =
L(M,xq)

ve
(8)

• tB4(xp,M) is the penalty time for process direction changes along the path

between disassembly point of xp and tool magazine M. It is obtained from

penalty time matrix P = (pi,j), defined as a symmetric (n+1) x (n+1)

matrix such that:

- For i=1,. . . ,n and j=1,. . . ,n, pi,j is equal to Pt,1 if the direction

between disassembly points i and j is changed by 90o, Pt,2 if the

direction is changed by 180o, or zero if the direction is not changed.

- For i=1,. . . ,n, pi,(n+1) is equal to Pt,1 if the direction between dis-

assembly point i and tool magazine M is changed by 90o, Pt,2 if the

direction is changed by 180o, or zero if the direction is not changed.

- For i=1,. . . ,n, p(n+1),j is equal to Pt,1 if the direction between tool

magazine M and disassembly point j is changed by 90o, Pt,2 if the

direction is changed by 180o, or zero if the direction is not changed.

• tB5(M,xq) is the penalty time for process direction changes along the path

between M and the disassembly point of xq. It is obtained from penalty

time matrix P and formulated as tB4(xp,M).
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The calculation of the moving time if the robot is not required to change the

tool in tool magazine M, is defined as follows:

tC(xp, xq) = tC1(xp, xq) + tC2(xp, xq) (9)

where:

• tC1(xp, xq) is the moving time between disassembly points of operations

xp and xq. It is calculated by dividing the length between disassembly

points of xp and xq (obtained from the L matrix) by line velocity ve of

the industrial robot’s end-effect as shown in Eq. 10.

tC1(xp, xq) =
L(xp, xq)

ve
(10)

• tC2(xp, xq) is the penalty time for process direction changes along the path

between disassembly point of xp and xq operations. It is obtained from

penalty time matrix P and is formulated as follows:

– 0 if the direction is not changed.

– Pt,1 if the direction is changed by 90o.

– Pt,2 if the direction is changed by 180o.

where Pt,1 and Pt,2 are expressed in units of time.

Disassembly recovery costs. These are the costs incurred in the operations to

recover the components to be reused or remanufactured.

CRC =
n∑
i=1

2∑
m=1

rci,m αi (11)

where:

• rci,m is the recovery cost of the component i to be reused or remanufac-

tured.
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Disassembly overhead costs. These are the overhead costs including labour,

rent, utilities, etc, and assigned to the disassembly process.

COH =
n∑
i=1

4∑
m=1

ohi,m αi (12)

where:

• ohi,m is the overhead cost assigned to component i to be reused, reman-

ufactured, recycled or disposed of.

Disassembly depreciation costs. These are the yearly depreciation costs of the

machinery, considering a linear depreciation model.

CDP =
n∑
i=1

4∑
m=1

dpi,m αi (13)

where:

• dpi,m is the depreciation cost assigned to component i to be reused, re-

manufactured, recycled or disposed of.

Therefore, the objective function f(X) assessing the economic profit in the

disassembly process can be expressed as follows:

f(X) =
n∑
i=1

2∑
m=1

RPiri,mαi+
n∑
i=1

RRiri,3αi−
n∑
i=1

CDiri,4αi−
n∑
i=1

CDiri,4(1−αi)−

−
n∑
p=1

tp cT αp −
n∑
p=1

n∑
q=1

tp,q cT δp,q −

−
n∑
i=1

2∑
m=1

rci,m ri,m αi −
n∑
i=1

4∑
m=1

ohi,m ri,m αi −
n∑
i=1

4∑
m=1

dpi,m ri,m αi

(14)

where:

• αp is an indicator taking value 1 if operation xq must be completed in the

disassembly process, and 0 otherwise.

• δp,q is an indicator taking value 1 if operation xq is carried out after

operation xp, and 0 otherwise.
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3.2.3. Constraints

Some constraints have to be considered in the disassembly process as shown

in the following equations:

4∑
m=1

ri,m = 1 ∀i (15)

ri,1 + ri,2 + ri,3 ≤ αi (16)

where Eq. 15 guarantees that each component i has only one recovery mode,

and Eq. 16 ensures that all components to be reused, remanufactured or recycled

must be disassembled.

4. Algorithms

The model formulated is an NP-complete and intractable problem to be

exactly computed even for medium-size problem instances. As in related stud-

ies on disassembly (Meng et al., 2017; Rickli and Camelio, 2013; Zhang et al.,

2017), we propose managing the problem with approximate algorithms, specif-

ically, heuristics. We use a constructive greedy heuristic, a local search-based

metaheuristic and a global search-based metaheuristic (Gendreau and Potvin,

2010; Michalewicz and Fogel, 2013).

4.1. Problem formulation

Let I = {1, 2, . . . , n} be the set of pieces to be disassembled. For every j ∈ I

let us denote by

P (j) = {i ∈ I : i must be disassembled before j}

the set of pieces which need to be disassembled before j. We assume that for

every pair of items i, j ∈ I, if i ∈ P (j) then j /∈ P (i). Note that it can be

i /∈ P (j) and j /∈ P (i).
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Let us consider the matrix n× n of precedences C = (ci,j) defined by

ci,j = 1 if i ∈ P (j)

ci,j = 0 if i /∈ P (j)

Namely, the 1’s in the j-th column correspond to the pieces that must be

disassembled before piece j. Observe that

∀i, j, k ∈ I, ci,j = 1 and cj,k = 1 =⇒ ci,k = 1.

Given a permutation π of the elements in I, we will write j ≺π i to express

that j precedes i in π, where i, j ∈ I. We will say that π is compatible with

(the precedences expressed in) C if

∀i, j ∈ I, j ≺π i → ci,j = 0

or, equivalently,

∀i, j ∈ I, j ≺π i → i /∈ P (j).

We will write πi to denote the i-th element in the permutation π.

Associated with every i ∈ I, we consider the variables ri,m ∈ {0, 1}, m ∈

{1, 2, 3, 4}, with
∑
ri,m = 1. Moreover, given a permutation π compatible with

C, we will call integer t(π) the threshold of π, 0 ≤ t(π) ≤ n, meaning that the

items ordered in π from the t(π)-th position onwards are not disassembled. In

particular, if t(π) = 0, no piece is disassembled, and if t(π) = n all the pieces

of the product are disassembled. Observe that ri,4 = 1 for any item i ordered

after the t(π)-th position.

From the previous description, a solution to our problem is a triplet 〈π, v, t〉,

where:

• π is a permutation compatible with a precedence matrix C that indicates

the order in which the pieces must be disassembled.
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• v is a vector of length n, containing for each i ∈ I the value m ∈ {1, . . . , 4}

such that ri,m = 1, that is, the destination of piece πi.

• t is the threshold t(π) of π, i.e. the position in which the disassembling

process is stopped.

Accordingly, the cardinality of the search space is n! × 4n × n. In fact,

this is an upper bound because not all the permutations are compatible with

C. However, for our particular problem and objective function f(X), we can

reduce this search space by pre/post-computing some values. We can observe

from the expression of f(X) in Eq. 14 that the most profitable destination for

each piece is independent of the destination of the other pieces and the order

in which they are disassembled. Therefore, vector v can be precomputed before

seeking the most profitable disassembly order. Note also that the model allows

the destination of some pieces to be given as input.

Once we know v, we reduce the optimisation problem to the search for

disassembly order π and threshold t. In fact, these two values do not need to be

obtained simultaneously, because the best t value can be obtained for a given

ordering by inspecting all the (n+ 1) possible thresholds and selecting the most

profitable one.

Therefore, our optimisation problem can be reduced to the search for the

most profitable order compatible with precedence matrix C. Once the order is

obtained, we associate with it the f(X) value corresponding to its best threshold.

We propose some algorithms to compute this order in the following subsections.

4.2. Constructive Greedy Algorithm

This involves incrementally constructing a solution (permutation) by choos-

ing, position by position, the item which most adds to the objective function

f(X) being compatible with the precedences established by the items already or-

dered. Note that the value added by each piece depends on the piece previously

disassembled, which sets the current location and tool.
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Let πr denote a partial solution (incomplete sequence), which only includes

the first r pieces to be disassembled and let πr ◦ i denote the partial solution

of size r + 1 formed by adding piece i at the end of πr. Then, we can use

a greedy algorithm to determine the next piece to be disassembled by trying

any remaining piece, which may already be disassembled, and choosing the one

maximising the f -value. Formally:

i∗ = arg max
i∈I\πr ∧ s(πr)⊆P (i)

f(πr ◦ i), (17)

where s(πr) is the set containing the pieces included in πr.

The pseudo-code of the constructive greedy algorithm is shown in Figure 2.

CGA (f , I)

1 input: I, the set of n pieces to be disassembled

2 input: f , the objective function to be maximised

3 input: P , the precedence function

4 πr ← empty

5 I ′ ← I

6 while I ′ 6= ∅ do

7 i∗ = arg maxi∈I′ ∧ s(πr)⊆P (i) f(πr ◦ i)

8 πr ← πr ◦ i∗

9 I ′ ← I ′ \ {i∗}

10 endwhile

11 return πr

Figure 2: Constructive Greedy Algorithm.

4.3. Hill Climbing Algorithm

The HCA (Selman and Gomes, 2006) is a well-known local-search method

that attempts to improve a given solution by analysing those in the close neigh-

bourhood. A solution is said to be a neighbour of a given solution if it can

be obtained from this by applying a certain mutation operator, that is, an op-

erator that introduces a small change in the given solution. In the case of
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permutation-based optimisation problems, one of the most commonly used mu-

tation operators is the Interchange one. However, although this operator is

closed in the space of permutations, it is not valid in our case, because we also

need the resulting permutation to be compatible with precedence matrix C.

Therefore, we define the following restricted interchange operator:

Restricted Interchange Mutation MC : Let π be a permutation compatible

with a precedence matrix C = (cij), i.e. cji = 0 for all i, j ∈ I such that i ≺π j.

Take i, j ∈ I, i ≺π j verifying

• ci,j = 0

• ci,k = ck,j = 0 for all k ∈ I such that i ≺π k ≺π j

If we consider π′ as the permutation obtained from π by interchanging items

i and j, it is simple to check that π′ is compatible with C. In fact, note that for

k ∈ I such that i ≺π k ≺π j, we have that j ≺π′ k ≺π′ i and the compatibility

follows from the required conditions ci,j = 0 and ci,k = ck,j = 0.

By using this operator, we can define the neighbourhood used in our ap-

proach:

N (π) = {π′ : π′ can be obtained from π by applying mutation MC}

The method is then applied. We start with an arbitrary solution, generate

the neighbours and evaluate them according to f(X). If the best neighbour is

better than the current solution, we move to it and iterate again; otherwise,

the method stops returning the current solution. In Figure 3, we show the

pseudo-code of the hill climbing algorithm:

One of the advantages of using HCA is that the solution obtained is guar-

anteed to be a local optimum for the given operator. The disadvantage is that

the method can be quickly trapped in a local optimum that can be far from the

(global) optimum. To mitigate this disadvantage, we use HCA with re-starts, a

standard way to attempt to escape from local optima (Lourenço et al., 2002).

In particular, we run the HCA 50 times starting from (different) randomly gen-

erated solutions.
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HCA (π, f)

1 input: π, the starting point or initial candidate solution.

2 input: f , the objective function to be maximised

3 fπ ← f(π) // evaluate π

4 improving ← true

5 Repeat

6 Compute the neighborhood N (π)

7 π∗ ← arg maxπ′∈N (π) f(π′)

8 if f(π∗) < fπ then

9 (π, fπ)← (π∗, f(π∗))

10 endif

11 until π does not change

12 return (π, fπ)

Figure 3: Hill Climbing Algorithm (maximising).

4.4. Genetic Algorithm

As previously mentioned, one of the disadvantages of HCA is that it can

be quickly trapped in a local optimum. An alternative to overcome this prob-

lem is to use global search algorithms, which usually consider a population of

solutions to explore the search space. This is the case of Genetic Algorithms

(GA) (Michalewicz, 1992; Michalewicz and Fogel, 2013), a bio-inspired method

whose success has been demonstrated when applied to a wide range of real-world

problems.

In a GA, a population of solutions is initially generated and evaluated. Then,

a selection process is carried out by giving more probability of selection to

solutions having a better score. The selected solutions are then recombined by

using two genetic operators: crossover and mutation, giving rise to a population

of offsprings. The new individuals are then evaluated and the new population

is obtained by combining the previous and the generated populations in some

way. In Figure 4, we show the scheme of a canonical GA.

Now, let us describe how we have customised the different operations to our
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GA(operators, parameters)

1 input: Genetic operators (selection, crossover, mutation)

2 input: Parameters (pop. size, crossover and mutation probabilities, pc and pm)

3 Create and evaluate initial population P0

4 t← 1

5 While not stopping criterion do

6 Psel ← Select parents from Pt−1

7 Pcross ← Get offsprings by applying crossover with prob. pc over Psel

8 Pmut ← Apply mutation operator with prob. pm over Pcross

9 Pt ← Get population from Pt−1 ∪ Pmut

10 t← t+ 1

11 end

12 return best individual found during the search

Figure 4: Genetic Algorithm pseudocode

problem:

• Population. As is customary, we set the population size proportional to

the problem dimension n (i.e. number of pieces to be disassembled). In

particular, we consider a population of 10n individuals, a common value

in the literature.

• Population initialisation. We initialise the population randomly, but take

care to only include valid solutions, that is, permutations compatible with

C.

• Selection. In order to maintain diversity, a tournament selection (Miller

et al., 1995) of size 2 is used. Specifically, at each iteration, 10n pairs of

individuals are randomly chosen and the individual of each pair with best

fitness, f(X) value, is selected.

• Crossover and mutation operators. As mutation operator, we use operator

MC defined in the previous section. As crossover, we use a classic operator

to deal with permutations (Larranaga et al., 1999), which in our case
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also has the advantage of being closed given C, that is, if the parent

solutions are compatible with C, then the two children obtained are also

compatible with C. Specifically, let π and σ be two permutations (parents)

compatible with a precedence matrix C, and take two cut positions p1 and

p2, 0 ≤ p1 < p2 ≤ n. Then two new permutations (children) π′ and σ′

compatible with C are obtained as follows:

– π′ has the first p1 and the last n − p2 items ordered as in π, while

the remaining items are ordered, according to their relative order in

σ, in positions p1 + 1, . . . , p2.

– σ′ has the first p1 and the last n − p2 items ordered as in σ, while

the remaining items are ordered, according to their relative order in

π, in positions p1 + 1, . . . , p2.

For example, take n = 6, π = (1, 2, 3, 4, 5, 6), σ = (3, 2, 5, 4, 6, 1), p1 = 2

and p2 = 5. Then π′ = (1, 2, 3, 5, 4, 6) and σ′ = (3, 2, 4, 5, 6, 1).

The recombination phase is applied as follows. Solutions are set in pairs

as they are obtained in the selection phase. Then, crossover is applied to

each pair (i.e. crossover probability is 1). For each child, we decide if it

must be muted (by applying MC) or not according to a given mutation

probability (0.15 in our case).

• Next Population Construction. To obtain the population for the next gene-

ration a truncation operator is used. Specifically, the offspring population

and the current population are put together in a common pool, and the

best 10n individuals are selected.

• Stopping criterion. The algorithm stops executing when we consider that

it has converged. In this study, we stop after a given maximum num-

ber of generations (100). In particular, we have observed that in this

problem, when sufficient diversity is allowed in the population (e.g. 10n

individuals), the method always obtains the best solution of each run in a

generation ranged from the 10-th to the 20-th one.
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5. Experimental application

5.1. Gear pump

The gear pump is extensively used in industry for the transfer and displace-

ment of fluids. Essentially, it consists of two gears managed by two axes and

enclosed in a tight housing. It transforms kinetic energy in the form of torque,

generated by a motor, into hydraulic energy through the flow of oil generated

by the pump. This flow of pressurised oil is used to generate the movement

of the actuator installed in the machine or application. In this paper, a gear

pump of 10 l/min, as shown in Figure 5 (Grabcad Community, 2018) is used

as the experimental application. Figure 6 shows an exploded view with all its

components.

Figure 5: Gear pump. External view (Source: Grabcad Community (2018))

From the perspective of component recovery, and based on the information

from manufacturers, some items may have new applications depending on the

state and the quality of each component. In this way, some components could be

reused or remanufactured (7, 9, 10, 11, 12, 13 and 18), and the other components

could be recycled or ultimately disposed of.

Table 1 shows the properties of the components and the precedence relation-

ship in the disassembly process between the components. The information was
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obtained from manufacturers, the 3D model (Grabcad Community, 2018) and

the work of Liu et al. (2018).

Table 1: Gear pump. Properties of all components.

No. Component Material
Volume Weight

Predecessors
(mm3) (g)

1 Bolt A Steel 1,243.07 9.76 -

2 Bolt B Steel 1,243.07 9.76 -

3 Bolt C Steel 1,243.07 9.76 -

4 Bolt D Steel 1,243.07 9.76 -

5 Bolt E Steel 1,243.07 9.76 -

6 Bolt F Steel 1,243.07 9.76 -

7 Cover Steel 95,973.49 753.39 1-6

8 Gasket Rubber 5,496.27 5.22 1-7

9 Gear A Steel 21,301.72 167.22 1-8

10 Gear B Steel 21,301.72 167.22 1-8

11 Shaft A Steel 6,430.70 50.48 1-8,10

12 Base Steel 273,754.96 2,148.98 1-11,13-24

13 Shaft B Steel 22,560.02 177.10 14-24

14 Gland A PTFE 3,243.59 7.14 15-24

15 Gland B PTFE 3,243.59 7.14 16-24

16 Gland C PTFE 3,243.59 7.14 17-24

17 Gland D PTFE 3,243.59 7.14 18-24

18 Gland E Steel 14,456.27 113.48 19-24

19 Bolt stud A Steel 998.08 7.83 21,23

20 Bolt stud B Steel 998.08 7.83 22,24

21 Nut A Steel 289.52 2.27 23

22 Nut B Steel 289.52 2.27 24

23 Nut C Steel 289.52 2.27 -

24 Nut D Steel 289.52 2.27 -
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5.2. Robot and robotic tools

The industrial automation system proposed in the simulations consists of

two units: the robot and the robotic tools. Figure 7 shows the layout approach

of the robotic cell used for the simulations, with the location of the robot, the

gear pump, and the tools magazine.

x

z

Robot LBR iiwa 14 R820

Tools 
Magazine 

R 820

150

300

Gear pump

0

M

Figure 7: Robotic cell layout

The KUKA LBR iiwa 14 R820 was selected as the robot to carry out the

simulations. It is classified as a lightweight robot with a jointed-arm with 7

axes. Table 2 shows the basic data for this robot (KUKA, 2019).
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Table 2: Basic data, LBR iiwa 14 R820

Number of axes 7

Number of controlled axes 7

Volume of working envelope 1.8 m3

Pose repeatability (ISO 9283) ±0.15 mm

Weight approx. 29.9 kg

Rated payload 14 kg

Maximum reach 820 mm

Concerning the operating parameters of the robot, and based on the infor-

mation provided by the manufacturer, certain assumptions are considered, as

follows:

• The linear velocity of the robot’s end-effector is assumed to be 12 mm/s.

• A safe distance along the contour of the product is considered in order to

allow the robot to avoid impractical paths between the disassembly points

and the tool magazine M.

• The time the robot takes to change the tool in the tool magazine M, tB2,

is assumed to be 10 seconds.

• The penalty time for process direction changes tC2 is assumed to be 0 if

the direction is not changed, 1 second if the direction is changed by 90o,

and 2 seconds if the direction is changed by 180o, according to the axis

data provided in the robot’s technical specifications (KUKA, 2019).

Robotic tools such as cutters, drillers and grippers are the execution units,

while the robots move robotic tools to the requested positions. Changing opera-

tions may require changes of robotic tools. There are two main disassembly op-

erations in the case of dismantling gear pumps: unfastening and pulling/pushing

using a gripper. Due to the different types of components and sizes, three types
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of spanners and two types of grippers are used. Table 3 shows the disassem-

bly tools required to complete each of the operations, and the basic time (tp)

required to perform the disassembly operation. It also shows the coordinates

of the disassembly points referring to the coordinates of the origin as shown in

Figure 7.

Additionally, the layout includes a tool magazine M. This is a device con-

taining the tools needed to complete the disassembly process. The robot moves

up to the position of the tool magazine M if the subsequent planned disassem-

bly operation requires changing the tool. In our case, the tool magazine M is

assumed to be located at position x=300, y=0, z=150, according to Figure 7.
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Table 3: Gear pump. Disassembly points and robotic tools

No. Component
Disassembly point Disassembly tp

X Y Z tool (s)

1 Bolt A 59.1 114 -48.4 Spanner-I 4

2 Bolt B 90.3 89 -48.4 Spanner-I 4

3 Bolt C 90.3 33 -48.4 Spanner-I 4

4 Bolt D 59.1 8 -48.4 Spanner-I 4

5 Bolt E 27.9 33 -48.4 Spanner-I 4

6 Bolt F 27.9 89 -48.4 Spanner-I 4

7 Cover 59.1 82 -64.6 Gripper-II 5

8 Gasket 59.1 114 -31.4 Gripper-I 4

9 Gear A 59.1 82 -30.9 Gripper-I 6

10 Gear B 59.1 40 -30.9 Gripper-I 6

11 Shaft A 59.1 40 -48.9 Gripper-I 4

12 Base 59.1 114 7.1 Gripper-II 4

13 Shaft B 59.1 82 136.1 Gripper-I 8

14 Gland A 59.1 94.8 34.1 Gripper-I 3

15 Gland B 59.1 94.8 41.1 Gripper-I 3

16 Gland C 59.1 94.8 48.1 Gripper-I 3

17 Gland D 59.1 94.8 55.1 Gripper-I 3

18 Gland E 59.1 82 79.1 Gripper-I 3

19 Bolt stud A 35.1 82 89.1 Spanner-II 3

20 Bolt stud B 83.1 82 89.1 Spanner-II 3

21 Nut A 35.1 82 84.1 Spanner-III 4

22 Nut B 83.1 82 84.1 Spanner-III 4

23 Nut C 35.1 82 87.1 Spanner-III 4

24 Nut D 83.1 82 87.1 Spanner-III 4

The process flow in the sequence of disassembly adopted in this case is

depicted in Figure 8.
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Figure 8: Gear pump. Disassembly process flow.

Table 4 shows a matrix summarising the values of the tp,q parameter (Eq.

5), taking into account all the feasible paths between disassembly points. It is

important to highlight that the moving path between the disassembly points

was obtained using the Euclidean distance (Alshibli et al., 2016), considering a

safe distance along the contour of the product and allowing the robot to avoid

impractical paths between disassembly points due to the obstacles caused by

the contour of the product being disassembled.
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5.3. Economic parameters

Concerning the economic parameters related to the disassembly process,

Table 5 presents the revenues and costs associated with each component to be

disassembled. In their assessment, a number of considerations and assumptions

were taken into account, as follows:

• The cost per unit of time ct is assumed as 0.05 e/s (180 e/h), according

to the information from manufacturers in Spain in July 2018.

• The revenue obtained from each component to be reused or remanufac-

tured (RPi) was obtained from the information supplied by manufacturers.

• The revenue obtained from each component to be recycled (RRi) was

obtained from recyclers according to the material and weight of each com-

ponent.

• The disposal cost was evaluated by the authors depending on the material

and weight of the component to be disposed of, considering the most

appropriate, environmental mode of disposal.

• The recovery costs of the components to be reused or remanufactured

(rci,m) were calculated by the authors with technical information provided

by manufacturers and the industry.

• The overhead costs of the company were allocated to each component

according to the disassembly operation to be performed and the different

recovery alternatives (reuse, remanufacturing, recycling or disposal), and

also considering the following:

– Total yearly overhead costs of the company of 240,000 e

– The company operates 220 days per year, 8 hours per day.

– The forecast production of disassembled gear pumps is 52,800 units

per year.
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– The distribution of the overhead costs to each component was eval-

uated taking into account the company’s resources applied to the

disassembly process, and according to the final use of each compo-

nent. In this way, a weight over 10 was assigned to each recovery

mode as follows: 2 for reuse, 5 for remanufacturing, 2 for recycling,

and 1 for disposal.

• The depreciation costs of the machinery were assessed taking into account

an estimated investment of 1 Me. The model considers linear depreciation

over a period of 10 years. The depreciation costs were assigned to each

component considering also the disassembly time of each component and

the moving time between adjacent disassembly points.
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Table 5: Revenues and costs associated with all components (e).

Item RPi RRi CDi rci,1 rci,2 ohi,1 ohi,2 ohi,3 ohi,4 dpi,1 dpi,2 dpi,3 dpi,4

1 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

2 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

3 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

4 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

5 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

6 0.432 0.005 0.000 0.100 0.300 0.002 0.006 0.002 0.001 0.115 0.173 0.138 0.092

7 7.900 0.377 0.000 1.200 2.500 0.185 0.463 0.185 0.093 0.144 0.216 0.173 0.115

8 0.000 0.003 0.200 0.000 0.000 0.001 0.003 0.001 0.001 0.115 0.173 0.138 0.092

9 10.780 0.084 0.000 0.600 3.000 0.041 0.103 0.041 0.021 0.173 0.259 0.207 0.138

10 10.780 0.084 0.000 0.600 3.000 0.041 0.103 0.041 0.021 0.173 0.259 0.207 0.138

11 2.320 0.025 0.000 0.300 0.900 0.012 0.031 0.012 0.006 0.115 0.173 0.138 0.092

12 11.800 1.074 0.000 1.500 3.500 0.529 1.322 0.529 0.264 0.115 0.173 0.138 0.092

13 5.780 0.089 0.000 0.700 2.000 0.044 0.109 0.044 0.022 0.230 0.346 0.276 0.184

14 0.000 0.004 0.150 0.000 0.000 0.002 0.004 0.002 0.001 0.086 0.130 0.104 0.069

15 0.000 0.004 0.150 0.000 0.000 0.002 0.004 0.002 0.001 0.086 0.130 0.104 0.069

16 0.000 0.004 0.150 0.000 0.000 0.002 0.004 0.002 0.001 0.086 0.130 0.104 0.069

17 0.000 0.004 0.150 0.000 0.000 0.002 0.004 0.002 0.001 0.086 0.130 0.104 0.069

18 3.600 0.057 0.000 0.200 0.700 0.028 0.070 0.028 0.014 0.086 0.130 0.104 0.069

19 0.350 0.004 0.000 0.100 0.300 0.002 0.005 0.002 0.001 0.086 0.130 0.104 0.069

20 0.350 0.004 0.000 0.100 0.300 0.002 0.005 0.002 0.001 0.086 0.130 0.104 0.069

21 0.200 0.001 0.000 0.100 0.300 0.001 0.001 0.001 0.000 0.115 0.173 0.138 0.092

22 0.200 0.001 0.000 0.100 0.300 0.001 0.001 0.001 0.000 0.115 0.173 0.138 0.092

23 0.200 0.001 0.000 0.100 0.300 0.001 0.001 0.001 0.000 0.115 0.173 0.138 0.092

24 0.200 0.001 0.000 0.100 0.300 0.001 0.001 0.001 0.000 0.115 0.173 0.138 0.092
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6. Results and discussion

Simulations were performed using an iMac computer with an Intel Core

i5 (3.2 GHz) processor and running operating system OS X 10.11.6. The algo-

rithms were programmed in Java and run using the JVM 1.8. In the disassembly

problem studied in this paper, the cardinality of the search space is bounded

by 24! ≈ 6.2 × 1023. Each simulation was repeated 100 times for the non-

deterministic algorithms. In the case of non-deterministic algorithms, different

seeds were used to initiate the search.

The results are divided into three subsections. The first subsection shows the

optimal solution obtained using the proposed algorithms for several iterations

and populations. The second subsection presents solutions considering diffe-

rent recovery approaches. The third subsection discusses a sensitivity analysis

performed using the model in order to evaluate how the uncertainty behaviour

of selected variables could affect the economic performance of the disassembly

process.

6.1. Optimal solution

Table 6 shows the optimal solution results for the three calculation algo-

rithms considered, which propose a complete disassembly of the product, al-

though the disassembly sequence is different for each one. The best solution is

achieved by the GA, with a fitness value of 20.56 e, followed by CGA (20.05 e)

and HCA (19.28 e). The three solutions recommend all the parts be disassem-

bled and reused, with the exception of items 15, 16, 17, 18 and 20, which should

be sent for disposal.

Figure 9 shows the evolution of the fitness value according to the disassembly

level for the three studied simulations. The best performance is achieved by the

GA, obtaining positive profits after the 16th disassembly operation (item no 11).

The HCA solution obtains positive profits after the 17th operation (item no 9)

and, in the case of CGA, positive profit is achieved after the 21th operation.

37



T
a
b

le
6
:

O
p

ti
m

a
l

so
lu

ti
o
n

re
su

lt
s

C
G

A
D

S
le

v
e
l

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

It
e
m

N
o
.

2
3

4
1

6
5

7
2
4

2
2

2
3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

8
9

1
0

1
1

1
2

R
e
c
o
v
e
ry

m
o
d
e

1
1

1
1

1
1

1
1

1
1

1
1

1
1

4
4

4
4

1
4

1
1

1
1

F
it

n
e
ss

v
a
lu

e
(e

)
-0

.8
0

-2
.6

2
-3

.0
2

-3
.4

9
-3

.8
6

-4
.3

1
-4

.6
9

-1
.1

5
-3

.9
5

-4
.2

6
-4

.9
5

-5
.2

6
-8

.0
4

-8
.4

8
-8

.1
0

-8
.5

0
-8

.8
2

-9
.1

5
-9

.6
2

-6
.0

0
-7

.0
9

2
.3

3
1
1
.6

8
1
3
.2

1
2
0
.0

5

T
im

e
(m

s/
ru

n
)

3
2

H
C

A
D

S
le

v
e
l

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

It
e
m

N
o
.

4
2

3
5

1
6

2
3

2
4

2
1

2
2

1
9

2
0

7
8

1
0

1
1

9
1
8

1
7

1
6

1
5

1
4

1
3

1
2

R
e
c
o
v
e
ry

m
o
d
e

1
1

1
1

1
1

1
1

1
1

1
1

1
4

1
1

1
1

4
4

4
4

1
1

F
it

n
e
ss

v
a
lu

e
(e

)
-0

.8
0

-3
.1

3
-3

.4
1

-3
.8

1
-4

.3
8

-4
.7

1
-5

.1
6

-8
.4

9
-8

.6
3

-9
.3

1
-9

.6
4

-1
2
.7

5
-1

2
.8

6
-9

.3
2

-1
2
.2

1
-2

.8
8

-1
.1

9
8
.3

5
1
0
.7

9
1
0
.2

4
9
.7

7
9
.3

0
8
.8

2
1
2
.4

4
1
9
.2

8

T
im

e
(m

s/
ru

n
)

7
.8

G
A

D
S

le
v
e
l

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

It
e
m

N
o
.

2
3

2
1

2
4

2
2

2
1

6
5

4
3

7
1
9

2
0

8
1
0

1
1

9
1
8

1
7

1
6

1
5

1
4

1
3

1
2

R
e
c
o
v
e
ry

m
o
d
e

1
1

1
1

1
1

1
1

1
1

1
1

1
4

1
1

1
1

4
4

4
4

1
1

F
it

n
e
ss

v
a
lu

e
(e

)
-0

.8
0

-3
.6

3
-3

.9
4

-4
.3

0
-4

.6
1

-6
.9

2
-7

.3
4

-7
.7

9
-7

.9
7

-8
.2

2
-8

.3
6

-4
.8

2
-7

.9
3

-8
.0

4
-1

0
.9

3
-1

.5
9

0
.0

9
9
.6

3
1
2
.0

7
1
1
.5

2
1
1
.0

5
1
0
.5

8
1
0
.1

1
1
3
.7

3
2
0
.5

6

T
im

e
(m

s/
ru

n
)

3
7

38



-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PR
(€

)

Disassembly order

OPTIMAL SOLUTION (0,050)

OS-GR OS-HC OS-GA

Figure 9: Optimal solution results. Economic profit (PR) in each -th position of the disas-

sembly process for the three algorithms.

6.2. Results according to recovery approaches

The condition of the components to be disassembled is diverse and depends

on the use and how they have been handled by the customers, and also because

the product naturally deteriorates over its lifetime. In order to analyse how

the condition of the components could make an impact on the performance of

the robotic disassembly process, this subsection presents the results consider-

ing three alternative recovery approaches for the components: reuse (REU),

remanufacturing (REM) and recycling (REC).

From the perspective of economic assessment, these alternatives entail the

following considerations:

• REU is the most appropriate option for the components being disassem-

bled, as these components could be directly used again in other similar

products after carrying out minor operations, such as cleaning, painting,

lubricating, etc.; operations that involve low costs. The component could

be sold in the market at the retail price.
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• Concerning the REM option, components to be remanufactured require

re-processing prior to reuse in new products. This involves manufacturing

operations on the REM components, with higher costs than the REU

option. The component could be sold in the market at the retail price.

• Regarding the REC alternative, it is a lower economic option than REU or

REM, due to the components having to be recycled and because only raw

materials could be removed from them. This option involves additional

costs in the recycling operations. Only revenues obtained by selling these

raw materials could be obtained from the recycled components.

First, the condition of the components is assumed to be known, as shown in

Table 7, where the value of the ri,m indicator for the three considered approaches

is supposed. Additionally, and due to the characteristics and functionality of

some components, the disposal mode is considered for items 8, 14, 15, 16 and

17.
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Table 7: Value of the recovery indicator (ri,m) in the considered approaches

Item REU REM REC

no ri,1 ri,2 ri,3 ri,4 ri,1 ri,2 ri,3 ri,4 ri,1 ri,2 ri,3 ri,4

1 0 0 1 0 0 0 1 0 0 0 1 0

2 0 0 1 0 0 0 1 0 0 0 1 0

3 0 0 1 0 0 0 1 0 0 0 1 0

4 0 0 1 0 0 0 1 0 0 0 1 0

5 0 0 1 0 0 0 1 0 0 0 1 0

6 0 0 1 0 0 0 1 0 0 0 1 0

7 1 0 0 0 0 1 0 0 0 0 1 0

8 0 0 0 1 0 0 0 1 0 0 0 1

9 1 0 0 0 0 1 0 0 0 0 1 0

10 1 0 0 0 0 1 0 0 0 0 1 0

11 1 0 0 0 0 1 0 0 0 0 1 0

12 1 0 0 0 0 1 0 0 0 0 1 0

13 1 0 0 0 0 1 0 0 0 0 1 0

14 0 0 0 1 0 0 0 1 0 0 0 1

15 0 0 0 1 0 0 0 1 0 0 0 1

16 0 0 0 1 0 0 0 1 0 0 0 1

17 0 0 0 1 0 0 0 1 0 0 0 1

18 1 0 0 0 0 1 0 0 0 0 1 0

19 1 0 0 0 0 1 0 0 0 0 1 0

20 1 0 0 0 0 1 0 0 0 0 1 0

21 0 0 1 0 0 0 1 0 0 0 1 0

22 0 0 1 0 0 0 1 0 0 0 1 0

23 0 0 1 0 0 0 1 0 0 0 1 0

24 0 0 1 0 0 0 1 0 0 0 1 0

The approaches under study were solved using the three calculation algo-

rithms (CGA, HCA and GA). The results are presented in Figures 10, 11, and

12, and Table 8. These results generate findings and valuable insights, as follows:

• The REU approach is the most suitable alternative for the components in

view of the better economic performance of the robotic disassembly pro-

cess. The three algorithms propose a complete disassembly, with the best

performance achieved by the GA (17.98 e), followed by HCA (16.70 e)
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and CGA (15.52 e), as shown in Figure 10.
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Figure 10: REU approach results. Economic profit (PR) in each -th position of the disassembly

process for the three algorithms.

• From the analysis of the REM approach solution (Figure 11), the results

reveal all three resolution algorithms propose a partial disassembly pro-

cess. The GA suggests stopping the disassembly process after item 11

(Shaft A) is removed, obtaining a fitness value of 7.22 e. A similar dis-

assembly sequence is proposed by CGA, with a fitness value of 6.78 e.

As regards HCA, the disassembly process should be stopped after item 10

(Gear B) is removed.
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Figure 11: REM approach results. Economic profit (PR) in each -th position of the disassem-

bly process for the three algorithms.

• Concerning the REC approach, from the analysis of Figure 12 and Table 8,

the disassembly process is evidently not economically profitable as the

robotic disassembly process costs are higher than the revenues from the

recycling of the materials. Figure 12 shows the fitness value decreases in

proportion to the disassembly level. Even so, and in the event that the

complete disassembly is carried out, CGA proposes the most advantageous

disassembly sequence, obtaining a fitness value of -31.64 e, followed by

HCA with -41.00 e, and finally the GA with -49.29 e. The advantage

of CGA over HCA and the GA in this case is the result of the type of

evaluation used by each algorithm. CGA uses a local evaluation, selecting

the best (in this case the one with less loss) at each step. In contrast, HCA

and the GA use a global evaluation function, which is the value of using

this sequence with its best threshold, and, in this case, the value is the

same for all the sequences (permutations) because it obtains a threshold

of 0. Therefore, the HCA and GA algorithms are searching in a plateau
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in which all the potential solutions (permutations) have the same fitness

value, and thus, they can learn nothing from the fitness landscape. These

results reveal valuable information for recyclers on the cost to be borne

to perform a partial or a total disassembly process in the event that all

components must be disposed of.
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Figure 12: REC approach results. Economic profit (PR) in each -th position of the disassembly

process for the three algorithms.
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6.3. Sensitivity analysis

A sensitivity analysis is proposed in order to study how the evolution of cer-

tain variables subjected to uncertainty could modify the final results, forcing the

process to be re-planned or decisions to be made about the final use of compo-

nents. Figure 13 shows to what extent the cost per unit of time (ct) determines

the fitness value along the different proposed approaches. The 3D surface graph

permits the evolution of the economic profit in the disassembly process to be

analysed as a function of the ct and the selected recovery approach: REU, REM

or REC. According to the information from manufacturing companies in Spain,

the ct ranges from 120 e/hour (adopted as the lower specification limit, LSL)

to 240 e/hour (adopted as the upper specification limit, USL).

Figure 13: Sensitivity analysis of the cost per unit of time (cT )

The calculations were performed using the GA, as this algorithm obtains a

better performance and also in order to simplify the presentation of the results.

For each ct value and approach studied, the GA was run 100 times and the best

one was selected to be shown in the graph. However, it is worth noting that

the behaviour of the GA is highly stable, almost always converging to solutions

with the same fitness.
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The optimal solution (OS) obtains a range for the fitness value from 12.98 e in

the USL to 29.29 e in the LSL. Concerning the REU approach, the fitness value

ranges from 10.88 e to 26.71 e. In the case of the REM approach, the results

range from 3.45 e to 13.98 e, and, finally, in the REC approach, the fitness

value ranges from -33.72 e in the LSL to -63.95 e in the USL.

A similar operation was performed in the analysis of the retail price (RPi),

considering an evolution range of ±15 % according to the market prospect. The

results are shown in Figure 14. Calculations were also performed with the GA

and each simulation was repeated 100 times. The simulations produced the

following results: the fitness value for the OS ranges from 10.80 e in the LSL to

32.02 e in the USL, whereas the REU approach solution ranges from 8.93 e to

28.63 e. The REM approach solution ranges from 2.21 e to 14.52 e, and,

finally, the REC approach solution converges to -49.29 e as it does not consider

the recovery of any component for reuse or remanufacturing.

Figure 14: Sensitivity analysis of the retail price (RPi)

7. Conclusions

This paper has presented a model for the economic assessment of the robotic

disassembly process of end-of-life products. The contribution of this work is
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threefold. First, the model aims simultaneously to resolve the problems of dis-

assembly sequence planning, the optimal disassembly level and selection of the

recovery option for the components. Second, the model is able re-plan the opti-

mal disassembly process level depending on the process uncertainties. Third, the

model is applied to robotic disassembly. In the literature, most research works

deal with disassembly sequence planning and recovery strategies as separate

problems, but none of these studies has been applied to robotic disassembly

or the re-planning of the disassembly strategy according to the product and

process uncertainties.

The model takes into consideration all the parameters involved in the robotic

process, such as disassembly tools, trajectories, penalties, costs, process times,

constraints and others, in addition to the condition of components to be dis-

assembled and their potential final use: reuse, remanufacturing, recycling or

disposal. Due to the NP-complete nature of the problem, three algorithms

based on heuristic are proposed to resolve the disassembly process: a Construc-

tive Greedy Algorithm, a Hill Climbing Algorithm and a Genetic Algorithm. A

case study based on a gear pump with 24 components is presented. Simulations

were performed to test the proposed model showing its suitability to resolve the

disassembly process, obtaining the most appropriate solution for the disassem-

bly sequence planning, the optimal economic profit, the best recovery option

for the disassembled components, and the stopping point of the process in the

event that the solution proposes a partial disassembly process. In addition, the

model is able to perform a sensitivity analysis of variables subjected to uncer-

tain behaviour providing significant findings about how the process could be

re-planned depending on the recovery approach.

Furthermore, our research has several implications for industrial activities.

First, it can provide firms with a tool to improve their practices in recovery of

EoL products, particularly gear pumps, although the work could also be ap-

plied to other products to be recovered. Second, the model provides firms with

a methodology to assess the economic performance of the disassembly process

allowing them to determine the optimal disassembly level of the product before
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the process is initiated or implemented. It is of great interest for companies from

the perspective of the investments and resources required to put the disassembly

process into effect. In addition, it is a robust tool that helps achieve economic

goals. Third, the model allows decisions to be made regarding the ongoing dis-

assembly process, hence increasing process flexibility, allowing the process to be

paused before the predefined disassembly level, or to carry out more steps than

those initially planned. All of this if the ongoing process performance, or the real

state of the already disassembled components, requires making decisions about

the process parameters or to reassign the recovery modes of the disassembled

components, which are different to those initially planned. Fourth, the model

provides firms with a tool to manage the recycling and disposal of components,

in order to meet environmental objectives and to comply with legislation on

recyclability.

Finally, as key factors in the success of this research, it is important to high-

light the practical approach of the model, considering the need for the companies

to manage these types of EoL products, and the support for remanufacturing

companies, providing a pack of sound data to obtain a more realistic analysis

of disassembly process performance.

Future work could focus on two areas. The first is the implementation of the

model from the point of view of factory operation, in order to confirm the effec-

tiveness of the model in an industrial scenario, validating the solutions provided

by the algorithms with real data information obtained in the factory. Second

is the consideration of the environmental and social dimensions of the robotic

disassembly process so that together with the economic dimension analysed,

the three dimensions of sustainability could be addressed as a multi-objective

optimisation decision-making model.
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Appendix

Notations and related descriptions for acronyms, parameters and subscripts

are presented in Tables 9, 10 and 11.

Table 9: Acronyms

ABC Artificial Bee colony

ACO Ant Colony Optimisation

BA Bees Algorithm

CAD Computer aided design

CGA Constructive Greedy Algorithm

DIS Disposal

DLB Disassembly line balancing

DPP Disassembly path planning

DSP Disassembly sequence planning

EoL End-of-life

GA Genetic Algorithm

HCA Hill Climbing Algorithm

MRO Material Recovery Opportunities

NP Non-Deterministic Polynomial

OEM Original Equipment Manufacturer

PR Economic profit

PSO Particle Swarm Optimisation

RDP Robotic disassembly process

RDSP Robotic disassembly sequence planning

REC Recycling

REM Remanufacturing

REU Reuse
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Table 10: Parameters

DSG Disassembly process gains

DSC Disassembly process costs

RPi Retail price

ri,m Indicator of the recovery mode: 1 if mode j is assigned to component i

RRi Revenue obtained from the component i to be recycled

CDi Disposal cost of the component i

COP Total operation costs

CRC Total recovery costs

COH Total overhead costs

CDP Total depreciation costs

tT Total process time

ct Cost per unit of time

tp,q Moving time between the adjacent disassembly operations xp and xq

tB(xp,M, xq) Moving time between disassembly operations and the tool magazine M

tB1(xp,M) Moving time between the disassembly point of the operation xp

and the tool magazine M

xp Disassembly operation p

xq Disassembly operation q

tB2(M) Tool change time

tB3(M,xq) Moving time between the tool magazine M and the disassembly point xq

C Precedence matrix

L Length matrix

ve Linear velocity of the industrial robot’s end-effect

tB4(xp,M) Penalty time for process direction changes

P Penalty time matrix

tB5(M,xq) Penalty time for process direction changes along the path

between the tool magazine M and xq

tC1(xp, xq) Moving time between the disassembly points xp and xq

tC2(xp, xq) Penalty time for process direction changes along the path between xp and xq

rci,m Recovering cost of the component i

ohi,m Overhead cost assigned to the component i

dpi,m Depreciation cost assigned to the component i

Pt,1 Penalty time if direction is changed by 90o

Pt,2 Penalty time if direction is changed by 180o

αp Indicator taking value 1 if the operation xq

must to be completed in the disassembly process, and 0 otherwise

δp,q Indicator taking value 1 if the operation xq

is carried out after the operation xp, and 0 otherwise

αi Indicator that takes the value 1 if the component i is disassembled, and 0 otherwise

γp,q Indicator taking the value 1 if the operation xq

requires the robot changes the tool in the tool magazine M
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Table 11: Subscripts

i,j,k Indicator of component

m Indicator of recovery mode

p,q Indicator of disassembly operation
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