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ABSTRACT TOPOLOGICAL DYNAMICS INVOLVING

SET-VALUED FUNCTIONS

CHRIS GOOD, SINA GREENWOOD, AND NAZLI URESIN

Abstract. Continuous functions over compact Hausdorff spaces have been
completely characterised. We consider the more general problem: given a set-

valued function T from an arbitrary set X to itself, does there exist a compact

Hausdorff topology on X with respect to which T is upper semicontinuous?
We give conditions that are necessary for T to be upper semicontinuous and

point-closed if X is a compact Hausdorff space. We show that it is always

possible to provide X with a compact T1 topology with respect to which T is
lower semicontinuous, and consequently, if T : X → X is a function, then it

is always possible to provide X with a compact T1 topology with respect to

which T is continuous.

Let T : X → X be a function on a nonempty set X and let P be some topolog-
ical property. A fundamental and natural question, tracing back to Ellis [4], asks
whether one can endow X with a topology that satisfies P and with respect to
which T is continuous.

For metric spaces the minimal conceivable conditions are required for a positive
answer. De Groot and De Vries [12] show that if X is infinite, then there is always a
non-discrete metrizable topology on X with respect to which T is continuous. Good
and Greenwood [6] show that the existence of a separable metrizable topology on X
with respect to which T is continuous depends only on the cardinality of the set X;
there is such a topology precisely when the cardinality of X is no greater than c, the
cardinality of the continuum, which is the maximum cardinality of any separable
metric space [5]. In [1] continuous functions on the space of rational numbers are
characterized: for countable X, there is a topology on X with respect to which f
is continuous and X is homeomorphic to Q if and only if finite intersections of sets
of the form

{y : fk(y) = x}, where x ∈ X and 0 ≤ k, or

{x : fm(x) = fn(x)}, where 0 ≤ m,n

have either infinite or empty complements.
For compact, Hausdorff spaces one needs to work somewhat harder. The full

orbits of T are the equivalence classes of the relation ∼, where x ∼ y if and only
if Tm(x) = Tn(y) for some m,n ∈ N. A full orbit is said to be: an n-cycle, if it
contains a point x for which x = Tn(x) and x, T (x), . . . , Tn−1(x) are distinct; a
Z-orbit if it contains distinct xi, i ∈ Z, such that T (xi−1) = xi; and an N-orbit
if it is neither an n-cycle nor a Z-orbit. Good et al. [7] show that there is a
compact Hausdorff topology on X with respect to which T is continuous if and
only if

⋂
n∈N T

n(X) = T
(⋂

n∈N T
n(X)

)
6= ∅ and one of the following holds:

(1) the total number of Z-orbits and cycles is at least c; or
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2 CHRIS GOOD, SINA GREENWOOD, AND NAZLI URESIN

(2) there is at least one Z-orbit and one cycle; or
(3) there are ni, i ≤ k such that T has an ni-cycle for each ni and whenever T

has an n-cycle, some ni divides n,
(4) the restriction of T to

⋂
n∈N T

n(X) is not 1-1.

In [7] they also show that if T : X → X is a bijection then there is a compact
metrizable topology on X with respect to which T is a homeomorphism if and only
if one of the following holds:

(1) X is finite.
(2) X is countably infinite and either:

(a) T has both a Z-orbit and a cycle; or
(b) there are ni, i ≤ k such that T has an ni-cycle for each ni and whenever

T has an n-cycle, some ni divides n.
(3) X has the cardinality of the continuum and the number of Z-orbits and the

number of n-cycles, for each n ∈ N, is finite, countably infinite, or has the
cardinality of the continuum.

Iwanik [16] had earlier given a characterization of continuous bijections on com-
pact Hausdorff spaces and Sherman [23] has characterized homeomorphisms of the
Cantor set.

Recently there has been considerable interest in the dynamics of set-valued func-
tions. In 2004, Mahavier [21] introduced the notion of inverse limits of set-valued
functions, or generalised inverse limits. Ingram posed a number of questions in [14]
which has motivated a growing number of researchers to work in the area. A list of
articles can be found in [13]; more recent examples include [11, 17, 18, 19]. Standard
inverse limits in a dynamical setting have been extensively used in areas such as
dynamical systems and continua theory [2, 8, 9, 10]. They have also found applica-
tions in disciplines such as economics [20, 22]. Inverse limits of set-valued functions
provide greater scope for application and examples are emerging. Inverse limits of
simple set-valued functions on simple spaces can be used, for example, to construct
complex examples, such as Kennedy and Nall’s construction of λ-dendroids from
inverse limits of interval maps with graphs that are the union of two straight lines
[19].

In this paper we consider Ellis’s question for upper and lower semicontinuous
set-valued functions. Conditions ensuring the existence of a compact Hausdorff
topology with respect to which such a function is upper or lower semicontinuity
seems to be a hard question. One can say something sensible in the case of compact
T1 topologies, however, and we address that question here.

Our notation and terminology are standard, as found in [5]. A space is T1

provided singleton sets are closed. If T : X → X is a set-valued function and
A ⊆ X, we define the image, lower preimage and upper preimage of A respectively
by

T (A) =
⋃
{T (x) : x ∈ A},

T−1− (A) = {x ∈ X : T (x) ∩A 6= ∅},
T−1+ (A) = {x ∈ X : T (x) ⊆ A}.

The proof of the following lemma is routine.

Lemma 1. Let T : X → X be a set-valued function and let A be a collection of
subsets of X.

(1) T−1+ (X rA) = X r T−1− (A).

(2) T−1− (
⋃
A∈AA) =

⋃
A∈A T

−1
− (A).
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(3) T−1+ (
⋂
A∈AA) =

⋂
A∈A T

−1
+ (A).

A set-valued function T : X → X is upper semicontinuous at the point x if for
every open set V containing T (x), there is an open set U containing x such that
for every y ∈ U , V contains T (y). T is lower semicontinuous at x if for each open
set V that meets T (x), there is an open set U containing x such that for every
y ∈ U , V meets T (y). T is upper (respectivey, lower) semicontinuous if it is upper
(respectively, lower) semicontinuous at each x ∈ X. T is lower semicontinuous
[3] if and only if, for any open set V , the set T−1− (V ) = {x : T (x) ∩ V 6= ∅}
is open if and only if, for any closed set C, the set T−1+ (C) is closed. Similarly,

T is upper semicontinuous if and only if, for any open set V , the set T−1+ (V ) =

{x : T (x) ⊆ V } is open if and only if, for any closed set C, the set T−1− (C) is
closed. It is this difference between the lower and upper inverses and their behaviour
under unions and intersections that makes it relatively easy to construct topologies
making T lower semicontinuous, but hard to construct topologies making T upper
semicontinuous.

We first consider lower semicontinuity.
Defining the topology τ : For a set-valued function T : X → X, we define

a topology τ on X by defining the collection C of its basic closed sets. Let C0 be
the collection of all finite subsets of X. Given the collection Cn, let Cn+1 be the
collection of all sets of the form

T−1+ (C1) ∪ · · · ∪ T−1+ (Cj) ∪ Cj+1 ∪ · · · ∪ Ck,

where each Cj ∈ Cn. Let C :=
⋃
n∈N Cn.

Let us say that the rank of a basic closed set C ∈ C is 0 if C is finite and is n ∈ N
if C ∈ Cn \ Cn−1. Then, if C has rank n+ 1, we can write

C = T−1+ (C1) ∪ T−1+ (C2) · · · ∪ T−1+ (Ck−1) ∪ C∗k ,

where:

• C1 has rank n and C∗k has rank 0 (so is finite, possibly empty);

• for each i ≤ k−1, Ci has rank at most n and T−1+ (Ci) is infinite (otherwise
it can be absorbed into C∗k).

Note that this representation of C need not be unique. For clarity, rank 0 sets are
marked with ∗.

Each Ci is also of this form, but of a lower rank. Therefore, associated with C,
we have a finite collection of basic closed sets indexed by finite sequences of natural
numbers such that the set Ci, indexed i = i1i2 . . . ik−1, is either rank 0 and finite
or can be written as a finite union

Ci = T−1+ (Cia1) ∪ T−1+ (Cia2) ∪ · · · ∪ T−1+ (Cia(ni−1)) ∪ (C∗iani
)

for some ni > 0, where each Ciaj has rank less than that of Ci and C∗ianj
is finite

(as usual i1i2 . . . in−1 a in = i1 . . . in−1in). There is, therefore, a finite tree Γ
associated with C whose nodes are the basic closed sets Ci. The root of Γ is C, if
Ci is finite, then it has no successors, otherwise the successors of Ci are the nodes
Ciaj for 1 ≤ j ≤ ni. Let us refer to the finite nodes as leaves, so that a branch in
Γ is a maximal chain starting at C and ending in a leaf of Γ, see Figure 2 for an
example.

It is clear that, although there may be more than one tree associated with a
given C in this way, the tree order together with the leaves determine C. Given a
tree Γ associated with the closed set C, the number of branches is the number of
leaves.
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C

C∗3C2

C∗22C21

C∗211

C1

C12

C∗121

C11

C111

C∗1112C∗1111

Figure 1. An example of a tree associated with the set C =
T−1+ (C1) ∪ T−1+ (C2) ∪ C∗3 . C has rank 4 and leaves C∗1111, C∗1112,
C∗121, C∗211, C∗22 and C∗3 .

By Lemma 1, if

C = T−1+ (C1) ∪ · · · ∪ T−1+ (Ck−1) ∪ C∗k and

D = T−1+ (D1) ∪ · · · ∪ T−1+ (Dm−1) ∪D∗m,
then

C ∩D =T−1+ (C1 ∩D1) ∪ · · · ∪ T−1+ (C1 ∩Dm−1)

∪ T−1+ (C2 ∩D1) ∪ · · · ∪ T−1+ (C2 ∩Dm−1)

...

∪ T−1+ (Ck−1 ∩D1) ∪ · · · ∪ T−1+ (Ck−1 ∩Dm−1)

∪ C∗

where C∗ is some subset of C∗k ∪D∗m. Therefore, C ∩D can be written in the form

C ∩D = T−1+ (E1) ∪ · · · ∪ T−1+ (E`−1) ∪ E∗` ,

where each Ei, i < `, is a subset of some Cj , T
−1
+ (Ei) is infinite and E∗` is a finite

set.

Now suppose that D is a subset of C and that we have fixed a tree, Γ, associated
with C. It follows from the previous paragraph that there is a tree, ∆, associated
with D and an order-preserving function φ : ∆ → Γ such that for each node Dj ,

j = j1 . . . jk, of ∆:

• φ(Dj) = Ci for some i = i1 . . . ik with the same length as j;
• Dj ⊆ Ci;
• the rank of Dj is at most the rank of Ci;

• if k′ < k, then φ(Dj1j2...jk′ ) = Ci1i2...ik′ .

For brevity we will say that ∆ follows Γ and a branch

D,Di1 , Di1i2 , . . . , Di1...ik−1
, D∗i1...ik

in ∆ follows the branch C, φ(Di1), φ(Di1i2), . . . , φ(D∗i1...ik) in Γ.
In Figure 2, we give an example of a tree associated with a set D ( C which

follows the tree pictured in Figure 1.

Lemma 2. Let T : X → X be a set-valued function and equip X with the topology
τ defined above. Let C,D ∈ C, let D be a proper subset of C, and let Γ and ∆ be
trees associated with C and D respectively, such that ∆ follows Γ. Then there is a
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D(C

D∗4=C∗3D3(C2

D∗32(C∗22D31(C21

D∗311(C∗211

D2(C2

D∗21(C21

D1(C1

D13(C12

D∗131(C∗121

D12(C11

D121(C111

D∗1211=C∗1112

D11(C11

D111(C111

D∗1111=C∗1111

Figure 2. An example of a tree associated with a set D which
follows the tree associated with the set C from Figure 1.

branch A in Γ such that for every branch B in ∆, if B follows A then either B has
shorter length than A or the leaf of B is a proper subset of the leaf of A.

Proof. Let x ∈ C \ D. Recall that C and D are the roots of the trees Γ and
∆ respectively. Either x is in the finite leaf successor C∗k of C and not in the
finite leaf successor D∗k′ of D. Or there is a non-leaf successor C1 of C such that
T (x) ⊆ C1, and for every infinite successor Dj of D, T (x) 6⊆ Dj and hence C1 \
Dj 6= ∅. Thus by induction there is a branch C,C1, . . . , Ck−1, C

∗
k is Γ such that if

D,D1, D2, . . . , Dk′−1, D
∗
k′ is a branch in ∆ that follows C,C1, . . . , Ck−1, C

∗
k , k′ ≤ k

and for every j ≤ k′, Dj is a proper subset of Cj . Thus if k = k′ then the leaf D∗k
is a proper subset of C∗k . �

Theorem 3. Let X be an infinite set and let T : X → X be any set-valued function
such that T (x) 6= ∅ for each x ∈ X. There is a compact T1 topology on X with
respect to which T is lower semicontinuous.

Proof. Since C :=
⋃
n∈N Cn is closed under finite unions and contains all finite sets,

it is the basis for the closed sets of a T1 topology τ on X. Moreover, if D is a closed
set under the topology τ , then D is an intersection, D =

⋂
C∈DC, for some D ⊆ C.

But then, by Lemma 1, T−1+ (D) =
⋂
C∈D T

−1
+ (C). By definition, each T−1+ (C) is

in C, so T−1+ (D) is closed. Hence T is lower semicontinuous with respect to τ .
It remains to show that τ is compact. To do this we take a collection of basic

closed sets with empty intersection and show that a finite subcollection also has
empty intersection.

Let D = {Dn ⊆ X : n ∈ N} be a collection of nonempty basic closed sets such
that each Dn+1 is a proper subset of Dn. For each n ∈ N, let Γn be a tree associated
with Dn. By Lemma 2, for each n ∈ N and m > n, there is a branch C,C1, . . . , C

∗
k

in Γn such that if E,E1, E2, . . . , E
∗
k′ is any branch in Γm that follows C,C1, . . . , C

∗
k ,

then k′ ≤ k and for each i ≤ k′, Ei is a proper subset of Ci.
Since each tree has only finitely many branches, there is a value m1 > 1 such

that either, for some k, 1 < k ≤ m1 there is a branch B in Γ1 and every branch
in Γk that follows B is shorter in length, or the leaf of every branch in Γm1 is a
singleton. If the latter holds, then for every branch B in Γ1, every branch in Γm1+1

that follows B has shorter length than B.
By a similar argument, for any n ∈ N there exists mn > n and a branch B in Γn,

such that every branch in Γmn
that follows B has shorter length than B. Although

Γmn may have a greater number of branches than Γn, the number is finite. Clearly
then, there exists n ∈ N such that every branch in Γn is shorter than the branch
in Γ1 that it follows, and hence for some n > 1, every branch in Dn has only one
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member and hence is a finite subset of Dn, a contradiction. Thus any collection of
closed subsets of X with empty intersection is finite and so τ is compact. �

If T : X → X is a function, then T−1+ (A) = T−1− (A) = T−1(A), so that the same
proof yields the following.

Theorem 4. Suppose that T : X → X is a function. There is a compact T1

topology on X with respect to which T is continuous.

The question of characterising the existence of a compact T1 topology on X with
respect to which a set-valued function T : X → X is upper semicontinuous seems
to be harder. Certainly not every set-valued function has such a topology.

Example 5. Let X be an infinite set and let T : X → X be the set-valued function
defined by T (x) = X r {x}. Under any T1 topology on X, the set X r {x} would
be open. But T−1+ (X r {x}) = {x}, so if T were upper semicontinuous, X would
have the discrete topology.

It is easy enough to define a T1 topology on X with respect to which the set-
valued function T : X → X is upper semicontinuous.

Defining a minimal topology σ: We define a T1 topology σ on X with respect
to which T is upper semicontinuous, and such that if σ′ is a T1 topology on X with
respect to which T is upper semicontinuous, then σ ⊆ σ′.

Since points are closed sets, any T1 topology must contain the cofinite topology
σ0. Given topologies σβ for all β < α such that σ0 ⊆ σγ ⊆ σβ for all 0 ≤ γ ≤ β, let
σα be the topology generated by the collection of sets of the form

T−1+ (U1) ∩ · · · ∩ T−1+ (Um) ∩ Um+1 ∩ · · · ∩ Un,

where m < n and if 1 ≤ i ≤ n, then Ui ∈ σβ for some β < α. Since T−1+ respects
intersections, this is equivalent to saying that elements of σα are arbitrary unions
of sets of the form T−1+ (U)∩V for U, V ∈

⋃
β<α σβ . For some δ, we have σδ = σδ+1

and we let σ = σδ. It is easy to see that T is upper semicontinuous with respect
to σ and that any T1 topology with respect to which T is upper semicontinuous
must contain σ. Hence there is a compact T1 topology on X with respect to which
T is upper semicontinuous if and only if σ is compact. Conditions on T making σ
compact, however, appear elusive.

In characterizing the existence of a compact Hausdorff topology with respect to
which a function is continuous [7], two key tools are the existence of an amenable
orbit structure and the fact that T

(⋂
n∈N T

n(X)
)

=
⋂
n∈N T

n(X) 6= ∅. For set-
valued mappings the equivalence relation corresponding to the notion of a full orbit
of a function is given by the connected components of the graph generated on X
by placing an edge between x and y if and only if y ∈ T (x) or x ∈ T (y). In this
case, an orbit might contain a number of cycles x1, . . . , xn, such that for each i < n,
xi+1 ∈ T (xi) and x1 ∈ T (xn), or Z-sequences (xn)n∈Z, such that for each n ∈ Z,
xn+1 ∈ T (xn), or some combination of both, or neither. This means that there is
no useful classification of orbits for set-valued mappings.

One can say something about the set
⋂
n∈N T

n(X) in certain circumstances. A
set-valued mapping T : X → X is point-closed if T (x) is closed for each x ∈ X. It
follows from [15, Theorem 2.1] that, if T is upper semicontinuous and point-closed,
then T (D) is closed for every closed subset D ⊆ X. For such mappings we have
the following, which is analogous to [7, Theorem 4.1].

Theorem 6. If X is an infinite compact Hausdorff space and T : X → X is a
point-closed upper semicontinuous set-valued function, then

T
( ⋂
n∈N

Tn(X)
)

=
⋂
n∈N

Tn(X) 6= ∅.
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It follows that T �⋂
n∈N T

n(X) is onto and each of its full orbits contains a cycle or
a Z sequence.

Proof. Since T is point-closed and upper semicontinuous, for each n ∈ N, Tn(X) is
a closed set. Thus, since ∅ 6= Tn+1(X) ⊆ Tn(X), if X is compact Hausdorff then⋂
n∈N T

n(X) 6= ∅.
Suppose x ∈

⋂
n∈N T

n(X). Let D0 = T−1− (x), and for each n ∈ N let Cn =

T
−(n+1)
− (x) and Dn = Tn(Cn) ∩ Dn−1. Thus 〈Dn : n ∈ N〉 is a decreasing (i.e.

non-increasing) sequence of closed compact nonempty subsets of the compact set
D0, and hence has nonempty intersection. If y ∈

⋂
n∈NDn, then x ∈ T (y), and

hence x ∈ T
(⋂

n∈N T
n(X)

)
. �

In the following two examples the set-valued function given is not point-closed.
These examples show that if T : X → X is an upper semicontinuous set-valued
function but is not point-closed, then Theorem 6 does not hold in general.

Example 7. Let X = {1 − 1
n : n ∈ N} ∪ {1} with the usual topology inherited

from R so that X is compact Hausdorff. Define a set-valued function T : X → X
by T (1) = {1− 1

n : n ∈ N}, and for each n ∈ N, T (1− 1
n ) = {1− 1

n+1}. Then T is

upper semicontinuous and
⋂
n∈N T

n(X) = ∅.

Example 8. Let X = {1− 1
n : n ∈ N}∪ {1}∪ {2− 1

n : n ≥ 2}∪ {2} with the usual

topology inherited from R so that X is compact Hausdorff. Let A = {2− 1
2k

: k ≥ 1}
Define a set-valued function T : X → X by:

T (y) =



{1− 1
n+1} if y = 1− 1

n , n ∈ N
{1− 1

n : n ∈ N} if y = 1

{2− 1
n−1} if y = 2− 1

n , n ≥ 2 and y /∈ A
{1} if y ∈ A
{1− 1

n : n ∈ N} ∪ {1} ∪ {2− 1
n : n ≥ 2} if y = 2.

Then T is upper semicontinuous,⋂
n∈N

Tn(X) =
{

1− 1

n
: n ∈ N

}
∪ {1} 6=

{
1− 1

n
: n ∈ N

}
= T

(⋂
n∈N

Tn(X)

)
and T �⋂

n∈N T
n(X) consists of a single orbit which does not contain a cycle or a Z

sequence.

Theorem 6 does not hold in general for lower semicontinuous set-valued functions
that are not point-closed.

Example 9. Let X = {1− 1
n : n ∈ N} ∪ [1, 2] with the topology inherited from R,

so that X is compact Hausdorff. Let {Dn : n ∈ N} be a partition of [1, 2] such that
each set Dn is dense in [1, 2]. Define T : X → X by:

T (x) =

{
[1, 2] ∪ {1− 1

n+1} if x = 1− 1
n , n ∈ N

Dn+1 if x ∈ Dn, n ∈ N.

Suppose U ⊆ X is open. If [1, 2]∩U 6= ∅, then [1, 2] ⊂ T−1− (U). If [1, 2]∩U = ∅,
then T−1− (U) is a subset of {1− 1

n : n ∈ N}. In either case T−1− (U) is open and so
T is lower semicontinuous. However,⋂

n∈N
Tn(X) = [1, 2] 6= [1, 2] rD1 = T

(⋂
n∈N

Tn(X)

)
.

Moreover T �[1,2] is lower-semicontinuous, has a single orbit which does not contain
a cycle or a Z sequence and

⋂
n∈N(T �[1,2])n([1, 2]) = ∅.
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In Example 9, neither T nor T �[1,2] are point-closed. The function T in each of
the following two examples is point-closed and lower semicontinuous.

Example 10. Let X be the space from Example 7. Let A =
{

1− 1
2k

: k ≥ 2
}
∪{1}.

Define a set-valued function T as follows:

T (x) =


{ 12}, if x ∈ A
{1− 1

n−1 , 1}, if x = 1− 1
n /∈ A and n > 1

{0}, if x = 0, 12 .

Then T is point-closed and lower semicontinuous,
⋂
n∈N T

n(X) = {0, 12} and

T

(⋂
n∈N

Tn(X)

)
= {0}.

Example 11. Let X be the space from Example 7. Let A =
{

1− 1
2k

: k ≥ 1
}
∪{1}

and B = {1− 1
2k+1 : k ≥ 3} Define a set-valued function T as follows:

T (x) =


6
7 , if x ∈ A ∪ {1}
{1− 1

2n+3}, if x = 1− 1
2n+1 ∈ B

{1− 1
n−2 , 1}, if 0 6= x = 1− 1

n /∈ (A ∪B).

Then T is point-closed and lower semicontinuous,
⋂
n∈N T

n(X) = B and

T

(⋂
n∈N

Tn(X)

)
= B r

{6

7

}
,

and T �⋂
n∈N T

n(X) has an orbit which has no cycles or Z sequences.

References

[1] A. Ahmed and C. Good, Continuity on the rational world, preprint.
[2] R. D. Anderson and G. Croquet, A plane continuum no two of whose non-degenerate sub-

continua are homeomorphic: An application of inverse limits, Proc. Amer. Math. Soc., 10,
(1959), 347–353.

[3] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis and V. V. Obukhovskii, Multivalued map-
pings, J. Math. Sci., (6), 24, (1984), 719–791.

[4] D. Ellis, Orbital topologies, Quart. J. Math. Oxford, (2), 4, (1953), 117–119.

[5] R. Engelking, General topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag,

Berlin, 1989.
[6] C. Good and S. Greenwood, Continuity in separable metrizable and Lindelöf spaces, Proc.
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