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ABSTRACT: Two efficient enzyme conjugation techniques have been explored by 

exploiting the reactions of bromomaleimides. The conjugations utilize monobromo- 

and dibromo- maleimides, which have been reacted with reduced disulfide bonds or 

terminal amines in α-chymotrypsin and human lysozyme. These reactions allow the 

formation of dithio- (DTM), monoamino- (MAM), and aminobromo- (ABM) 

maleimides, which are solvent-dependent fluorophores and have a handle for further 

functionalization, which allowed fluorogenic PEGylation via this technique. In this 

work, the efficiency of these maleimide conjugations was monitored and the 

fluorescence of the resulting conjugates have been examined. The quantum yields of 

the small molecule maleimide conjugates have been calculated, but are low due to 

solvent quenching effects. Catalytic activities of the conjugate enzymes have been 

compared to their respective native enzymes, which show no discernible effect of the 

modifications on enzymatic activity or stability at room temperature.  
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INTRODUCTION 

Fluorescent labelling of proteins is a widespread practice. It is used for many 

applications, including visualizing intracellular trafficking,(1) tracking cellular 

uptake,(2,3) measuring conformational changes,(4–6) and environmental sensing.(7) 

Commonly this is achieved by conjugating fluorescent proteins to the target.(8) Not 

only may the large size of such proteins have a significant effect on the 

properties/function of the target, but they are prone to photobleaching.(9,10) 

Another strategy is to conjugate a small molecule fluorophore to the studied protein 

via an amino acid residue.(11,12) Often this is achieved though the complex process 

of incorporating a non-natural amino acid into the protein through genetic 

expression, which can be selectively conjugated.(13–15) In unmodified enzymes the 

two most commonly accessed sites for labelling are lysine and cysteine residues, 

which can be utilized if minimal site specificity is required.(16) 



In addition to fluorescent labelling, conjugation to enzymes is frequently 

utilized for the attachment of poly(ethylene glycol) (PEG) to therapeutic targets, called 

PEGylation. PEGylation can enhance the therapeutic properties of a molecule. This 

can include better physical and thermal stability,(17) protection against 

degradation,(18) increased solubility,(19) longer half-life in vivo,(20) and even 

increased potency.(21) As of 2013, there were nine PEGylated proteins approved by 

the FDA for pharmaceutical use.(22) All of these are conjugated via either lysine 

residues, the N-terminus or cysteine residues.(22)  

Cysteine is regarded as the most nucleophilic amino acid in the majority of 

proteins and therefore is commonly regarded as the easiest to modify. The most 

widely used cysteine modification technique is maleimide conjugation; in which 

cysteine will undergo a highly selective addition to the maleimide double bond.(23,24) 

This technique has been utilized for the creation of responsive polymer-protein 

bioconjugates,(25) for PEGylation,(26) target specific fluorescent labelling,(27) and 

the radiolabeling of proteins.(28) In recent literature, it has been shown that 

monobromomaleimides (MBM) and dibromomaleimides (DBM) also undergo efficient, 

selective reactions with cysteine residues.(29,30) In comparison to maleimide 

conjugations, the double bond of the maleimide is retained and hence the reaction 

is reversible. This has led to applications in antibody conjugations, where the 

reaction of two reduced cysteines with dibromomaleimide forms a bridged 

dithiomaleimide (DTM) conjugate. (31–33) The bridging of disulfides using DBMs has 

been optimized to provide a high yielding, site-selective method for drug-antibody 

conjugation, allowing control over drug loading. By linking trastuzumab with 

antibody monomethyl auristatin E via a DTM linker, Nunes et. al. synthesized an 

antibody-drug conjugate (ADC), which showed cancer cell selectivity and excellent 

potency in vitro.(34) Haddleton and co-workers have applied this technique to salmon 

calcitonin, a small helical peptide,(35) and oxytocin, a therapeutic cyclic peptide 

which helps reduce postpartum hemorrhaging.(36,37) When PEG is conjugated to 

oxytocin using this technique, the solution stability of the peptide was greatly 

improved, however effects on in vivo activity have not been reported. The technique 

has also recently been reported as a peptide stapling method to stabilize α-helices 

and help prevent proteolysis.(38) 

 In addition to their use in disulfide bridging, DTMs have been proven to be a 

class of highly emissive fluorophore.(35) It has been shown that the solubility and 

further functionalization of DTMs could be easily varied through selection of N- and 

S- substituents. Generally, the fluorophore has bright solvent-dependent emission, 



around 500 nm in dioxane, with polar protic solvents causing a red shift and 

quenching of emission. The fluorescence has also been demonstrated to be quenched 

by aromatic thiol substitution (e.g. dithiophenolmaleimide).(39) The dye has found 

applications in polymer research after the supramolecular assembly of DTM-

functionalized polymers was shown to dictate emissivity, emission polarization, and 

fluorescence lifetime.(35,39–43) This has been attributed to the polymeric scaffold 

preventing both solvent and collisional quenching effects. In vivo studies of DTM 

polymers enabled differentiation of the micellar and unimeric species, based on 

fluorescence lifetime imaging microscopy (FLIM), as a consequence of the shorter 

fluorescence lifetimes of the unimeric species.(39) The presence of a DTM dye also 

allows detection of guest molecules by Förster resonance energy transfer (FRET).(44) 

In the meantime, it has been shown that monoaminomaleimides (MAMs) and 

aminobromomaleimides (ABMs), which are synthesized by addition–elimination 

reactions with MBM and DBM respectively, are also highly emissive.(45) These 

moieties have large Stokes shifts (~100 nm) and show solvent-dependent emission 

wavelengths and intensities, with polar protic solvents causing a red shift and large 

reduction in emission intensity. In parallel to DTMs, they are also quenched by direct 

conjugation of aromatic amines to the maleimide ring, but these 

arylaminomaleimides have been shown to exhibit aggregation induced fluorescence 

in the solid state.(46,47) We proposed, based on bromomaleimide conjugations with 

cysteine, that a conjugation induced fluorescence technique could be realized 

utilizing lysine residues. Amine-reactive conjugation techniques are often used for 

conjugations, most frequently through N-hydroxysuccinimide (NHS) activated esters 

or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling.(16,48) These 

techniques require activation of a carboxylic acid group prior to conjugation through 

additives, and as a result of the large number of lysine residues usually present in 

proteins, it is typically difficult to control the location and number of 

modifications.(48) A fluorogenic technique that is high yielding and requires no 

additives or activation, could offer an attractive alternative approach to the 

conjugation of large fluorescent dyes or fluorescent proteins as used in many current 

applications,(49) and would provide a fluorogenic PEGylation method.  

In addition to their fluorescence properties, it is important to consider the 

effect of bromomaleimide conjugations on protein structure and enzymatic function. 

In previous research DTMs have not been conjugated specifically to functional 

enzymes, but they have been conjugated to peptides, for example salmon 

calcitonin(50) and oxytocin(36,37) however, the effect on activity of these peptides 



has not been studied. Therefore, it is unknown whether the initial activity or long 

term stability of a therapeutic peptides or an enzyme would be impacted through the 

introduction of these moieties upon conjugation. It is hypothesized that the bridging 

of disulfide bonds with a maleimide moiety could introduce additional stability, 

through preventing disulfide reduction. This study will investigate the formation of 

functionalized MAMs, ABMs and DTMs in enzyme conjugations and how the 

substituents affect the integrity of two enzymes, α-chymotrypsin (α-CT) and human 

lysozyme (HLZ), which are enzymes commonly used in conjugation based 

applications and have been extensively characterized.(51–58) 

 

MATERIALS AND METHODS 

α-chymotrypsin (Type II from bovine pancreas, lyophilized powder) and 

human lysozyme (expressed in rice, lyophilized powder) were used as received from 

Sigma-Aldrich and stored in a freezer at approximately -18 C. All other chemicals 

were obtained from either: Sigma Aldrich, Fisher Chemicals, Acros Chemicals, Alfa 

Aesar or IRIS biotech GmbH and used as received.  

2-3-dibromo-pyrrole-2,5-dionefunctionalized PEG350 (1)  

Triphenyl phosphine (1.44 g, 5.5 mmol) was dissolved in dry tetrahydrofuran 

(100 mL) and cooled to -78 °C. Diisopropyl azodicarboxylate (1.14 mL, 5.5 mmol) was 

added dropwise and the solution was left to stir for 5 minutes. Methoxypoly(ethylene 

glycol) (Mn= 350 g/mol, 1.75 g, 5.5 mmol) was added dropwise to the cooled solution 

and left to stir for a further 5 minutes. Neopentyl alcohol (0.22 g, 2.5 mmol) was 

added and left to stir for a further 10 minutes. 3,4-dibromomaleimide (1.39 g, 5.5 

mmol) was added to the solution and left to stir at -78 °C for 1 hour. The solution 

was allowed to warm to room temperature and left to stir for 24 hours. The solvent 

was removed in vacuo, and the resultant oil purified by silica column by flash 

chromatography (2:1 to 0:1 gradient of petroleum ether 40-60°C : EtOAc) to yield a 

yellow oil 1 (287 mg, 17 %). Rf (2:1 petroleum ether 40-60°C : EtOAc): 0.1 to 0.4. 

1H NMR (CDCl3, 300MHz, ppm)- δ 3.82 (t, 3JH-H= 5.6Hz, 2H, NCH2), 3.71-3.53 (br m, 

31H, CH2-CH2), 3.38 (s, 3H, CH3-O). 

13C NMR (CDCl3, 125MHz) δ (ppm) = 163.8, 129.4, 71.9, 70.6-70.5, 70.1, 67.5, 59.0, 

38.9  

HR-MS (MaXis) - [M+Na]+ calculated m/z 688.0764, observed m/z 688.0768 

FTIR (cm-1) –2872 (υC-H), 1716 (υC=O), 1104 (υC-O) 

Synthesis of 3-bromo-1-methyl-1H-pyrrole-2,5-dione (2)  



The synthesis was based on a previously reported literature procedure.(59) To 

a solution of bromomaleic anhydride (1 g, 5.65 mmol) in acetic acid (20 mL) was 

added methyl amine in ethanol (695 µl, 5.65 mmol). The solution was refluxed for 3 

hours after which the solvent was removed in vacuo. The resultant solid was purified 

by silica column chromatography and eluted with 10% ethyl acetate in petroleum 

ether 40-60 °C to give a cream colored solid 2 (190 mg, 15 %). Rf : 0.2 

1H NMR (CDCl3, 500 MHz) δ (ppm) = 6.88 (s, 1H, CHCBr), 4.33 (s, 3H, NCH3). 

MS (ESI) - [M+H]+: observed: 190.0 calculated: 189.9 

Matches literature data.(59) 

Synthesis of 3-bromo-1-(prop-2-yn-1-yl)-1H-pyrrole-2,5-dione (3)  

The synthesis was based on a previously reported literature procedure.(59) To 

a solution of bromomaleic anhydride (1.2 g, 6.9 mmol) in acetic acid (15 mL) was 

added propargyl amine (432 µl, 7.5 mmol). The solution was refluxed for 6 hours 

after which the solvent was removed in vacuo. The resultant solid was purified by 

silica column chromatography and eluted with 100% dichloromethane (CH2Cl2) to 

give a cream colored solid 3 (1.1 g, 78 %). Rf (100% CH2Cl2): 0.9 

1H NMR (CDCl3, 300MHz) δ (ppm) = 6.39 (s, 1H, CHCBr), 4.33 (d, 4JH-H= 2.5Hz, 2H, 

NCH2) and 2.24 (t, 4JH-H= 2.5Hz, 1H, HC≡C). 

13C NMR (CDCl3, 75MHz) δ (ppm) = 167.1, 162.1, 132.2, 131.7, 76.4, 72.1 and 27.8. 

HR-MS (MaXis) - [M+Na]+ calculated m/z 235.9318, observed m/z 235.9316  

FTIR (cm-1) – 3271 (υH-C≡C), 1702 (υC=O), 1687 (υC=O). 

Elemental analysis found: C 39.23, H 1.80, N 6.48; expected (C7H4BrNO2): C 39.29, 

H 1.88, N 6.54. 

3-bromo-pyrrole-2,5-dionefunctionalized PEG800 (4) 

Methoxy-poly(ethylene glycol)-amine800 (Mn= 800 g/mol, 0.48g, 0.6 mmol) was 

added to 15ml of acetic acid. Bromomaleic anhydride (0.13 g, 0.75 mmol) was added 

and the solution was refluxed overnight. The solvent was removed in vacuo and the 

resultant orange oil purified by flash chromatography on a silica column (2:1 CH2Cl2 : 

Methanol) to give a viscous oil 4 that was >90 % functionalized according to 1H NMR 

spectroscopy (0.403 g, 67 %). Rf (2:1 CH2Cl2 : Methanol): 0.05-0.35. 

1H NMR (CDCl3, 300MHz)- δ (ppm) 6.88 (s, 0.9H, CHCBr), 3.77 (t, 3JH-H = 5.4Hz, 2H, 

NCH2), 3.68-3.53 (br m, 76H, CH2-CH2), 3.38 (s, 3H, CH3-O). 

13C NMR (CDCl3, 500MHz, ppm)-168.4, 156.2, 132.0, 131.4, 71.9, 70.6-70.5 (m), 

70.1, 67.7, 38.08  

HR-MS (MaXis) - [M+Na]+ calculated m/z 872.3250, observed m/z 872.3257 

FTIR (cm-1) – 2824 (υC-H), 1720 (υC=O), 1106 (υC-O) 



General procedure for dithiomaleimide conjugations 

3 mg of enzyme was dissolved in 1.3 mL 0.1 M pH 6 Phosphate buffer, followed 

by addition of 0.1 mL tris(2-carboxyethyl)phosphine (TCEP) solution (4 equivalents 

per disulfide, in 18.2 MΩ.cm water). The reaction was vortexed and left to stir for 30 

minutes. After this, 0.1 mL of DBM solution (5 equivalents per disulfide, in DMF) was 

added and the mixture vortexed. Maximum degree of conjugation, identified by 

MALDI-ToF MS, was reached after 30-60 minutes. The crude enzyme was purified 

by ultrafiltration (AMICON® stirred cell), freeze-dried and analyzed by MALDI-ToF. 

General procedure for aminomaleimide conjugations 

3 mg of enzyme was dissolved in 1 mL of 0.1 M pH 8.5 Tris buffer. 0.5 mL 

DBM solution (5 equivalents per amine in DMF) was added and the solution vortexed. 

Maximum degree of conjugation, identified by MALDI-ToF MS, was reached after 

leaving overnight. The crude enzyme was purified by ultrafiltration, freeze-dried and 

analyzed by MALDI-ToF. 

α-Chymotrypsin p-nitroaniline hydrolysis assay 

Activity and stability of the enzyme and conjugates were assessed by analysis 

of the initial velocity changes in absorbance with time. Native αCT and conjugates (2 

µg/ml) were incubated in 0.1 M sodium phosphate buffer (pH 6) at 4 °C. 20 μL 

aliquots of these solutions were added to 160 μL of 0.1M sodium phosphate buffer 

(pH 6) in a 96 well plate and 20 μL of N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide in 

methanol (3 mg/ml) was added. Each sample was run in triplicate against buffer 

blanks. The initial rate of hydrolysis of the substrate was monitored through 

recording the rate of increase in absorption at 405 nm at 25 °C over 30 minutes. 

Background hydrolysis was subtracted to give initial rates of hydrolysis. 

Human lysozyme EnzCheck® lysis assay 

Lysozyme assays were carried out as reported in the literature.(60) Lysozyme 

substrate stock suspension (1.0 mg/ml) was prepared according to the 

manufacturer, and aliquots were diluted to 50 mg/ml for each assay. Prior to 

conjugate analysis, the substrate was used to generate a standard curve. 6 wells of 

a 96 well plate were filled with 50 μL of 0.1 M sodium phosphate buffer (pH 6) 

followed by a solution of 50 μL 500 U/mL of human lysozyme solution was added to 

the first well. The solutions were mixed and 50 μL was transferred into a second well. 

This was repeated over 5 wells, with the final 50 μL from the 5th well discarded. To 

these solutions, 50 μL of the 50 mg/ml substrate solution was added. These 

solutions in triplicate were incubated at 37 °C in a plate reader and emission at 530 

nm (excitation at 492 nm) was recorded vs. time. From this, a value of 62.5 U/ml 



was identified as the concentration for future assays. For the stability assay, Native 

human lysozyme and conjugates (2 mg/ml) were incubated in 0.1 M sodium 

phosphate buffer (pH 6) at 4 °C. Aliquots of these solutions were diluted to 5 µg/ml 

and 50 μL of these solutions was pipetted onto a 96 well plate. To these solutions, 

50 μL of the 50 mg/ml substrate solution was added and these solutions, in 

triplicate, incubated at 37 °C in a plate reader. Analysis was carried out by measuring 

emission at 530 nm after 30 minutes, as per the manufacturer’s protocol. Errors 

were measured as a standard deviation over all time points for each triplicate.  

Quantum yield fluorescence analysis 

Quantum yield analysis was based on a previously reported literature 

procedure.(61) A solution of quinine sulfate dihydrate (15 µmol) in 0.105 M perchloric 

acid, was used a standard (Φquinine = 59 %), from which a UV-Vis spectrum was 

recorded. 

The conjugate of interest was diluted to a concentration affording an 

absorbance <0.1 at the excitation wavelength determined by UV-Vis analysis. Both 

spectra were overlaid, and the optimal excitation wavelength for the calculation was 

chosen to be the wavelength where the standard and the sample have the same 

absorption. Using the excitation wavelength for fluorescence, the emission of both 

samples was measured. To calculate the quantum yield Equation 1 is used, where 

F= Integral photon flux (emission integral), f= absorbance, n=refractive index of the 

solvent, 𝜆𝑒𝑚= emission wavelength, conj=conjugate sample, and st=quinine standard.   

Equation 1:  Φ𝑓,𝑐𝑜𝑛𝑗 =  Φ𝑓,𝑠𝑡 .
𝐹𝑐𝑜𝑛𝑗

𝐹𝑠𝑡
.

𝑓𝑠𝑡

𝑓𝑐𝑜𝑛𝑗
.
𝑛𝑐𝑜𝑛𝑗

2 (𝜆𝑒𝑚)

𝑛𝑠𝑡
2 (𝜆𝑒𝑚)

 

As the absorbance for the standard and sample match, it can be neglected 

(fst/fconj=1). Refractive indices are found for the conjugate and quinine solvents at 

their respective average emission wavelengths (wavelength corresponding to the 

mean of the emission spectrum integration). The standard quantum yield 

Φf,st(Φquinine= 59 %) was used to calculate the relative fluorescence of each conjugate.  

Instrumentation 

NMR spectra were recorded on a Bruker Avance 300, a Bruker Avance III HD 

400 or a Bruker Avance III HD 500 spectrometer at 298k and 300, 400 and 500 MHz 

respectively. Shifts are quoted in δ in parts per million and quoted relative to the 

internal standard trimethylsilane (TMS). High Resolution Mass Spectra (HR-MS) were 

conducted on a Bruker UHR-Q-ToF MaXis spectrometer with electrospray ionization. 

MALDI-ToF MS was conducted on a Bruker Autoflex MALDI TOF/TOF spectrometer. 

For MALDI analysis protein solution (2.0 mg/ml) was spotted on the MALDI plate 



followed by an equal volume of sinapinic acid matrix (15 mg in 0.5 mL of water, 0.5 

mL of acetonitrile and 1 μL of trifluoroacetic acid (TFA). The solvent was evaporated 

before the recording of spectra and analysis using FlexControl software. Gaussian 

fits were completed on aminomaleimide conjugates which could be successfully fitted 

and full width at half maximum (FWHM) analysis was used to determine the standard 

deviation (FWHM = 2.355*σ). It should be noted that MALDI-ToF MS analysis of 

native HLZ showed a strong signal at around 14110 m/z, which does not match 

literature structures of HLZ, but has been observed by other groups.(62) However, 

the secondary peak at 14692 m/z correlates well with published structures and 

therefore conjugation mass shifts were based on this value.  

Infrared spectra were recorded on neat samples using a Perkin Elmer 

Spectrum 100 FT-IR Spectrometer. UV-Vis spectroscopy was carried out on a Perkin 

Elmer Lambda 35 UV-Vis spectrometer or an Agilent Cary 60 UV-Vis Spectrometer 

at room temperature. Fluorescence spectra were recorded using an Agilent Cary 

Eclipse Fluorescence spectrophotometer. Quartz cells with four polished sides 

(Starna) were used for fluorescence and UV-Vis measurements. Enzyme assays were 

conducted on a FLUOstar OPTIMA multi-well microplate reader according to the 

assay conditions for each individual enzyme.  

Differential scanning calorimetry (DSC) analysis was performed on a TA 

instruments Nano DSC. Blank runs were ran with buffer in both sample and 

reference side. Each protein sample was run with buffer in the reference side. Scans 

were made between 20 and 100 °C at 1 °C/min and a 600 s equilibration time was 

applied prior to each the scan. Circular dichroism (CD) spectra were recorded on a 

J-720 CD spectrometer in 1 mM pH 6.0 phosphate buffer using a quartz cuvette with 

a path length of 0.1 cm. All experiments were run with ten acquisitions and recorded 

at 20 nm/min. The molar ellipticity was based off protein concentration measured at 

280 nm.  

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION 

 

To study disulfide re-bridging on enzymes the five disulfide bonds of α-CT were 

targeted as handles for conjugation. N-methyldibromomaleimide (M-DBM) was 

chosen as the initial conjugating molecule, due to its small size and reported 

resistance to hydrolysis,(44) and tris(2-carboxyethyl)phosphine (TCEP) was used to 

reduce the disulfides prior to conjugation (Figure 1A). Unusually for disulfide based 

conjugations, reacting M-DBM under an optimized protocol produced a singular 

conjugate with three DTMs conjugated (Figure 1C) as observed by matrix-assisted 

laser desorption/ionization-time of flight mass spectroscopy (MALDI-ToF MS). This 

suggests that two of the disulfides are not solvent accessible and therefore under 

such conditions this conjugation technique can produce site-specific conjugates.  

Figure 1: (A) Illustration of disulfide based bromomaleimide conjugations to α-CT 

and HLZ. (B) 2D excitation–emission spectra of M-DTM HLZ conjugate. MALDI-ToF 

mass spectra of (C) M-DTM α-CT conjugate (D) PEG-DTM α-CT conjugate (E) M-DTM 

HLZ conjugate (F) PEG-DTM HLZ conjugate (red) with the native enzyme (black). 

 

To confirm this, analysis of the availability of the disulfides in αCT was 

undertaken. Firstly, a Kyte-Doolittle plot was drafted to establish if any of the 

disulfides were located in a particularly hydrophobic location in the enzyme, which 

may be buried and therefore inaccessible for conjugation. (Figure S15). While the 

disulfide C168-C182 appears to be the most hydrophobic – and therefore least likely 

to be reacted - and disulfide C191-C220 appears to be the most hydrophilic, no other 

conclusions could be drawn. To gain further insight the solvent accessible surface 



area of the enzyme was calculated using a crystal structure of the enzyme (from the 

Protein Data Bank: 4CHA).(52) It was clear that C191-C220 had the most solvent 

accessible surface area (Table S1) by this model, and C168-C182 and C191-220 

displayed minimal to no solvent accessible surface area. This is in concurrence with 

the hydrophobicity plot, suggesting that the C1-C122 bond is very likely to be the 

most reactive disulfide, and that the C168-C182 and C191-220 bonds are the 

unmodified bonds. A trypsin digest was attempted to prove this hypothesis, however 

as a consequence of α-CT autolysis this was not informative. 

To ascertain that the bromomaleimide conjugations are applicable to a range 

of enzymes, human lysozyme was chosen as a second target for conjugation. Human 

lysozyme (HLZ) has four disulfide bonds as handles for attachment, is smaller than 

α-CT and does not perform autolysis.(54) Disulfide bridging to HLZ using M-DBM 

was undertaken using the same conditions as for α-CT. In contrast to α-CT, a 

distribution of 0-4 DTM species were observed by MALDI-ToF MS after purification 

(Figure 1E). Interestingly, up to four DTMs can be formed per enzyme suggesting that 

all are solvent accessible, which may be a result of the more hydrophilic nature of 

HLZ. However, as often observed in multi-site conjugation techniques,(57) only a 

distribution of differentially conjugated products was obtainable, indicating that the 

site-specific nature of this technique is limited.  

The retention of tertiary structure was probed through circular dichroism 

(CD). α-chymotrypsin exhibits a very poor CD signal for characterization in the amide 

region,(63) therefore CD analysis was undertaken on HLZ and the DTM HLZ 

conjugate. By recording Δ[Ɵ]m at 222 nm the α-helicity of the enzyme can be 

measured. A negligible reduction in [Ɵ]222 was noted for the conjugate (97% of the 

native HLZ – Figure S13) and both CD spectra showed very similar structural 

features, indicating minimal effect of conjugation on the tertiary structure of HLZ.  

For further characterization, the denaturing temperature (Tm) was measured 

for HLZ and the HLZ DTM conjugate for comparison, using differential scanning 

calorimetry. The Tm for the native enzyme was measured as 72.7 °C in pH 6 buffer, 

which compares well to previous literature.(64) For the HLZ DTM conjugate, multiple 

melts were observed (Figure S14), however the major melt can be attributed to the 

singular DTM HLZ conjugate and was measured at 68.2 °C, suggesting a small loss 

in thermal stability upon DTM conjugation. The unresolved melts observed below 

68.2 °C could be attributed to conjugates with more than one DTM. 

To establish whether this technique is suitable for PEGylation, one of the most 

commonly undertook conjugation procedures, PEG-dibromomaleimide (PEG-



DBM - 1) was synthesized for use as a conjugation agent. Conjugations were 

attempted in pH 6 sodium phosphate buffer with a range of DMF concentrations 

from 0-33% v/v. MALDI-ToF MS analysis for the conjugation of both enzymes to 

PEG-DBM (1) showed that higher DMF concentration lead to higher degrees of PEG 

conjugation. For α-CT conjugation, 33% v/v DMF conditions gave an average by 

Gaussian fit of 1.8 attached PEG-DTM molecules (Table 1). The HLZ conjugate 

however, was observed to have a broader MALDI-ToF mass spectra, where an average 

of 2.0 PEG-DTMs per enzyme was observed (Table 1). 

 

 

 

 

 

Table 1. Table showing number of attached units and conjugation efficiency for disulfide conjugates 

observed by MALDI-ToF and standard deviation measured by Gaussian fit. †= Gaussian fit not 

possible, observed conjugates listed. ‡= Quantification not possible. 

 

In order to ascertain whether the conjugated enzymes were fluorescent, 

excitation and emission spectra were measured for all conjugates of both α-CT and 

HLZ (for example M-DTM HLZ conjugate in Figure 1B). Table S2, highlights the 

excitation and emission maxima recorded for the synthesized conjugates (spectra are 

shown in supporting information 2.1). Emission wavelengths for all conjugates 

synthesized were similar to those observed in polar solvents for DTM small 

molecules. (45) 

Following this, conjugation utilizing lysine residues was investigated as a 

novel “turn-on” fluorescence conjugation method. Both enzymes are abundant in 

lysine residues, with α-CT containing seventeen amine handles for targeting, and 

HLZ six; this includes three N-terminal residues for α-CT and one for HLZ.(52,54) 

Using M-DBM the conditions of the conjugation were altered to mimic those in the 

synthesis of ABMs (Figure 2). Conjugating to α-CT overnight, in pH 8.5 buffer, results 

in a distribution of products as seen at around 26,600 m/z by MALDI-ToF MS (see 

supporting information 1.1.5). By completing a Gaussian fit of this peak an average 

of 6.2 ± 2.5 ABMs per enzyme is observed. By exposing human lysozyme to the same 

conditions, successful conjugation was observed by MALDI-ToF MS with an average 

of 2.7 ± 2.3 ABMs formed per enzyme from six amine handles (Table 2).  

Enzyme Conjugate # Attached 
Conjugation 

efficiency 

α-CT 
M-DTM 3/5† 60 % 

PEG-DTM 1.8 ± 1.5/5 36 % 

HLZ 
M-DTM  0-4/4†   ‡ 

PEG-DTM 2.0 ± 1.8/4 50 % 



The synthesis of smaller MAM dyes has also been reported under these 

conditions. It was, therefore, decided to synthesize methyl-MBM (2), alkyne-MBM (3) 

and PEG-MBM (4) for conjugation. The alkyne substituent provides an opportunity 

for further functionalization, for example via copper-catalyzed Huisgen 

cycloaddition.(25) Conjugation of 2 and 3 was successful for both enzymes and 

subsequent MALDI-ToF MS analysis showed a distribution of products. Gaussian 

fits of the spectra are listed in Table 2. The reaction proved much more effective than 

the ABM reactions showing conjugation of up to 12.1 ± 3.6 MAMs for the α-CT M-

MAM conjugate (Figure 2C). PEGylation using 4 was also successful, however lower 

reactivity was again observed with an average of 2.3 PEG units attached to α-CT and 

1.6 to HLZ. 

 

Figure 2: (A) Illustration of amine based bromomaleimide conjugations to α-CT and 

HLZ. (B) 2D excitation–emission spectra of alkyne-MAM HLZ conjugate. MALDI-ToF 

mass spectra of (C) alkyne-MAM α-CT conjugate (D) PEG-MAM α-CT conjugate (E) 

alkyne-MAM HLZ conjugate (F) PEG-MAM HLZ conjugate (red) and the native 

enzyme (black). 

 

 

 

 

 

 

 

 

Table 2. Table showing number of attached units and conjugation efficiency for amine conjugations 

observed by MALDI-ToF and standard deviation measured by Gaussian fit. 

Enzyme Conjugate # Attached 
Conjugation 

efficiency 

α-CT 

M-ABM 6.2 ± 2.5/17 36 % 

M-MAM 12.1 ± 3.6/17 71 % 

Alkyne-MAM 11.2 ± 1.8/17 66 % 

PEG-MAM 2.3 ± 1.5/17 14 % 

HLZ 

M-ABM 2.7 ± 2.3/6 45 % 

M-MAM 5.4 ± 3.1/6 90 % 

Alkyne-MAM 4.9 ± 2.5/6 82 % 

PEG-MAM 1.5 ± 1.8/6 25 % 



DTM conjugates have been shown to undergo hydrolysis at pH 8.5, dependent 

on structure, with half-lives as short as 16.5 minutes.(65) In order to ascertain the 

stability of MAM conjugates, the emission of alkyne-MAM HLZ was studied in pH 8.5 

buffer. Under these conditions no hydrolysis was observed over 10 hours (Figure 

S16), indicating greater resistance to hydrolysis in these MAM species.   

Excitation/emission spectra were again measured for all aminomaleimide 

conjugates of both α-CT and HLZ (for example alkyne-MAM HLZ conjugate in Figure 

2) and wavelengths recorded were similar to those observed in water for small 

molecule species.(45) Small molecule MAMs have been shown to exhibit high (>59 %) 

quantum yields in organic aprotic solvents, however, in water they are quenched 

significantly, exhibiting Φf<0.4 %.(45) Robin et al. have shown that by incorporating 

DTMs into nanostructures, shielding them from solvent quenching effects, the 

quantum yield can be restored (>30 %).(39) To investigate whether the same effect 

would be observed in enzymes, the quantum yield of two conjugates was calculated. 

The quantum yield of both alkyne-MAM and M-DTM HLZ conjugates was calculated 

in 18.2 MΩ.cm water, using a standard of quinine (Φquinine = 59 %). The alkyne-MAM 

HLZ conjugate exhibited a quantum yield of Φf(%)=0.7 ± 0.04 (λex=362 nm) and the 

M-DTM HLZ conjugate of Φf(%)=0.8 ± 0.07 (λex=365 nm). The quantum yields for both 

conjugates have increased compared to the DTM and MAM small molecule analogues 

in water (all less than 0.4 %),(45) however, the values were significantly lower than 

the fluorescent proteins currently used and would not meet the brightness 

requirements for applications such as fluorescence microscopy.(66) The quantum 

yield of the PEGylated HLZ samples were also calculated to compare to the small 

molecule analogues. The PEG-DTM HLZ conjugate exhibited a quantum yield of 

Φf(%)=0.5 ± 0.05 (λex=362 nm), lower than the respective M-DTM conjugate. This 

could be attributed to the lower degree of conjugation observed for the polymer 

species. Theoretically, the most accessible and least shielded disulfide would be the 

most likely to undergo conjugation, leading to high solvent accessibly, and therefore 

fluorescence quenching, of the resulting maleimide moiety. In contrast, the PEG-

MAM species exhibited a quantum yield of Φf(%)=1.4 ± 0.2 (λex=364 nm), double the 

quantum yield of the respective alkyne-MAM conjugate. In this case, despite 

exhibiting a lower degree of conjugation compared to the small molecule conjugate, 

it would appear the polymer chain provides a solvent shielding effect to the MAM dye.  

To establish the structural integrity and catalytic activity of the DTM and MAM 

α-CT conjugates, their activity was measured using a p-nitroaniline hydrolysis assay. 

The initial velocity was measured and compared to the native enzyme at time points. 



Results indicated a drop in activity after conjugation for all conjugates (Figure 3A). 

However it should be noted that the activity is comparable to that of native enzyme 

left in solution for the time period of the conjugation and purification (6 hours for the 

DTM conjugates and 24 hours for the MAM conjugates), indicating that the chemical 

modification itself has negligible effect on enzyme activity, which corroborates the 

CD analysis for the HLZ DTM conjugate. Positively, stability of the enzyme over 4 

days was unaffected (Figure 3B), suggesting the conjugates have similar stability and 

autolysis rate to the native enzyme.  

 

 

Figure 3: (A) Initial activity of α-CT at time points against purified conjugates at t = 

0 hr and (B) residual activities of native α-CT and conjugates (black = native 

enzyme; red = M-DTM conjugate; blue = alkyne-MAM conjugate; green = PEG-DTM 

conjugate; yellow = PEG-MAM conjugate). 

 

The HLZ conjugates were assayed by EnzChek® lysis to confirm their integrity. 

This assay relies on the lysis of fluorescein labelled micrococcus lysodeikticus cells, 

where upon cell lysis fluorescence signal increases.(60) When stored at room 

temperature the conjugates show no discernable difference in activity compared to 

native HLZ (Figure 4A). To discern whether any differences in stability are observed 

in more extreme conditions, the conjugates were also examined at 50 °C, and their 

activity was measured at various time intervals. It has been shown that under raised 

temperature storage, the stability of native HLZ is negatively affected.(55) Results 

showed that the MAM conjugates showed a decrease in activity over 7 days 

comparable to that of the native enzyme. On the other hand, the DTM conjugates 



exhibited a decrease in activity. Specifically, the M-DTM conjugate lost all activity 

over 9 days compared to the native enzyme which retained 44% activity (Figure 4B). 

This indicates that disulfide re-bridging negatively affected enzyme stability at raised 

temperature, with the M-DTM conjugate, having the most DTM bridged disulfides, 

being least stable.   
 

Figure 4: The residual activity, by EnzChek® lysis assay, of native HLZ and 

conjugates when stored at (A) room temperature (B) 50 °C (black = native enzyme; 

red = M-DTM conjugate; blue = alkyne-MAM conjugate; green = PEG-DTM 

conjugate; yellow = PEG-MAM conjugate). 

 

 

 

  



CONCLUSIONS 

 

In conclusion, enzyme conjugates have been synthesized by reacting 

dibromomaleimides and monobromomaleimides with reduced disulfides and free 

amines in human lysozyme and α-chymotrpysin. Reactions of dibromomaleimides 

with reduced disulfides produced dithiomaleimide bridged enzyme conjugates, which 

showed fluorescence upon formation. Both α-CT and HLZ DTM conjugates showed 

the same stability as the native enzyme when stored at room temperature, and 

exhibited negligible structural change by circular dichroism. However, at elevated 

temperature storage (50 °C) the HLZ DTM conjugates showed reduced stability, 

which corroborates a decrease in observed Tm, indicating this conjugation technique 

may have a de-stabilizing effect on some enzymes.  

Reactions of dibromo- and monobromomaleimides with free amines in both 

enzymes produced fluorescent aminobromo- and monoaminomaleimide conjugates 

respectively. Monoaminomaleimides are shown to react with higher efficiency in both 

enzymes and conjugates are shown to be as stable as native enzymes at room 

temperature and at 50 °C, however a decrease in Tm was observed by DSC. 

Fluorescence analysis of all conjugated enzymes showed excitation and emission 

profiles comparable to small molecule studies, however fluorescence quantum yields 

were low as a consequence of solvent quenching effects.  

Both reactions were trialed as PEGylation methods using bromomaleimide 

functionalized PEG. Conjugation efficiency was detrimentally effected, attributed to 

the reduced availability of chain ends and steric hindrance. While, the PEG-MAM 

HLZ conjugate showed marginally increased fluorescence quantum yield attributed 

to solvent shielding effects of the short PEG chain.  

 

ACKNOWLEDGEMENTS  

 

The authors thank Unilever and the ERC for support (grant number: 615142). Malin 

Suurkuusk (TA instruments) is thanked for DSC analysis.  

 

REFERENCES 

1.  Watson P, Jones AT, Stephens DJ. Intracellular trafficking pathways and drug 
delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev. 
2005 Jan 2;57(1):43–61.  



2.  Wersto RP, Rosenthal ER, Crystal RG, Spring KR. Uptake of fluorescent dyes 
associated with the functional expression of the cystic fibrosis transmembrane 
conductance regulator in epithelial cells. Proc Natl Acad Sci U S A. 1996 Feb 
6;93(3):1167–72.  

3.  Roberti MJ, Jovin TM, Jares-Erijman E. Confocal Fluorescence Anisotropy and 
FRAP Imaging of α-Synuclein Amyloid Aggregates in Living Cells. PLOS ONE. 
2011 Aug 8;6(8):e23338.  

4.  Wang K, Sachdeva A, Cox DJ, Wilf NM, Lang K, Wallace S, et al. Optimized 
orthogonal translation of unnatural amino acids enables spontaneous protein 
double-labelling and FRET. Nat Chem. 2014 May;6(5):393–403.  

5.  Kajihara D, Abe R, Iijima I, Komiyama C, Sisido M, Hohsaka T. FRET analysis 
of protein conformational change through position-specific incorporation of 
fluorescent amino acids. Nat Methods N Y. 2006 Nov;3(11):923–9.  

6.  Royer CA. Probing Protein Folding and Conformational Transitions with 
Fluorescence. Chem Rev. 2006 May 1;106(5):1769–84.  

7.  Yang M, Song Y, Zhang M, Lin S, Hao Z, Liang Y, et al. Converting a 
Solvatochromic Fluorophore into a Protein‐Based pH Indicator for Extreme 

Acidity. Angew Chem Int Ed. 2012 Jul 27;51(31):7674–9.  

8.  Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y. Fluorescent indicators for 
imaging protein phosphorylation in single living cells. Nat Biotechnol. 2002 
Mar;20(3):287–94.  

9.  Henderson JN, Ai H, Campbell RE, Remington SJ. Structural basis for 
reversible photobleaching of a green fluorescent protein homologue. Proc Natl 
Acad Sci. 2007 Apr 17;104(16):6672–7.  

10.  Borrmann A, Milles S, Plass T, Dommerholt J, Verkade JMM, Wießler M, et al. 
Genetic Encoding of a Bicyclo[6.1.0]nonyne‐Charged Amino Acid Enables Fast 
Cellular Protein Imaging by Metal‐Free Ligation. ChemBioChem. 2012 Sep 

24;13(14):2094–9.  

11.  Ariyasu S, Hayashi H, Xing B, Chiba S. Site-Specific Dual Functionalization of 
Cysteine Residue in Peptides and Proteins with 2-Azidoacrylates. Bioconjug 
Chem. 2017 Apr 19;28(4):897–902.  

12.  Ratner V, Kahana E, Eichler M, Haas E. A General Strategy for Site-Specific 
Double Labeling of Globular Proteins for Kinetic FRET Studies. Bioconjug 
Chem. 2002 Sep 1;13(5):1163–70.  

13.  Sachdeva A, Wang K, Elliott T, Chin JW. Concerted, Rapid, Quantitative, and 

Site-Specific Dual Labeling of Proteins. J Am Chem Soc. 2014 Jun 
4;136(22):7785–8.  

14.  Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. Genetically Encoded 1,2-
Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-
orthogonal Cyanobenzothiazole Condensation. J Am Chem Soc. 2011 Aug 
3;133(30):11418–21.  



15.  Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, et al. Amino 
Acids for Diels–Alder Reactions in Living Cells. Angew Chem Int Ed. 2012 Apr 
23;51(17):4166–70.  

16.  Stephanopoulos N, Francis MB. Choosing an effective protein bioconjugation 
strategy. Nat Chem Biol. 2011 Dec;7(12):876–84.  

17.  Suzuki T, Kanbara N, Tomono T, Hayashi N, Shinohara I. Physicochemical and 
biological properties of poly(ethylene glycol)-coupled immunoglobuling G. 
Biochim Biophys Acta BBA - Protein Struct Mol Enzymol. 1984 Jul 
31;788(2):248–55.  

18.  Cao S-G, Zhao Q, Ding Z-T, Ma L, Yu T, Wang J-H, et al. Chemical 
Modification of Enzyme Molecules to Improve Their Characteristics. Ann N Y 
Acad Sci. 1990 Dec 1;613(1):460–7.  

19.  Chen RH-L, Abuchowski A, Van Es T, Palczuk NC, Davis FF. Properties of two 
urate oxidases modified by the covalent attachment of poly(ethylene glycol). 
Biochim Biophys Acta BBA - Enzymol. 1981 Aug 13;660(2):293–8.  

20.  Kurtzberg J, Asselin B, Bernstein M, Buchanan GR, Pollock BH, Camitta BM. 
Polyethylene Glycol-conjugated L-asparaginase versus native L-asparaginase 
in combination with standard agents for children with acute lymphoblastic 
leukemia in second bone marrow relapse: a Children’s Oncology Group Study 
(POG 8866). J Pediatr Hematol Oncol. 2011 Dec;33(8):610–6.  

21.  Tsutsumi Y, Kihira T, Tsunoda S, Kanamori T, Nakagawa S, Mayumi T. 
Molecular design of hybrid tumour necrosis factor alpha with polyethylene 
glycol increases its anti-tumour potency. Br J Cancer. 1995 May;71(5):963–8.  

22.  Alconcel SNS, Baas AS, Maynard HD. FDA-approved poly(ethylene glycol)–
protein conjugate drugs. Polym Chem. 2011 Jun 14;2(7):1442–8.  

23.  Schelté P, Boeckler C, Frisch B, Schuber F. Differential Reactivity of Maleimide 
and Bromoacetyl Functions with Thiols: Application to the Preparation of 
Liposomal Diepitope Constructs. Bioconjug Chem. 2000 Jan 1;11(1):118–23.  

24.  Stenzel MH. Bioconjugation Using Thiols: Old Chemistry Rediscovered to 
Connect Polymers with Nature’s Building Blocks. ACS Macro Lett. 2013 Jan 
15;2(1):14–8.  

25.  Li M, De P, Gondi SR, Sumerlin BS. Responsive Polymer‐Protein Bioconjugates 
Prepared by RAFT Polymerization and Copper‐Catalyzed Azide‐Alkyne Click 
Chemistry. Macromol Rapid Commun. 2008 Jul 1;29(12‐13):1172–6.  

26.  Bays E, Tao L, Chang C-W, Maynard HD. Synthesis of Semitelechelic 

Maleimide Poly(PEGA) for Protein Conjugation By RAFT Polymerization. 
Biomacromolecules. 2009 Jul 13;10(7):1777–81.  

27.  Yang SK, Shi X, Park S, Doganay S, Ha T, Zimmerman SC. Monovalent, 
Clickable, Uncharged, Water-Soluble Perylenediimide-Cored Dendrimers for 
Target-Specific Fluorescent Biolabeling. J Am Chem Soc. 2011 Jul 
6;133(26):9964–7.  



28.  Fujita Y, Murakami Y, Noda A, Miyoshi S. Design and Synthesis of an Easily 
Obtainable Maleimide Reagent N-[2-(4-[18F]fluoro-N-
methylbenzenesulfonamido)ethyl]maleimide ([18F]FBSEM) to Radiolabel Thiols 
in Proteins. Bioconjug Chem. 2017 Feb 15;28(2):642–8.  

29.  Tedaldi LM, Smith MEB, Nathani RI, Baker JR. Bromomaleimides: new 
reagents for the selective and reversible modification of cysteine. Chem 
Commun. 2009 Oct 28;(43):6583–5.  

30.  Smith MEB, Schumacher FF, Ryan CP, Tedaldi LM, Papaioannou D, Waksman 
G, et al. Protein Modification, Bioconjugation, and Disulfide Bridging Using 
Bromomaleimides. J Am Chem Soc. 2010 Feb 17;132(6):1960–5.  

31.  Schumacher FF, Nunes JPM, Maruani A, Chudasama V, Smith MEB, Chester 
KA, et al. Next generation maleimides enable the controlled assembly of 
antibody–drug conjugates via native disulfide bond bridging. Org Biomol 

Chem. 2014 Aug 27;12(37):7261–9.  

32.  Castañeda L, Maruani A, Schumacher FF, Miranda E, Chudasama V, Chester 
KA, et al. Acid-cleavable thiomaleamic acid linker for homogeneous antibody–
drug conjugation. Chem Commun. 2013 Aug 20;49(74):8187–9.  

33.  Hull EA, Livanos M, Miranda E, Smith MEB, Chester KA, Baker JR. 
Homogeneous Bispecifics by Disulfide Bridging. Bioconjug Chem. 2014 Aug 
20;25(8):1395–401.  

34.  Nunes JPM, Morais M, Vassileva V, Robinson E, Rajkumar VS, Smith MEB, et 
al. Functional native disulfide bridging enables delivery of a potent, stable and 
targeted antibody–drug conjugate (ADC). Chem Commun. 2015 Jun 
18;51(53):10624–7.  

35.  Robin MP, Wilson P, Mabire AB, Kiviaho JK, Raymond JE, Haddleton DM, et 
al. Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using 
Dithiomaleimides. J Am Chem Soc. 2013 Feb 27;135(8):2875–8.  

36.  Collins J, Tanaka J, Wilson P, Kempe K, Davis TP, McIntosh MP, et al. In Situ 
Conjugation of Dithiophenol Maleimide Polymers and Oxytocin for Stable and 
Reversible Polymer–Peptide Conjugates. Bioconjug Chem. 2015 Apr 
15;26(4):633–8.  

37.  Collins J, Kempe K, Wilson P, Blindauer CA, McIntosh MP, Davis TP, et al. 
Stability Enhancing N-Terminal PEGylation of Oxytocin Exploiting Different 
Polymer Architectures and Conjugation Approaches. Biomacromolecules. 2016 
Aug 8;17(8):2755–66.  

38.  Grison CM, Burslem GM, Miles JA, Pilsl LKA, Yeo DJ, Imani Z, et al. Double 
quick, double click reversible peptide “stapling.” Chem Sci. 2017 Jun 
26;8(7):5166–71.  

39.  Robin MP, Mabire AB, Damborsky JC, Thom ES, Winzer-Serhan UH, Raymond 
JE, et al. New Functional Handle for Use as a Self-Reporting Contrast and 
Delivery Agent in Nanomedicine. J Am Chem Soc. 2013 Jun 26;135(25):9518–
24.  



40.  Robin MP, O’Reilly RK. Fluorescent and chemico-fluorescent responsive 
polymers from dithiomaleimide and dibromomaleimide functional monomers. 
Chem Sci. 2014 Jun 3;5(7):2717–23.  

41.  Mabire AB, Robin MP, Willcock H, Pitto-Barry A, Kirby N, O’Reilly RK. Dual 
effect of thiol addition on fluorescent polymeric micelles: ON-to-OFF emissive 
switch and morphology transition. Chem Commun. 2014 Sep 4;50(78):11492–
5.  

42.  Tang Z, Wilson P, Kempe K, Chen H, Haddleton DM. Reversible Regulation of 
Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via 
Sequential Thiol Exchange Reactions. ACS Macro Lett. 2016 Jun 21;5(6):709–
13.  

43.  Robin MP, O’Reilly RK. Strategies for preparing fluorescently labelled polymer 
nanoparticles. Polym Int. 2015 Feb 1;64(2):174–82.  

44.  Robin MP, Osborne SAM, Pikramenou Z, Raymond JE, O’Reilly RK. 
Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly 
and Small Molecule Encapsulation. Macromolecules. 2016 Jan 26;49(2):653–
62.  

45.  Mabire AB, Robin MP, Quan W-D, Willcock H, Stavros VG, O’Reilly RK. 
Aminomaleimide fluorophores: a simple functional group with bright, solvent 
dependent emission. Chem Commun. 2015 Jun 14;51(47):9733–6.  

46.  Imoto H, Nohmi K, Kizaki K, Watase S, Matsukawa K, Yamamoto S, et al. 
Effect of alkyl groups on emission properties of aggregation induced emission 
active N-alkyl arylaminomaleimide dyes. RSC Adv. 2015;5(114):94344–50.  

47.  Kato T, Naka K. Arylaminomaleimides as a New Class of Aggregation-induced 
Emission-active Molecules Obtained from Organoarsenic Compounds. Chem 
Lett. 2012;41(11):1445–7.  

48.  Hermanson GT. Chapter 3 - The Reactions of Bioconjugation. In: Bioconjugate 
Techniques (Third edition) [Internet]. Boston: Academic Press; 2013 [cited 
2016 Jul 21]. p. 229–58. Available from: 
http://www.sciencedirect.com/science/article/pii/B9780123822390000030 

49.  Jung D, Min K, Jung J, Jang W, Kwon Y. Chemical biology-based approaches 
on fluorescent labeling of proteins in live cells. Mol Biosyst. 2013 Apr 
2;9(5):862–72.  

50.  Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, 
et al. Highly efficient disulfide bridging polymers for bioconjugates from 
radical-compatible dithiophenol maleimides. Chem Commun. 2012 Mar 

28;48(34):4064–6.  

51.  Cummings C, Murata H, Koepsel R, Russell AJ. Tailoring enzyme activity and 
stability using polymer-based protein engineering. Biomaterials. 2013 
Oct;34(30):7437–43.  

52.  Tsukada H, Blow DM. Structure of alpha-chymotrypsin refined at 1.68 A 
resolution. J Mol Biol. 1985 Aug 20;184(4):703–11.  



53.  Falatach R, Li S, Sloane S, McGlone C, Berberich JA, Page RC, et al. Why 
synthesize protein–polymer conjugates? The stability and activity of 
chymotrypsin-polymer bioconjugates synthesized by RAFT. Polymer. 2015 Aug 
18;72:382–6.  

54.  Artymiuk PJ, Blake CCF. Refinement of human lysozyme at 1.5 Å resolution 
analysis of non-bonded and hydrogen-bond interactions. J Mol Biol. 1981 Nov 
15;152(4):737–62.  

55.  Avanti C, Saluja V, Streun ELP van, Frijlink HW, Hinrichs WLJ. Stability of 
Lysozyme in Aqueous Extremolyte Solutions during Heat Shock and 
Accelerated Thermal Conditions. PLOS ONE. 2014 Jan 23;9(1):e86244.  

56.  Dumoulin M, Johnson RJK, Bellotti V, Dobson CM. Human Lysozyme. In: 
Uversky VN, Fink AL, editors. Protein Misfolding, Aggregation, and 
Conformational Diseases. Springer US; 2007. p. 285–308. (Protein Reviews).  

57.  Liu M, Tirino P, Radivojevic M, Phillips DJ, Gibson MI, Leroux J-C, et al. 
Molecular Sieving on the Surface of a Protein Provides Protection Without Loss 
of Activity. Adv Funct Mater. 2013 Apr 25;23(16):2007–15.  

58.  Cummings CS, Campbell AS, Baker SL, Carmali S, Murata H, Russell AJ. 
Design of Stomach Acid-Stable and Mucin-Binding Enzyme Polymer 
Conjugates. Biomacromolecules. 2017 Feb 13;18(2):576–86.  

59.  Smith MEB, Caspersen MB, Robinson E, Morais M, Maruani A, Nunes JPM, et 
al. A platform for efficient, thiol-stable conjugation to albumin’s native single 
accessible cysteine. Org Biomol Chem. 2015 Jul 16;13(29):7946–9.  

60.  Helal R, Melzig MF. Determination of lysozyme activity by a fluorescence 
technique in comparison with the classical turbidity assay. Pharm - Int J 
Pharm Sci. 2008 Jun 1;63(6):415–9.  

61.  Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Relative and 
absolute determination of fluorescence quantum yields of transparent 
samples. Nat Protoc. 2013 Aug;8(8):1535–50.  

62.  Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, et al. Well-Defined 
Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and 
Controlled Self-Assembly. J Am Chem Soc. 2015 Jul 29;137(29):9344–53.  

63.  Jibson MD, Birk Y, Bewley TA. Circular Dichroism Spectra of Trypsin and 
Chymotrypsin Complexes with Bowman-Birk or Chickpea Trypsin Inhibitor. 
Int J Pept Protein Res. 1981 Jul 1;18(1):26–32.  

64.  Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, et al. 

Instability, unfolding and aggregation of human lysozyme variants underlying 
amyloid fibrillogenesis. Nature. 1997 Feb;385(6619):787.  

65.  Morais M, Nunes JPM, Karu K, Forte N, Benni I, Smith MEB, et al. 
Optimisation of the dibromomaleimide (DBM) platform for native antibody 
conjugation by accelerated post-conjugation hydrolysis. Org Biomol Chem. 
2017 Apr 5;15(14):2947–52.  



66.  Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. 
Nat Methods. 2005 Dec;2(12):905–9.  

 

 

TABLES 

 

 

 

 

 

Table 1. Table showing number of attached units and conjugation efficiency for disulfide conjugates 

observed by MALDI-ToF and standard deviation measured by Gaussian fit. †= Gaussian fit not 

possible, observed conjugates listed. ‡= Quantification not possible. 

 

 

 

 

 

 

 

 

 

 

Table 2. Table showing number of attached units and conjugation efficiency for amine conjugations 

observed by MALDI-ToF and standard deviation measured by Gaussian fit. 

 

FIGURE LEDGENDS 

 

Figure 1: (A) Illustration of disulfide based bromomaleimide conjugations to α-CT 

and HLZ. (B) 2D excitation–emission spectra of M-DTM HLZ conjugate. MALDI-ToF 

mass spectra of (C) M-DTM α-CT conjugate (D) PEG-DTM α-CT conjugate (E) M-DTM 

HLZ conjugate (F) PEG-DTM HLZ conjugate (red) with the native enzyme (black). 

 

Figure 2: (A) Illustration of amine based bromomaleimide conjugations to α-CT and 

HLZ. (B) 2D excitation–emission spectra of alkyne-MAM HLZ conjugate. MALDI-ToF 

mass spectra of (C) alkyne-MAM α-CT conjugate (D) PEG-MAM α-CT conjugate (E) 

Enzyme Conjugate # Attached 
Conjugation 

efficiency 

α-CT 
M-DTM 3/5† 60 % 

PEG-DTM 1.8 ± 1.5/5 36 % 

HLZ 
M-DTM  0-4/4†   ‡ 

PEG-DTM 2.0 ± 1.8/4 50 % 

Enzyme Conjugate # Attached 
Conjugation 

efficiency 

α-CT 

M-ABM 6.2 ± 2.5/17 36 % 

M-MAM 12.1 ± 3.6/17 71 % 

Alkyne-MAM 11.2 ± 1.8/17 66 % 

PEG-MAM 2.3 ± 1.5/17 14 % 

HLZ 

M-ABM 2.7 ± 2.3/6 45 % 

M-MAM 5.4 ± 3.1/6 90 % 

Alkyne-MAM 4.9 ± 2.5/6 82 % 

PEG-MAM 1.5 ± 1.8/6 25 % 



alkyne-MAM HLZ conjugate (F) PEG-MAM HLZ conjugate (red) and the native 

enzyme (black). 

 

Figure 3: (A) Initial activity of α-CT at time points against purified conjugates at t = 

0 hr and (B) residual activities of native α-CT and conjugates (black = native 

enzyme; red = M-DTM conjugate; blue = alkyne-MAM conjugate; green = PEG-DTM 

conjugate; yellow = PEG-MAM conjugate). 

 

Figure 4: The residual activity, by EnzChek® lysis assay, of native HLZ and 

conjugates when stored at (A) room temperature (B) 50 °C (black = native enzyme; 

red = M-DTM conjugate; blue = alkyne-MAM conjugate; green = PEG-DTM 

conjugate; yellow = PEG-MAM conjugate). 

 


