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Abstract—Transfer learning has been used for solving multiple
optimization and dynamic multi-objective optimization problems,
since transfer learning is believed to be able to transfer useful
information from one problem instance to help solving another
related problem instance. This paper aims to study how effective
transfer learning is in dynamic multi-objective optimization
(DMO). Through computation time analysis of transfer learning,
we show that the ‘inner’ optimization problem introduced by
transfer learning is very time-consuming. In order to enhance
the efficiency, two alternatives are computationally investigated
on a number of dynamic bi- and tri-objective test problems.
Experimental results have shown that the greatly enhanced effi-
ciency does not result in much degeneration on the performance
of transfer learning. Considering the high computational cost
of transfer learning, it is likely that the original purpose of
using transfer learning in DMO might be negated. In other
words, the computation time saved in optimization is eaten up by
computationally expensive transfer learning. As a result, there is
less gain than expected in the overall computational efficiency.
To verify this, experiments have been conducted, regarding using
computational cost of transfer learning to optimize randomly
generated solutions. The results have demonstrated that the
convergence and diversity of final solutions generated from the
random solutions are significantly better than those generated
from transferred solutions under the same total computational
budget.

Keywords—Evolutionary Algorithms; Transfer Learning; Dy-
namic Multi-objective Optimization; Prediction-based Method

I. INTRODUCTION

Transfer learning [1] is a kind of machine learning method

that is able to transfer the knowledge from a source task to

a target task. This inherent characteristic of transfer learning

makes it intuitive to apply transfer learning to explore useful

experience that have been obtained in one task/problem to

solve another related task/problem. The reason is that some

similar or related problems/tasks may share some common

features, which help to transfer experience from one problem

to help solving another problem. As a result, computational

resources can be significantly saved when solving similar

problems later.

One of the initial attempts at the application of transfer

learning to evolutionary computation is by Gupta et. al [2] on a

framework of evolutionary multi-tasking optimization (EMT).

Subsequently, additional work around transfer optimization for

EMT has been proposed. For instance, Da et. al [3] designed

an online learning method to seamlessly curb the negative

influence of transfer learning in EMT.

Although transfer learning has recently achieved some suc-

cesses in the field of EMT, it has seldomly been studied

in evolutionary multi-objective optimization (EMO). Gener-

ally speaking, dynamic multi-objective optimization problems

(DMOPs) [4] are a kind of multi-objective optimization prob-

lems which involve a series of problems whose objectives

change over time [5] [6]. As we normally assume that the

changing problems are related, there are good opportunities

for the application of transfer learning in dynamic multi-

objective optimization (DMO). One originally published paper

on DMO introduced transfer learning-based dynamic multi-

objective optimization algorithms (Tr-DMOEAs) [7] and an

improved version of Tr-DMOEAs [8] was also published.

Another work [9] applied the TrAdaboost-based algorithm for

transfer regression task [10] to generate an initial population

in response to changes in DMOPs.

The key challenge in DMO is how to constantly trace a

changing Pareto optimal front (POF) and/or Pareto optimal

set (POS) before the next environment change [11]. Aiming

at this goal, researchers have proposed a prediction-based

method [11], [12]. This kind of method predicts what the

good solutions in the next environment are after learning the

regularity of the environment changes. In most prediction-

based approaches, it is implicitly assumed that the evolution of

the solutions used to train and test the prediction model obeys

a fixed independent and identical probability distribution.

However, this is not always true under dynamic environments

in optimization, since the environmental changes may result

in different evolution patterns over time. Consequently, the

prediction model based on the incorrect assumption may cause

inaccurate prediction of optimal solutions. Transfer learning,

which does not make this assumption, is a good candidate for

solving DMOPs if it can learn and exploit the relationship

among different problems.

The main idea behind Tr-DMOEA is to transfer solutions in

the Pareto front (POF) of the previous environment to generate



an initial population for the next environment, through a

domain adaption method called transfer component analysis

(TCA). Specifically, Tr-DMOEA employs the TCA to learn a

mapping from the objective space of problems to the latent

space, where the difference between the source and target

problems is minimal. Then, solution in the target problem

is found through minimizing the distance of the optimized

solution in the source problem and the found solutions in the

target problem.

Experimental studies [7] have shown the superiority of Tr-

DMOEAs over the state-of-the-art in DMO. Even though the

existing transfer learning achieves a certain level of improve-

ment, it is unclear how efficient it is. The time complexity

of TCA and primal dual interior point method for solving

the inner problem (equation (2)) has been presented in [7].

However, several parameters in the interior point method are

unclear. Thus, the computational cost of solving the inner

optimization problem is unknown. It is also unclear whether

its efficiency could be enhanced. The original aim of using

transfer learning in DMO is to find good solutions such that

the population can reach the optimum as soon as possible in

the optimization process. If the computational cost of transfer

leaning is high, it prevents the purpose of using transfer

learning. If this is the case, the cost of transfer learning can be

used for optimization, which might obtain better results than

transfer learning.

Aiming at investigating these three points, in this paper,

we first analyze the computation time of TCA and that of

solving the inner problem (equation (2)) with the interior point

method, which consumes most of the cost in Tr-DMOEA.

Besides, another two Tr-DMOEA variants are computationally

studied, in which active set and sequential quadratic pro-

gramming (sqp) methods are used to solve the inner problem

(equation (2)), respectively. Lastly, the cost spent on transfer

learning will be used to optimize a random population to com-

pare the quality of transferred solutions and those originating

from randomization after optimization, which further aims to

figure out whether the purpose of using transfer learning in

DMO is guaranteed.

The reminder of this paper is organized as follows: Section

II briefly introduces how transfer learning is applied in DMO.

In Section III, we analyze computation time of three Tr-

DMOEA variants with different inner optimization methods.

Qualities of solutions obtained by these three variants are

compared in Section IV through experimental studies. In

Section V, we provide details on what happens to solutions

quality if computation time of transfer learning is used to

optimize randomly generated solutions. Section VI states the

summary and some potential future work.

II. TRANSFER LEARNING-BASED DYNAMIC

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

In this section, we briefly introduce the foundations of Tr-

DMOEA. The detailed process of Tr-DMOEA can be found

in [7].

In Domain Adaption Learning (DAL) [13], a transfer learn-

ing method, it is assumed that a transformation should be

found to a latent space where the difference between the

distributions of source and target domain is minimized. Once

this transformation is found, it can act as a bridge to connect

the source domain and the target domain. Then solutions that

have been optimized in one domain can be transferred to be

good solutions in another domain through this bridge.

The distance between the distributions of the source and

target domain can be calculated through the Maximum Mean

Discrepancy (MMD) [14], which evaluates the distance be-

tween two distributions in the Reproducing Kernel Hilbert

Space. Let p and q be two Borel probability distributions

defined on a domain X . FS = {Fs1, ..., F sm} and FT =

{Ft1, ..., F tn} are observations drawn from p and q. Let F
be a class of functions f : X → R. f can be written as

f(x) = 〈φ(x), f〉 in a RKHS, where φ(x) : X → H. The

estimated MMD in RKHS can be calculated as:

MMD(F , p, q) :=

∥

∥

∥

∥

∥

1

m
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In Tr-DMOEA, the distribution of the source and target

domains under consideration is the distribution of the objective

vectors of source and target solutions. Therefore, in Tr-

DMOEA, FS and FT are the objective vectors of randomly

generated solutions in the source environment s (i.e., the

problem before a change) and target environment t (i.e., the

problem after a change), respectively. The function φ is defined

as φ(F ) = WTK(F ), where W is a transformation matrix

which maps the objective vector into the latent space, and

K(F ) is defined as follows, where κ(·, ·) is a kernel function

[15]:

K(F ) = [κ(Fs1, F ), ..., κ(Fsm, F ), κ(Ft1, F ), ..., κ(Ftn, F )]T

Once W is found, Tr-DMOEA will initialize the population

in the target environment with solutions whose objective

vectors are close to that of any good solution from the source

environment in the latent space. For that, it needs to find

solutions tk whose objective vector is close to that of a solution

sl from POF of the problem in the source environment

(POFs), i.e., making the following formula minimal:

||φ(Fsl)− φ(Ftk)|| (2)

In this paper, we call the problem of searching for the solution

tk of this formula ‘inner problem’ in transfer learning.

III. COMPUTATION TIME ANALYSIS OF THREE

TR-DMOEA VARIANTS

In this section, we give the time complexity of Tr-DMOEA

and the computation time analysis of each component in Tr-

DMOEA. Both analyses prove that the used minimization

method is the most time-consuming part in Tr-DMOEA. Then,

two other Tr-DMOEA variants with different minimization

methods and the original Tr-DMOEA are compared regarding

the computation time.



A. Efficiency of Transfer Learning in DMO

The time complexity of TCA and primal dual interior point

has been analyzed in [7]. The major time cost of TCA is spent

on the eigenvalue decomposition. It costs O(d(m+n)2) time

when d nonzero eigenvectors are to be extracted, where m and

n are the numbers of the solutions which are generated in the

search space of source and target problems. For the primal

dual interior point method, suppose the constraint matrix A

has n rows and m columns, and n < m, it has O(
√
mL)

iterations and O(m3L) arithmetic operations, where L is the

total number of bits of the input. It is clear that the time

complexity of the interior point is larger than that of TCA.

In order to verify the cost of TCA and interior point method

from the perspective of computation time, an initial experiment

is conducted regarding how much computation time these two

parts consume in a single run. The experimental design is as

follows:

• RMMEDA [16] is selected as the optimization algorithm.

Here, only one problem dMOP2 is used as the test

problem as it is only used to reflect the proportion of

computation time of each component in Tr-DMOEA.

• Population iterates for 50 generations both before and

after an environmental change, and there is only one

change.

• The changing severity is set as 10. The population size

is set as 200.

• For the TCA parameters, the Gaussian kernel function is

set as the default value and the expected dimensionality

is set to be 20. The value of µ is set as 0.5.

• Computation time of each function of the whole algo-

rithm will be recorded by the Profile environment of

MATLAB 2018b.

Computation time of each part of the Tr-RMMEDA is recorded

and presented in Table I. It is clear from the table that the

interior point method consumes the most computation time,

which confirms the complexity analysis of TCA and interior

point in previous one section.

TABLE I
COMPUTATION TIME OF EACH PROCESS OF TR-RMMEDA WITH ONE

RUN, ONE CHANGE AND ONE PARAMETER ON PROBLEM DMOP2.

Process Computation time Proportion

Interior point 427.455 s 93.9%

RMMEDA 25.53 s 5.6 %

TCA 2.408 s 0.5%

Sum 455.393 s 100 %

B. Computation Time Comparison of Three Tr-DMOEA Vari-

ants

Given that the computation time of solving the inner opti-

mization problem in Tr-DMOEA is very large, it is unclear

whether the efficiency of solving the inner problem (equation

(2)) could be enhanced. To explore this, other two popular

optimization methods are used here, which are the active

set [17] and sequential quadratic programming (sqp) [17]

methods. We have conducted a set of experiments to validate

the efficiency and effectiveness of these three Tr-DMOEA

variants.

Here, we give a brief description of active set and sqp

method:

• The active set method [17] considers an optimization

problem with n constraints g1(x) ≥ 0, ...gn(x) ≥ 0. For a

point x in the feasible region, a constraint is called active

at x if gi(x) = 0 and inactive if gi(x) > 0. The proce-

dures for the active set are as follows: solve the equality

problem defined by the active set (approximately) with

a solution x∗; compute the Lagrange multipliers of the

active set; remove a subset of the constraints with neg-

ative Lagrange multipliers; search for the new boundary

based on x∗ along the feasible region boundary formed

by the active set and add the constraint related to the

new boundary to the approximated active set. Iterate these

procedures until the optima is found.

• Sqp [17] is an iterative method for constrained nonlin-

ear optimization. At each iteration, a basic sequential

quadratic programming algorithm defines an appropriate

search direction as a solution to the quadratic program-

ming subproblem.

Note that all three optimization methods (interior point, sqp

and active set) used in this paper are from the optimization

toolbox of MATLAB 2018b. The specific implementation of

these three methods and the difference between the sqp and

the active-set algorithms can be found in MATLAB’s online

documents1.

The IEEE CEC 2015 Benchmark problems [18] are selected

as test problems, which comprise 12 bi- and tri-objective

problems with different features. For the parameters of these

problems, there are 20 changes. In order to study the ef-

fectiveness of Tr-DMOEAs in different dynamics, there are

three dynamics with different severity of change (i.e., nt

= 1, 10 and 20). They represent large, medium and small

environment changes. τt refers to the frequency of change,

which means within each change, the population is forced

to run τt generations. Different combinations of nt and τt
are shown in Table II. At the beginning of the algorithm,

the population iterates for 50 generations, which enables the

population to converge.

TABLE II
CONFIGURATIONS OF BENCHMARK FUNCTION PARAMETERS. nt , τt AND

τT ARE THE SEVERITY OF CHANGE, FREQUENCY OF CHANGE AND

MAXIMUM NUMBER OF ITERATIONS, RESPECTIVELY.

nt τt τT

C1 10 5 150
C2 10 10 250
C3 10 25 550
C4 10 50 1050
C5 1 10 250
C6 1 50 1050
C7 20 10 250
C8 20 50 1050

The experimental setup is as follows:

1https://ww2.mathworks.cn/help/optim/ug/constrained-nonlinear-
optimization-algorithms.html.



TABLE III
MEAN AND STANDARD DEVIATIONS OF COMPUTATION TIME (IN SECONDS) OF THREE OPTIMIZATION METHODS FOR MINIMIZING THE DISTANCE OF

SOURCE AND TARGET PROBLEMS IN THE LATENT SPACE WITH 20 ENVIRONMENT CHANGES FOR ALL PROBLEMS WITH 2 PARAMETER SETTINGS.

Prob. C5 C6

Methods Interior sqp active Interior sqp active

FDA4 6.38e+03(8.93e+04) 8.77e+02(1.28e+03) 4.59e+02(7.89e+02) 6.42e+03(1.34e+05) 8.31e+02(7.18e+02) 4.25e+02(7.10e+02)

FDA5 3.48e+03(1.46e+05) 3.64e+02(5.91e+02) 2.00e+02(6.25e+02) 5.67e+03(2.38e+05) 7.62e+02(8.12e+02) 3.70e+02(1.58e+02)

FDA5iso 1.36e+03(8.46e+03) 4.18e+02(4.03e+02) 2.69e+02(1.64e+02) 1.31e+03(1.35e+04) 4.18e+02(2.77e+02) 2.69e+02(7.39e+01)

FDA5dec 3.03e+03(1.56e+04) 3.46e+02(8.70e+02) 1.44e+02(2.95e+02) 4.74e+03(5.48e+04) 7.01e+02(4.91e+03) 3.11e+02(2.48e+02)

DIMP2 9.62e+02(2.11e+04) 2.80e+01(2.25e+01) 2.11e+01(1.29e+01) 6.74e+03(1.78e+06) 1.49e+02(4.52e+02) 7.74e+01(2.76e+02)

DMOP2 7.26e+02(8.73e+03) 3.15e+02(1.35e+03) 1.03e+02(1.43e+02) 5.35e+03(2.68e+05) 3.69e+02(1.11e+03) 2.05e+02(2.84e+01)

DMOP2iso 1.34e+03(5.58e+03) 5.97e+02(2.33e+04) 4.44e+02(1.25e+03) 1.44e+03(5.92e+03) 5.78e+02(2.20e+04) 4.33e+02(1.47e+03)

DMOP2dec 5.81e+02(3.71e+03) 5.07e+01(5.06e+01) 1.86e+01(3.25e+00) 3.84e+03(6.01e+04) 3.47e+02(4.55e+02) 1.97e+02(1.84e+01)

DMOP3 8.64e+02(2.20e+04) 2.98e+02(1.46e+03) 1.13e+02(2.51e+02) 5.45e+03(4.75e+05) 3.88e+02(4.98e+02) 1.99e+02(1.07e+02)

HE2 2.11e+03(5.02e+04) 4.35e+02(5.15e+03) 3.28e+02(3.65e+03) 1.35e+04(1.52e+06) 2.29e+03(7.51e+04) 1.55e+03(5.45e+04)

HE7 5.84e+03(3.36e+05) 1.28e+03(5.17e+03) 1.15e+03(6.44e+03) 1.07e+04(1.94e+06) 2.81e+03(1.29e+04) 2.47e+03(4.82e+04)

HE9 2.91e+03(1.76e+05) 8.51e+02(5.40e+02) 6.68e+02(1.71e+03) 6.47e+03(7.73e+05) 1.79e+03(6.05e+02) 1.50e+03(1.06e+04)

There are 20 independent runs. Within each run, for each problem with each parameter setting, there are 20 changes. After each change, three optimization
algorithms (interior point, sqp and active set) are used to find the minimal distance, respectively. The computation time of each algorithm is recorded for each
change. The values in this table are the mean and standard deviation of total computation time of 20 changes under 20 runs. The smallest computation time
for each problem is highlighted in bold.

1) The population size is set as 200, as in previous work

[7];

2) In three Tr-DMOEA variants, three different optimiza-

tion methods interior point, active set and sqp methods

are used, respectively. The other steps of the Tr-DMOEA

are the same as in the previous work [7].

3) RMMEDA [16] as the optimization algorithm.

RMMEDA is a regularity model-based multi-objective

estimation of distribution algorithm. It is able to make

the population converge quickly before the next change,

avoiding the cases that unconverged solutions affect the

results. The state-of-the-art Tr-DMOEA [7] is adopted.

The computation time of three different optimization meth-

ods in these three Tr-DMOEA variants is only recorded when

solving the inner problem (equation (2)), for all test problems

with all parameter setting. The specific computation time

comparisons of these three optimization methods in DMO, the

comparison results of computation time of three Tr-DMOEA

variants are shown in Table III. Due to space limitations, only

results of C5 and C6 are presented. Results of other parameter

settings are similar to those of C5 and C6.

It is clear from Table III that for all test problems with

those parameter settings, the interior point method consumes

the most time among the three compared methods to solve

the inner optimization problem, while the active set method

is the most efficient optimization algorithm. In addition, the

time interior points method consumes is several times over that

another two methods consume. This shows that another two

inner optimization methods can greatly improve the efficiency

of transfer learning in DMO.

Friedman and Nemenyi statistical tests [19] were carried

out across benchmark problems. The computation time that

all algorithms get on one problem with one parameter setting

is regarded as an observation of the test. Therefore, there are

96 (12 problems and 8 parameters) observed data. Friedman

detects significant differences in median accuracy with a p-

value of 2.0311e-42. The Nemenyi post-tests are shown in

Figure 1. This shows that the sqp and active set method are

significantly more efficient than the interior point method.

Active set

Sqp

Interior

1 2 3

CD

Fig. 1. Friedman ranking among computation time of three optimization
methods (active set, sqp and interior point) from left to right. Friedman test’s
p-value is 2.0311e-42. Any pair of approaches whose distance between them
is larger than CD are considered to be significantly different based on the
Nemeyi post-hoc test.

IV. ANALYSIS OF THREE TR-DMOEA VARIANTS

In order to evaluate the influence of the improved efficiency

on the solution quality, in this section, transferred solutions of

these Tr-DMOEAs in the first generation after change are first

compared. The optimized solution of these Tr-DMOEAs in the

last generation after change are then compared.

A. Solutions Quality Comparison in the First Generation

Inverted Generational Distance (IGD) [20] is used to com-

pare the quality of solution sets obtained by these three Tr-

DMOEAs. IGD can measure the diversity and convergence

of a solution set found by an algorithm, so it can give us

a comprehensive understanding about the performance of the

compared algorithms. MIGD [20] is a modified version of

IGD, which is the average IGD values in all changes. The

smaller the MIGD the better the algorithm.

For each Tr-DMOEA on one problem with one parameter

setting, in the first generation after each change, a solution set

obtained by transfer learning in the experiment of section III-B

is used to calculate the IGD value. MIGD is the average of

these 20 IGD values under 20 changes. Therefore, these three

Tr-DMOEA variants will obtain one MIGD value on each

problem for each parameter. Each algorithm is independently

run 20 times on each problem instance with each parameter

setting. The mean and standard deviation of MIGD values of

transferred solutions obtained by the three Tr-DMOEAs in the

first generation after changes are shown in Table IV.

In order to show the significant superiority of one method

to others, Friedman and Nemenyi statistical tests were carried

out across benchmark problems following Demsar’s recom-

mendation [19]. The MIGD values that all algorithms get on



TABLE IV
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OF TRANSFERRED SOLUTIONS IN THE FIRST GENERATION AFTER CHANGE OBTAINED BY

THREE TR-RMMEDA VARIANTS WITH DIFFERENT INNER OPTIMIZATION ALGORITHMS.

Prob. C5 C6

Methods Interior sqp active Interior sqp active

FDA4 9.85e-02(3.99e-06) 1.00e-01(6.48e-06) 1.03e-01(1.32e-05) 1.06e-01(7.04e-06) 1.12e-01(1.35e-05) 1.18e-01(2.15e-05)

FDA5 1.28e+00(7.92e-03) 6.23e-01(1.65e-03) 5.72e-01(1.46e-03) 1.22e+00(8.41e-03) 5.15e-01(7.53e-04) 5.07e-01(3.91e-04)

FDA5iso 5.39e-01(2.67e-03) 5.42e-01(6.59e-03) 6.79e-01(4.93e-03) 5.07e-01(1.15e-03) 5.31e-01(2.75e-03) 6.42e-01(5.70e-03)

FDA5dec 2.11e+00(4.11e-02) 1.13e+00(1.44e-02) 9.91e-01(1.92e-02) 2.69e+00(4.38e-02) 6.93e-01(7.07e-04) 6.36e-01(2.28e-03)

DIMP2 1.53e+01(2.25e-01) 1.79e+01(4.41e-01) 1.69e+01(2.74e-01) 1.21e+01(1.53e-01) 1.44e+01(9.16e-02) 1.44e+01(2.01e-01)

DMOP2 3.92e+01(3.28e-01) 1.82e+01(2.64e-04) 1.82e+01(4.64e-04) 3.52e+01(1.01e+00) 1.81e+01(2.52e-04) 1.81e+01(1.85e-04)

DMOP2iso 8.50e-02(1.29e-05) 8.85e-02(8.31e-06) 8.68e-02(6.61e-06) 1.07e-01(2.36e-05) 1.10e-01(7.90e-06) 1.10e-01(1.18e-05)

DMOP2dec 8.86e+00(2.38e+00) 1.57e+05(4.70e+11) 8.08e+05(1.95e+12) 6.72e+00(4.26e-01) 2.76e+00(4.07e+00) 2.85e+00(4.32e+00)

DMOP3 3.70e+01(3.75e-01) 1.82e+01(4.23e-04) 1.82e+01(5.34e-04) 3.39e+01(8.30e-01) 1.82e+01(5.21e-04) 1.82e+01(5.19e-04)

HE2 7.20e-01(4.59e-02) 5.89e-01(1.69e-02) 4.72e-01(2.68e-02) 2.36e-01(9.37e-05) 2.81e-01(2.57e-04) 2.25e-01(3.64e-04)

HE7 3.05e-01(3.48e-05) 3.46e-01(6.97e-05) 3.48e-01(6.82e-05) 2.85e-01(2.29e-05) 3.18e-01(2.12e-05) 3.17e-01(3.26e-05)

HE9 3.12e-01(5.27e-05) 3.07e-01(1.73e-05) 3.19e-01(8.23e-05) 2.69e-01(3.58e-05) 2.84e-01(1.08e-05) 2.85e-01(1.55e-05)

For each problem with each parameter setting, three Tr-RMMEDA variants with different inner optimization methods (interior point, sqp and active set) get
initial populations after each change. MIGD is the average of IGDs of these initial populations with 20 independent runs under 20 changes. The better values
with smaller average that the method gets are highlighted in bold face.
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Fig. 2. Friedman ranking among MIGD values of three transferred solution
sets obtained by Tr-DMOEAs with different inner optimization methods
(interior point, sqp and active set) in the first generation after change from left
to right. Friedman test’s p-value is 1.7723e-6. Any pair of approaches whose
distance between them is larger than CD are considered to be significantly
different based on the Nemeyi post-hoc test.

one problem with one parameter setting are regarded as an

observation of the test. Therefore, there are 96 (12 problems

and 8 parameters) observed data. Friedman detects significant

differences in average accuracy with a p-value of 1.7723e-6.

The Nemenyi post-tests are shown in Figure 2.

Only results of C5 and C6 are presented due to space

limitation. It has been observed that in most cases the Tr-

DMOEA with the interior point method achieves the best

results, compared with the two other Tr-DMOEA variants. The

Friedman and Nemenyi statistical tests show that Tr-DMOEA

with interior point significantly outperforms the other two

variants.

B. Solutions Quality Comparison after Optimization

Similarly, in the experiment of section III-B, each Tr-

DMOEA will get a solution set on one problem with one

parameter setting, after optimization for τt generations. Each

algorithm is independently run 20 times on each problem

instance with each parameter setting. The obtained solution set

is used to calculate the IGD value. Also, the IGD values of 20

changes are averaged to get the MIGD for each problem with

one parameter. The mean and standard deviation of MIGD

values of transferred solutions obtained by three Tr-DMOEAs

in the last generation after change are shown in Table V.

Friedman and Nemenyi statistical tests [19] were carried

out across benchmark problems. The MIGD values that all

algorithms get on one problem with one parameter setting are

regarded as an observation of the test. Therefore, there are

96 (12 problems and 8 parameters) observed data. Friedman

detects significant differences in average accuracy with a p-

value of 1.1162e-4. The Nemenyi post-tests are shown in

Figure 3.

Sqp
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Active set

1 2 3

CD

Fig. 3. Friedman ranking among MIGD values of three optimized solution
sets obtained by Tr-DMOEAs with different inner optimization methods (sqp,
interior point and active set) in the last generation after change from left to
right. Friedman test’s p-value is 1.1162e-4. Any pair of approaches whose
distance between them is larger than CD are considered to be significantly
different based on the Nemeyi post-hoc test.

Only results of C5 and C6 are presented in Table V. It has

been observed that in most cases the Tr-DMOEA with sqp

method achieves the best results, compared with two other Tr-

DMOEA variants. The Friedman and Nemenyi statistical tests

show that Tr-DMOEA with sqp significantly outperforms the

other two variants.

After getting the computation time and solution quality

comparison results of three Tr-DMOEA variants, it can be

concluded that the interior point method in the original Tr-

DMOEA is ineffective and extremely inefficient. Although

interior point method can achieve the best transferred solutions

among three compared methods, it consumes several or even

more than ten times of what two other methods consume. In

addition, transferred solutions found by interior point method

become significantly worse than those found by sqp method

after optimization, which shows that it is not beneficial for the

interior point method to improve the efficiency of optimization,

compared with sqp method.

Considering the influence of τt on the quality of optimized

solutions obtained by three Tr-DMOEAs, it is clear from Table

V that when changes are medium (C1 - C4), the solution

quality of that with sqp increases as τt increases from 5 to 10

and to 25. However, when τt = 50, Tr-DMOEA with interior

point method remains the best, the same as what these methods

perform in the first generation after change. As for another

two cases when changes are huge (C5 - C6) and small (C7 -

C8), the Tr-DMOEA with interior point becomes worse while



TABLE V
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OF OPTIMIZED SOLUTIONS IN THE LAST GENERATION AFTER CHANGE OBTAINED BY THREE

TR-RMMEDA VARIANTS WITH DIFFERENT INNER OPTIMIZATION ALGORITHMS.

Prob. C5 C6

Methods Interior sqp active Interior sqp active

FDA4 5.06e-02(8.71e-09) 4.87e-02(1.80e-08) 4.97e-02(2.80e-08) 5.65e-02(8.32e-09) 5.53e-02(1.22e-08) 5.60e-02(9.64e-09)

FDA5 5.33e-01(1.27e-04) 3.84e-01(8.14e-06) 3.79e-01(2.42e-05) 1.91e-01(3.94e-06) 2.08e-01(1.19e-05) 2.31e-01(8.89e-06)

FDA5iso 2.22e-01(4.64e-06) 1.83e-01(1.02e-05) 2.05e-01(2.02e-05) 1.61e-01(1.42e-06) 1.51e-01(5.54e-06) 1.55e-01(3.01e-06)

FDA5dec 8.39e-01(1.48e-03) 6.48e-01(5.58e-05) 6.53e-01(3.82e-04) 2.79e-01(7.93e-06) 3.51e-01(2.10e-05) 3.53e-01(6.43e-06)

DIMP2 7.28e+00(7.10e-04) 7.93e+00(4.81e-03) 8.34e+00(4.94e-03) 4.21e+00(2.69e-04) 4.11e+00(3.85e-03) 4.29e+00(1.44e-04)

DMOP2 2.36e+01(1.07e-02) 1.80e+01(1.24e-07) 1.81e+01(2.31e-06) 1.85e+01(1.15e-02) 1.80e+01(7.61e-09) 1.80e+01(1.48e-10)

DMOP2iso 8.98e-02(1.90e-10) 9.04e-02(1.94e-10) 9.05e-02(9.52e-10) 1.12e-01(8.90e-11) 1.12e-01(3.06e-10) 1.12e-01(1.22e-10)

DMOP2dec 1.20e+00(4.20e-03) 3.50e-01(8.52e-05) 4.16e-01(1.15e-03) 2.37e-01(4.19e-05) 1.11e-01(3.23e-08) 1.18e-01(3.16e-05)

DMOP3 2.32e+01(1.65e-02) 1.80e+01(2.98e-07) 1.80e+01(1.93e-06) 1.86e+01(3.18e-03) 1.80e+01(1.53e-11) 1.80e+01(1.36e-08)

HE2 3.27e-01(1.26e-04) 2.28e-01(2.91e-04) 1.88e-01(2.47e-04) 7.80e-02(3.22e-07) 7.12e-02(2.55e-06) 6.78e-02(2.48e-06)

HE7 1.12e-01(4.66e-07) 1.11e-01(4.26e-07) 1.09e-01(2.36e-07) 4.82e-02(4.88e-08) 4.65e-02(3.88e-08) 4.66e-02(2.40e-08)

HE9 2.48e-01(3.91e-07) 2.39e-01(2.06e-07) 2.44e-01(3.44e-06) 2.21e-01(5.59e-08) 2.17e-01(6.19e-08) 2.18e-01(1.94e-07)

For each problem with each parameter setting, three Tr-RMMEDA variants with different inner optimization methods (interior point, sqp and active set) get
optimized populations by RMMEDA in the last generation of each change. MIGD is the average of IGDs of these populations with 20 independent runs
under 20 changes. The better values with smaller average that the method gets are highlighted in bold face.

another two variants become better.

V. SOLUTIONS QUALITY AFTER OPTIMIZATION FOR

WHICH TRANSFER LEARNING COST IS USED

It has been experimentally shown that the existing Tr-

DMOEA is extremely time-consuming. It is still unclear

whether it is worthy to consume such long time to use transfer

learning in DMO. This section is presented to explore this.

A. Computation Time of Transfer Learning Used for Optimiza-

tion

In order to figure out whether it is worthwhile to use

transfer learning in DMO, this section designs an experiment

to verify it. The main idea behind this experiment is to use

the computation time of transfer learning to optimize randomly

generated solutions.

Whenever there is a change, transfer leaning is used to

get the transferred initial population, while another initial

population is randomly generated in the search space. The

costs of transfer learning and random generation are recorded,

termed as Ctr and Cran. The cost is the running time

determined based on the stopwatch timer in Matlab, where

the Matlab command ‘tic’ and ‘toc’ starts and ends the timer,

respectively. Then, the cost Ctr - Cran is used to optimize

the randomly generated population. During the optimization,

both transferred population and random one will iterate for τt
generations to get two optimized solutions.

All test problems in [4] and all parameter settings in II are

used, which is the same as those in III-B. Also, for each test

problems, there are 20 environmental changes. In addition, at

the beginning of the algorithm, the population iterates for 50

generations, which enables the population to converge. Each

algorithm is independently run 20 times on each problem

instance with each parameter setting.

The sepecific experiment setup is as follows:

• The population size is set as 200, as in previous work

[7];

• In Tr-DMOEA, all the transfer learning procedures in-

cluding the interior point method are used, which are the

same as the original.

• RMMEDA [16] is used as the optimization algorithm.

B. Quality Comparison of Transferred And Random Solutions

with Same Cost Budget

The specific experimental design has been introduced in

the previous section. In this section we compare the quality

of optimized solutions with transfer and optimized solutions

from random generation, both of which are obtained under the

same computation time budget.

a) Solution Quality Comparison in the First Generation:

Here, we compare the quality of transferred solutions and

those solutions which are optimized using the transfer learning

computation time. IGD is used to measure the diversity and

convergence of those two solution sets. MIGD is the average

of these 20 IGD values under 20 changes for two solution

sets. The mean and standard deviation of MIGD values are

presented in Table VI, in which ‘Transfer’ and ‘Optimize’

refer to the MIGD values of these two solution sets. The better

values that the method gets are highlighted in bold face. In

order to indicate the significance between transferred solutions

and optimized solutions using transfer learning computation

time, the Wilcoxon rank sum test with the significance level

0.05 is carried out across problem instances, as recommended

by Demsar [19]. MIGD value of ‘Transfer’ and ‘Optimize’

for each problem with one parameter is regarded as one

observation data for the test. The result with h = 1 and p

= 1.2624e-08 shows that random solutions optimized using

transfer learning computation time are significantly better than

transferred solutions.

b) Solution Quality Comparison after Optimization:

Here, we compare the quality of optimized solutions with

transfer learning and those solutions which originate from

random generation. Also, IGD is used to measure the diversity

and convergence of those two solution sets. MIGD is the

average of these 20 IGD values under 20 changes for two

solution sets. The mean and standard deviation of MIGD

values are presented in Table VII, in which ‘Transfer’ and

‘Optimize’ refer to the MIGD values of these two solution

sets. The better values that the method gets are highlighted in

bold face.



TABLE VI
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OF TRANSFERRED SOLUTIONS AND THOSE SOLUTIONS OPTIMIZED USING THE COMPUTATION

TIME OF TRANSFER LEARNING AFTER BEING RANDOMLY GENERATED.

Prob. C1 C2 C3 C4

Methods Transfer Random Transfer Random Transfer Random Transfer Random

FDA4 8.80e-02(2.50e-04) 7.30e-02(2.45e-08) 8.20e-02(2.05e-04) 7.27e-02(2.01e-07) 9.72e-02(3.95e-04) 7.29e-02(5.38e-09) 8.53e-02(2.38e-04) 7.30e-02(4.06e-09)

FDA5 2.62e-01(1.83e-03) 1.77e-01(4.85e-06) 2.03e-01(1.68e-03) 1.73e-01(8.88e-07) 1.94e-01(1.61e-03) 1.75e-01(3.22e-06) 1.89e-01(2.54e-03) 1.74e-01(2.77e-06)

FDA5iso 5.80e-02(6.97e-05) 2.59e-01(1.57e-06) 5.91e-02(3.24e-05) 2.56e-01(1.67e-06) 6.15e-02(5.93e-05) 2.69e-01(2.35e-06) 6.18e-02(5.33e-05) 2.52e-01(1.85e-06)

FDA5dec 5.41e-01(2.23e-02) 2.06e-01(7.60e-06) 5.79e-01(2.71e-02) 1.98e-01(4.12e-06) 5.20e-01(1.16e-02) 2.00e-01(3.92e-07) 5.13e-01(9.76e-03) 1.90e-01(1.41e-06)

DIMP2 9.61e+00(2.37e+00) 3.57e+00(9.26e-04) 9.97e+00(1.07e+00) 3.53e+00(6.77e-05) 9.03e+00(3.57e+00) 3.54e+00(5.98e-04) 9.77e+00(1.32e+00) 3.56e+00(6.11e-04)

DMOP2 4.05e-01(3.69e-02) 1.46e-02(1.59e-04) 3.02e-01(1.78e-02) 1.81e-02(2.69e-04) 2.34e-01(5.82e-03) 5.12e-03(4.52e-06) 2.29e-01(5.17e-03) 1.15e-02(8.32e-05)

DMOP2iso 2.19e-03(7.48e-09) 4.45e-03(3.35e-10) 2.32e-03(7.88e-08) 4.44e-03(6.10e-10) 2.49e-03(1.48e-07) 4.44e-03(1.48e-10) 2.55e-03(1.35e-07) 4.44e-03(2.34e-10)

DMOP2dec 6.45e-01(1.24e-01) 2.54e-02(1.87e-05) 5.12e-01(4.01e-02) 2.28e-02(2.81e-05) 3.48e-01(5.99e-03) 2.35e-02(2.17e-05) 2.94e-01(5.18e-03) 1.48e-02(4.17e-06)

DMOP3 3.14e-01(5.55e-02) 3.28e-03(5.27e-11) 1.38e-01(3.28e-03) 3.28e-03(5.63e-11) 1.39e-01(1.32e-02) 3.29e-03(1.43e-11) 7.20e-02(4.84e-03) 3.30e-03(8.28e-11)

HE2 4.59e-01(2.49e-02) 5.98e-02(6.63e-08) 4.97e-01(1.38e-02) 5.89e-02(2.62e-08) 3.23e-01(1.07e-03) 5.77e-02(5.15e-08) 2.70e-01(5.19e-03) 5.66e-02(8.82e-10)

HE7 2.24e-01(1.94e-04) 3.70e-02(1.41e-08) 2.29e-01(2.97e-04) 3.72e-02(3.44e-09) 2.48e-01(3.49e-04) 3.70e-02(1.38e-08) 2.64e-01(3.56e-04) 3.71e-02(7.82e-10)

HE9 3.30e-01(2.51e-04) 2.34e-01(7.89e-08) 3.06e-01(4.54e-04) 2.34e-01(1.43e-07) 2.83e-01(2.29e-04) 2.33e-01(1.82e-07) 2.80e-01(4.85e-04) 2.32e-01(7.33e-08)

Prob. C5 C6 C7 C8

Methods Transfer Random Transfer Random Transfer Random Transfer Random

FDA4 7.23e-02(1.18e-04) 5.99e-02(4.24e-09) 6.86e-02(1.20e-04) 6.01e-02(5.67e-09) 7.01e-02(1.55e-04) 7.32e-02(5.29e-09) 7.35e-02(3.09e-04) 7.33e-02(5.46e-09)

FDA5 1.35e+00(4.76e-01) 1.43e-01(4.38e-07) 1.86e+00(2.89e-01) 1.44e-01(1.24e-06) 1.24e+00(5.75e-01) 1.70e-01(5.22e-07) 6.70e-01(9.62e-03) 1.74e-01(7.32e-06)

FDA5iso 5.33e-01(1.37e-02) 1.78e-01(1.47e-05) 5.44e-01(6.02e-02) 1.85e-01(6.78e-06) 6.49e-01(2.01e-02) 2.51e-01(9.83e-06) 5.51e-01(4.31e-03) 2.49e-01(9.90e-06)

FDA5dec 2.28e+00(2.43e-01) 1.59e-01(9.46e-06) 2.33e+00(2.77e-01) 1.59e-01(6.53e-06) 2.14e+00(3.27e-01) 1.87e-01(1.27e-06) 1.21e+00(2.80e-01) 1.90e-01(7.73e-06)

DIMP2 1.09e+01(9.25e-01) 3.84e+00(1.07e-04) 9.81e+00(9.88e-01) 3.83e+00(1.06e-04) 1.30e+01(1.59e+00) 3.78e+00(3.37e-04) 1.27e+01(1.63e+00) 3.78e+00(6.19e-04)

DMOP2 1.10e+02(7.79e+01) 1.81e+01(4.03e-04) 1.13e+02(1.15e+02) 1.80e+01(8.19e-05) 2.70e+00(2.18e+00) 5.15e-03(4.60e-06) 3.64e+00(1.41e+00) 5.26e-03(4.97e-06)

DMOP2iso 4.36e-01(5.21e-08) 9.08e-02(4.66e-10) 4.36e-01(9.49e-08) 1.12e-01(8.16e-11) 2.67e-03(2.45e-07) 4.44e-03(1.10e-10) 2.89e-03(5.71e-07) 4.45e-03(9.63e-11)

DMOP2dec 5.38e+00(3.82e+01) 1.74e-01(7.42e-10) 3.94e+00(5.68e+00) 1.94e-01(1.38e-10) 2.04e+00(8.07e-01) 2.33e-02(7.25e-05) 2.69e+00(2.12e+00) 1.71e-02(1.12e-05)

DMOP3 1.12e+02(4.89e+01) 1.80e+01(2.02e-08) 1.13e+02(2.98e+02) 1.80e+01(4.12e-09) 1.44e+00(8.44e-01) 3.33e-03(2.49e-11) 2.22e+00(9.56e-01) 3.30e-03(6.02e-11)

HE2 1.25e-01(7.15e-04) 5.64e-02(1.19e-08) 1.21e-01(5.20e-04) 5.49e-02(4.11e-10) 6.06e-01(5.69e-03) 5.84e-02(3.57e-08) 5.02e-01(2.14e-03) 5.66e-02(6.04e-10)

HE7 1.72e-01(1.14e-03) 3.42e-02(1.17e-08) 1.82e-01(1.94e-04) 3.42e-02(2.40e-08) 2.53e-01(4.60e-04) 3.70e-02(4.02e-09) 2.73e-01(5.03e-04) 3.70e-02(1.33e-08)

HE9 2.76e-01(1.01e-04) 2.09e-01(2.78e-07) 2.58e-01(6.38e-04) 2.08e-01(1.83e-07) 3.19e-01(7.59e-05) 2.34e-01(2.96e-08) 2.79e-01(2.94e-04) 2.31e-01(1.58e-07)

There are 20 independent runs. Within each run, for each problem with each parameter setting, one solution set is the transferred solutions. Another solution
set is obtained by optimization on randomly generated solutions using the computation time that transfer learning consumes. The better values with smaller
average that the method gets are highlighted in bold face.

In order to indicate the significance between optimized solu-

tions with transfer learning and those from random generation,

the Wilcoxon rank sum test with the significance level 0.05 is

carried out. MIGD value of ‘Transfer’ and ‘Optimize’ for each

problem with one parameter is regarded as one observation

data for the test. The result with h = 1 and p = 0.0085

shows that solutions which originates from random generation

are significantly better than optimized solutions with transfer

learning in the last generation of optimization.

It can be concluded that under the same computation time

budget, random solution after optimization will obtain better

results than those from transfer learning, no matter whether

the optimization process is conducted on transferred solutions

or not. In the original paper, Tr-DMOEA is better than the

algorithm with random solutions. The difference is that in the

original paper, the same evaluation times and generations are

given to these two algorithms, while the same computation

time budget is given in this paper. This shows that it is not

worth to consume such long time on transfer learning, while

achieving worse results than consuming these computation

time on optimizing. In other words, it vanishes the original

purpose of using transfer learning in DMO, reducing the

efforts of optimization.

On the other side, when comparing Tables VI and VII,

it is clear that the improvement of transferred solutions are

more than that of optimized solution from randomization after

τt generations’ optimization. In addition, as τt increases, the

quality of transferred solutions becomes better while those

from randomization remain unchanged. These two observa-

tions show that transferred solutions are far from the optimum

of problems, while solutions from randomization have already

been nearly Pareto optimal.

VI. CONCLUSION

This paper studies how efficient transfer learning is in

DMO through time complexity and computation time analysis,

showing that the interior point method in transfer learning [7]

is extremely time-consuming when solving the inner problem

(equation (2)). Another two inner optimization methods are

computationally studied, to figure out whether the efficiency of

transfer learning can be improved and whether the improved

efficiency will affect the effectiveness. Experimental results

shows that the sqp method achieve a better balance between

the transfer learning efficiency and effectiveness of transferred

solutions. Lastly, another experiment is conducted to verify

whether the purpose of using transfer learning in DMO

vanishes, which leverages the computation time of transfer

learning to optimize randomly generated solutions. The results

show that randomly generated solutions after being optimized

using transfer learning time are greatly better than transferred

ones, which therefore encourages the proposal of more effi-

cient transfer learning algorithms for DMO. Even though the

existing Tr-DMOEA is computationally consuming, it should

be noted that it could still be a good alternative to solve

problems with extremely expensive objective functions [21].

In the future, a potential work is to find another optimization

algorithm to solve the inner problem (equation (2)) efficiently

and effectively. In addition, other transfer learning methods

in the field of machine learning can also be studied to solve

DMOPs. The efficiency of transfer learning should be also

considered. At last, it is important to explore real-world

applications of transfer learning based DMO, e.g., in smart



TABLE VII
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OF OPTIMIZED SOLUTIONS WITH TRANSFER LEARNING AND RANDOM SOLUTIONS THAT FIRST

ITERATE FOR SOME GENERATIONS WHICH CONSUME THE SAME COMPUTATION TIME AS TRANSFER LEARNING, AND THEN ARE OPTIMIZED THE SAME

GENERATIONS AS THOSE WITH TRANSFER.

Prob. C1 C2 C3 C4

Methods Transfer Random Transfer Random Transfer Random Transfer Random

FDA4 5.85e-02(6.23e-05) 7.30e-02(2.52e-08) 5.73e-02(4.51e-06) 7.26e-02(3.46e-08) 6.38e-02(6.46e-06) 7.28e-02(5.53e-09) 6.56e-02(1.88e-06) 7.32e-02(4.77e-09)

FDA5 1.17e-01(3.18e-04) 1.82e-01(2.80e-06) 7.23e-02(2.49e-05) 1.74e-01(1.04e-06) 7.33e-02(2.75e-06) 1.82e-01(3.32e-07) 7.77e-02(3.69e-06) 1.76e-01(2.84e-06)

FDA5iso 6.12e-02(8.74e-06) 2.61e-01(2.33e-06) 7.45e-02(9.93e-06) 2.57e-01(4.63e-06) 8.48e-02(4.85e-06) 2.77e-01(1.60e-05) 8.76e-02(3.31e-06) 2.62e-01(2.35e-06)

FDA5dec 4.86e-01(9.24e-03) 2.05e-01(4.34e-06) 4.00e-01(8.08e-03) 1.94e-01(3.20e-06) 3.05e-01(5.72e-03) 2.00e-01(1.61e-06) 1.91e-01(1.96e-03) 1.93e-01(1.43e-06)

DIMP2 7.02e+00(8.61e-01) 3.57e+00(9.26e-04) 5.43e+00(4.27e-01) 3.53e+00(6.75e-05) 3.64e+00(1.26e-01) 3.54e+00(5.96e-04) 3.18e+00(6.77e-03) 3.56e+00(6.10e-04)

DMOP2 2.77e-01(2.33e-02) 1.46e-02(1.57e-04) 1.17e-01(1.35e-03) 1.80e-02(2.68e-04) 8.78e-03(4.43e-05) 5.12e-03(4.50e-06) 4.17e-03(5.86e-06) 1.15e-02(8.40e-05)

DMOP2iso 2.58e-03(5.02e-08) 4.45e-03(1.12e-10) 3.12e-03(1.45e-07) 4.45e-03(1.06e-10) 3.73e-03(6.53e-08) 4.47e-03(1.32e-10) 4.06e-03(2.81e-08) 4.49e-03(1.42e-10)

DMOP2dec 4.77e-01(4.35e-02) 2.41e-02(1.87e-05) 2.87e-01(2.41e-02) 2.27e-02(2.69e-05) 6.02e-02(4.78e-04) 2.29e-02(2.37e-05) 1.27e-02(1.87e-04) 1.48e-02(4.15e-06)

DMOP3 2.19e-01(4.21e-02) 3.29e-03(3.28e-11) 4.90e-02(3.69e-04) 3.30e-03(3.16e-11) 4.21e-03(5.04e-07) 3.29e-03(3.09e-11) 3.51e-03(5.93e-09) 3.30e-03(1.43e-11)

HE2 4.22e-01(1.83e-02) 5.97e-02(7.59e-08) 3.93e-01(8.25e-03) 5.88e-02(2.45e-08) 2.19e-01(2.25e-03) 5.77e-02(4.34e-08) 1.04e-01(6.91e-04) 5.66e-02(4.21e-10)

HE7 1.62e-01(9.35e-05) 3.71e-02(1.93e-08) 1.23e-01(8.81e-05) 3.72e-02(4.49e-09) 7.07e-02(5.22e-05) 3.70e-02(3.81e-09) 5.01e-02(9.82e-06) 3.70e-02(9.77e-09)

HE9 3.02e-01(1.43e-04) 2.34e-01(7.38e-08) 2.72e-01(1.82e-04) 2.34e-01(1.30e-07) 2.43e-01(4.81e-05) 2.33e-01(1.45e-07) 2.37e-01(2.59e-05) 2.33e-01(1.64e-07)

Prob. C5 C6 C7 C8

Methods Transfer Random Transfer Random Transfer Random Transfer Random

FDA4 5.06e-02(2.99e-07) 6.01e-02(1.04e-08) 5.63e-02(2.88e-06) 5.99e-02(1.14e-08) 5.08e-02(1.33e-06) 7.31e-02(7.13e-09) 5.62e-02(1.89e-06) 7.28e-02(2.19e-08)

FDA5 7.45e-01(5.23e-02) 1.43e-01(3.21e-06) 3.35e-01(3.64e-03) 1.39e-01(2.60e-06) 8.96e-01(2.55e-01) 1.71e-01(1.07e-06) 2.84e-01(2.00e-03) 1.72e-01(6.59e-06)

FDA5iso 3.88e-01(8.47e-03) 1.80e-01(1.55e-05) 2.24e-01(1.08e-03) 1.91e-01(4.60e-06) 4.34e-01(6.13e-03) 2.51e-01(1.01e-05) 2.48e-01(1.82e-03) 2.61e-01(8.09e-06)

FDA5dec 1.57e+00(4.95e-01) 1.61e-01(2.65e-06) 4.35e-01(9.41e-03) 1.57e-01(3.00e-06) 1.39e+00(3.41e-01) 1.89e-01(5.32e-06) 4.09e-01(9.33e-03) 1.89e-01(1.93e-06)

DIMP2 7.49e+00(7.21e-01) 3.84e+00(1.03e-04) 4.02e+00(3.28e-01) 3.83e+00(1.06e-04) 9.18e+00(1.04e+00) 3.78e+00(3.36e-04) 5.89e+00(1.17e-01) 3.78e+00(6.20e-04)

DMOP2 9.16e+01(4.48e+01) 1.81e+01(4.05e-04) 7.42e+01(1.45e+01) 1.80e+01(8.33e-05) 7.34e-01(1.39e-01) 5.13e-03(4.52e-06) 4.46e-02(1.11e-02) 5.23e-03(4.74e-06)

DMOP2iso 4.36e-01(1.11e-08) 9.08e-02(1.79e-10) 4.36e-01(1.96e-09) 1.12e-01(7.45e-11) 3.39e-03(1.99e-07) 4.46e-03(4.45e-10) 4.35e-03(7.25e-08) 4.50e-03(2.86e-10)

DMOP2dec 7.66e-01(1.60e+00) 1.74e-01(4.99e-10) 4.32e-01(8.19e-08) 1.94e-01(1.74e-10) 5.40e-01(3.17e-02) 2.30e-02(6.80e-05) 8.76e-03(3.02e-05) 1.68e-02(9.73e-06)

DMOP3 9.05e+01(1.17e+01) 1.80e+01(1.38e-08) 7.33e+01(1.01e+00) 1.80e+01(1.28e-09) 3.78e-01(7.07e-02) 3.33e-03(1.51e-11) 5.44e-03(3.04e-05) 3.31e-03(2.85e-11)

HE2 6.95e-02(1.68e-04) 5.64e-02(1.11e-08) 5.36e-02(2.14e-06) 5.49e-02(4.23e-09) 5.38e-01(5.53e-03) 5.84e-02(3.39e-08) 1.57e-01(1.19e-03) 5.66e-02(5.72e-10)

HE7 8.26e-02(1.95e-04) 3.43e-02(7.46e-09) 3.73e-02(1.17e-06) 3.42e-02(2.07e-08) 1.43e-01(2.91e-04) 3.69e-02(3.33e-09) 5.21e-02(8.34e-06) 3.70e-02(2.96e-09)

HE9 2.21e-01(1.54e-04) 2.09e-01(2.57e-07) 1.80e-01(4.12e-05) 2.08e-01(1.71e-07) 2.86e-01(2.78e-05) 2.34e-01(3.44e-08) 2.54e-01(9.71e-05) 2.31e-01(1.70e-07)

There are 20 independent runs. Within each run, for each problem with each parameter setting, ‘Transfer’ solution set means the optimized solutions with
transfer learning. ‘Random’ solution set means random generated solutions that first iterate for some generations which consume the same computation time
as transfer learning, and then are optimized the same generations as those with transfer. The better values with smaller average that the method gets are
highlighted in bold face.

manufacturing and smart logistics.
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[19] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.

[20] Q. Li, J. Zou, S. Yang, J. Zheng, and G. Ruan, “A predictive strategy
based on special points for evolutionary dynamic multi-objective opti-
mization,” Soft Computing, vol. 23, no. 11, pp. 3723–3739, 2019.

[21] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.


