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25 Abstract

26 Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells 

27 for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage 

28 functions, however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a 

29 three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects 

30 macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells 

31 or IF individually increased macrophage migration directedness and speed. Interestingly, there was no 

32 additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor 

33 cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with 

34 mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2 

35 and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro 

36 macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 

37 or CCL2, or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody 

38 blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-

39 independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated 

40 in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based 

41 immunotherapeutic strategies.

42

43 Insight

44 Macrophages and interstitial flow (IF) have emerged as important characteristics of the complex tumor 

45 microenvironment (TME). However, little is understood about the interactions of these variables. 

46 Therefore, we developed an integrated mathematical-experimental approach to probe the interplay of tumor 

47 cells, macrophages and IF. The experiments utilize a novel three-dimensional microfluidic in-vitro model 

48 where tumor cells can be co-cultured with primary macrophages with IF present. Employing this platform 

49 and our mathematical model, we show how key tumor-secreted factors (TSF) and IF are integrated by 
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50 macrophages, which consequently migrate with increased directedness and speed, thus enhancing potential 

51 interactions with cancer cells to support their invasiveness. Therefore, we deduce that IF, additionally or 

52 complementary to TSF, importantly drives macrophage migration in the TME.

53

54 INTRODUCTION

55 Interstitial flow (IF) is an important, yet underappreciated, biophysical force that drives cancer progression 

56 [1]. It is derived from an elevated interstitial fluid pressure (IFP) in the solid tumor (~ 10-40 mmHg) [2,3], 

57 due to highly permeable tumor vessels and the lack of functional lymphatic vessels [4,5]. This abnormal 

58 pressure results in a steep pressure gradient near the tumor margin with escape of interstitial fluid from the 

59 tumor mass into the surrounding tissues [6–8], where IFP then drops rapidly to normal tissue values (~ 0 

60 mmHg) [4,9]. Because this fluid contains tumor-secreted cytokines and growth factors and can influence 

61 tumor cell migration, IF essentially fuels tumor metastasis [9,10]. 

62 Clinical data across different solid cancers have shown that higher IFP at the tumor site strongly correlates 

63 with poorer patient survival [11–14]. Accordingly, IFP has been viewed as a strong prognostic factor that 

64 is independent of other clinical parameters [11,15], with ongoing effort to develop strategies to decrease 

65 IFP, and hence IF, in patients [16–21]. However, given the complexity of cancer pathology, current findings 

66 have only begun to explain the multiple interacting facets of IF’s role in cancer, including its regulation of 

67 pivotal immune cell players in the tumor microenvironment (TME). This scenario motivates the need for 

68 additional studies that investigate the role of IF on multiple cell types in the TME.

69 Macrophages are highly abundant at the tumor-stromal boundary [22–24], where there are high levels of IF 

70 [25,26]. Interestingly, this is also where there are high rates of tumor cell invasion [25,26]. Clinical and 

71 experimental evidence report that macrophages crucially support tumor metastasis [27], with a meta-

72 analysis showing that over 80% of studies correlate poor patient outcomes and macrophage density [28]. 

73 Moreover, intravital imaging of fluorescently labelled cells in mammary tumors has shown that tumor cells 
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74 and macrophages move concordantly [24]. Indeed, growing evidence suggests that macrophages could be 

75 importantly involved in IF-based tumor cell invasion [25,29]. Therefore, interfering with the signaling 

76 pathways associated with IF, tumor cells and macrophages could potentially inhibit the pro-tumor function 

77 of macrophages and also tumor cell metastasis [30]. 

78 Macrophages remodel extracellular matrix (ECM) through matrix metalloproteinases (MMP) which 

79 degrade collagen and create tracks for tumor cells to migrate [31,32]. Such tracks also enable macrophages 

80 to migrate toward and interact with other cells in the TME to support tumor progression, for example by 

81 their contact-dependent support of the epithelial-to-mesenchymal transition (EMT) of tumor cell aggregates 

82 [33], or their contact with the endothelium to increase its permeability to intravasating tumor cells [34]. 

83 Therefore, macrophage migration in the TME is an important parameter that reflects their ability to support 

84 tumor cell invasion through the ECM in the process of metastasis [35]. Current understanding of 

85 macrophage migration has been confined to the regulation by biological cues in the TME, including tumor-

86 secreted factors (TSF) which have been identified as key regulators of macrophage motility [36–40].

87 The study of cell migration requires suitable experimental models that allow cells to migrate with spatial 

88 and temporal freedom, while allowing for real-time measurements. A classical set-up is the transwell 

89 migration assay, where cell motility is assessed by the number of cells that migrate across a two-

90 dimensional (2D) porous membrane between upper and lower chambers [41,42]. While the use of such 

91 platforms contributes insight toward cell motility, they lack a 3D ECM and fail to accurately mimic the 

92 physiological setting [43,44]. Specifically, recent studies have reported differences in protein expression 

93 when cells migrate through a 3D matrix compared to their migration on a 2D substrate [42,44–46]. For 

94 example, focal adhesion kinase (FAK) is crucial for migration through a 3D matrix, but in 2D, FAK-null 

95 cells can compensate for migration defects by over-expressing other cell migration machineries [46]. 

96 Moreover, matrix degradation, an important factor in 3D migration, is not required for migration on a 2D 

97 surface. Indeed, there is evidence that 3D measurements of migration directedness (ability to maintain 

98 direction of motion) and speed do not correlate with migration in 2D [45]. Finally, these classical assays 
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99 present end-point readouts of the number of transmigrated cells, failing to capture the temporal dynamics 

100 of cell motility. 

101 On the other hand, microfluidic models present suitable 3D environments for real-time measurements of 

102 migration directedness and speed. However, current microfluidic models of IF comprise a gel-based mono-

103 culture of cells including tumor cells [47,48], fibroblasts [49,50] or macrophages [51]. The most cellularly 

104 complex model has tumor cells seeded in a central microchannel with an additional endothelial monolayer 

105 in the adjacent microchannel [52]. Recently, Li et al. report evidence that IF increased the migration 

106 directedness and speed of mouse macrophages using a single-gel microfluidic platform [51]. However, 

107 there remains open questions such as how IF which specifically arises from tumor cells can dynamically 

108 modulate macrophage migration, and whether IF or TSF is the stronger determinant of macrophage 

109 migration behavior. To this end, the in silico modeling of in vitro data can yield quantitative insight into 

110 the biological signaling and biomechanics of macrophage migration in a 3D TME setting [53,54].

111 The present work seeks to address the effect of tumor-derived IF and TSF on macrophage migration by 

112 developing a human-based microfluidic model comprising a co-culture of tumor cells and primary 

113 monocyte-derived macrophages, designed to impart the effect of tumor-derived IF and TSF on 

114 macrophages. Specifically, we will contribute insight toward the dynamic IF-associated interplay that exists 

115 between tumor cells and macrophages. Further, we will clarify if IF and TSF are functionally redundant or 

116 additive in regulating macrophage migration, thus identifying their relative importance as potential 

117 therapeutic targets. Moreover, we explore how our in vitro data contributes toward the development of a 

118 refined in silico signaling network model that associates TSF, IF and the migration activity of macrophages. 

119
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120 MATERIALS AND METHODS

121 Generation and culture of GFP stable cell lines 

122 A human pancreatic adenocarcinoma (PDAC) cell line, Panc1 (ATCC® CRL-1469), and normal pancreatic 

123 epithelial cell line hTERT-HPNE (“HPNE”) (ATCC® CRL-4023) were transfected to stably express green 

124 fluorescent protein (GFP). GFP gene was amplified from pGreenPuro shRNA Cloning and Expression 

125 Lentivector (CMV; System biosciences, SI505A-1) and sub-cloned into ITR-CAG-DEST-IRES-

126 Neomycin-ITR plasmid (generous gift from Marc Supprian Schmidt). ITR-CAG-DEST-IRES-Neomycin-

127 ITR (control plasmid) (Supplementary Fig. S1a) or ITR-CAG-GFP-IRES-Neomycin-ITR (GFP plasmid) 

128 (Supplementary Fig. S1b) was mixed with SB100x transposase (1:1 ratio) and the mixture was transiently 

129 transfected into the cell line using Lipofectamine 2000 (Thermo Fisher Scientific, 11668027). Three days 

130 post-transfection, transfected cells were selected with 300 µg/mL G418 for 10 days. To validate the stable 

131 and constitutive expression of GFP, selected cells were analyzed by flow-cytometry. GFP-expressing Panc1 

132 and HPNE were cultured in Iscove’s Modified Dulbecco’s Media (IMDM; GE Healthcare Hyclone, 

133 SH30228.01) supplemented with 5% human serum (Innovative Research, IPLA-SER) and 1% 1X 

134 Penicillin-Streptomycin (hereafter referred to as “cIMDM”). Cells were maintained in a humidified CO2 

135 incubator at 37 °C and 5% CO2. 

136 Multiplex array

137 Conditioned media were generated from either the 2D culture of Panc1 and HPNE cells using a previously 

138 described method [55] or the 3D culture of these cell lines. Briefly, in the 2D culture, 1 × 106 cells were 

139 seeded in 30 mL of cIMDM in a T175 flask and allowed to grow to 70-80% confluency. Media were then 

140 removed from the flasks, centrifuged for 10 min at 15000 rpm, sterile filtered (0.2 µm pore size) and stored 

141 at -20 oC until use. For the 3D culture, cells were seeded at equal densities in the microfluidic device for at 

142 least 24 h, before collecting media from all media reservoirs of each device. Cell media were centrifuged 

143 at 14000 rpm for 10 min at 4 oC and all supernatants were stored in –20 oC until use. 2D and 3D culture 
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144 media cytokines were respectively analyzed by the Proteome ProfilerTM antibody array (R&D Systems) and 

145 the Milliplex 38 Cytokine kit (Millipore, HCYTMAG-60K-PX38). 

146 Isolation of monocytes and differentiation into macrophages

147 Blood samples and procedures used in this study have been approved by the Centralized Institutional 

148 Review Board, SingHealth (reference no: 2017/2512) and the Committee on the Use of Humans as 

149 Experimental Subjects (COUHES). All protocols are in accordance with The Code of Ethics of the World 

150 Medical Association. Written informed consent was given according to the principles expressed in the 

151 Declaration of Helsinki. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of 

152 healthy donors by Ficoll-Paque (GE Healthcare, 17-1440-02) density gradient centrifugation, and 

153 monocytes were positively isolated using CD14 microbeads (Miltenyi Biotec, Auburn, CA). Monocytes 

154 were maintained in Petri dishes in cIMDM and 100 ng/mL recombinant human M-CSF (Immunotools, 

155 Friesoythe, Germany) over 7 days to generate macrophages. Cell viability was assessed by Trypan blue 

156 exclusion and was consistently > 90% viable. 

157 Fabrication of microfluidic device

158 Microfluidic devices were fabricated following previously reported protocols [56,57]. 

159 Polydimethylsiloxane (PDMS; Sylgard 184 silicone elastomer kit, Dow Corning, Midland, MI, USA) were 

160 fabricated by standard soft lithography methods from a patterned SU-8 silicon wafer. Silicone elastomer 

161 and curing agent were mixed at a 10:1 weight ratio, degassed in a desiccator, poured onto the 

162 photolithographically patterned SU-8 structures and cured overnight at 37 °C. Devices were cut from the 

163 PDMS replica, and inlet and outlet ports were created by biopsy punches before autoclave sterilization. 

164 After drying the devices overnight at 80 oC, PDMS layers were plasma bonded to the glass cover slips to 

165 create channels of approximately 190 μm in height. Each device consists of four connected channels (4.36 

166 mm in length), with two for injecting hydrogels (580 μm wide) and two for culture media (920 μm wide) 
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167 (Fig. 1a). Each gel channel contains 9 trapezoidal structures (base lengths of 290 μm and 120 μm, height 

168 of 140 μm) [33,55,56].

169 Cell seeding

170 All channels were coated with 1 mg/mL poly-D-lysine (PDL) solution (Sigma-Aldrich, St. Louis, MO) to 

171 prevent the detachment of collagen gels from the channel walls and left at 80 oC for at least 24 h to restore 

172 hydrophobicity [43]. GFP-Panc1 were trypsinized, counted and resuspended in 2.5 mg/mL type I rat tail 

173 collagen gel (354236, Corning) solution. Macrophages were harvested by rinsing with D-PBS, incubating 

174 with PBS/EDTA (PBS; 2 mM EDTA; Axil Scientific, BUF-1052) for 10–15 min at 37 °C, 5% CO2, before 

175 adding cIMDM and gently scraping. Harvested macrophages were fluorescently stained with 2 µM Cell 

176 Tracker Orange, CMRA (Invitrogen) and resuspended separately in the same type of hydrogel. Cell seeding 

177 was performed using a protocol that was previously described [33,55,56]. Briefly, the GFP-Panc1 hydrogel 

178 suspension was injected into one gel channel and allowed to polymerize for 20 min in the incubator (37 oC, 

179 5% CO2), followed by injection of the macrophage hydrogel suspension in the other gel channel and then 

180 gentle addition of cIMDM into the lateral fluidic channel adjacent to the GFP-Panc1 gel channel. The device 

181 was returned to the incubator for 40 min for the second injected hydrogel to polymerize before gentle 

182 addition of cIMDM to the media channel adjacent to the macrophage gel channel (Fig. 1b). In some devices, 

183 collagen hydrogel without GFP-Panc1 (herein referred to as “blank hydrogel”) was used as the first 

184 hydrogel being injected (Fig. 1c). Devices containing cells were left to stabilize overnight in the incubator. 

185 3D assay and quantification of macrophage migration

186 After overnight incubation, the cell-containing PDMS chamber was sealed against another PDMS layer that 

187 contained a large media reservoir (Fig. 1a). To achieve a flow velocity of ~ 3 µm/s through the 3D collagen 

188 hydrogel, a media-height difference of 2.5 mm was established at the inlet ports connecting the media 

189 reservoir with the channels containing GFP-Panc1 or blank hydrogel. Through this set-up, media flowed 

190 from the media reservoir, through the GFP-Panc1 cells (or blank hydrogel), and then finally to the 
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191 macrophages. Darcy’s law was used to calculate the required media-height difference across the gel 

192 channels (refer to ‘Calculation and verification of interstitial flow’). In some devices, respective 

193 concentrations (ranging from 25 ng/mL to 100 ng/mL) of recombinant human IL-8 (Biolegend, 715404) 

194 and/or recombinant human CCL2 (Peprotech, 300-04) reconstituted in cIMDM was added. In other devices, 

195 0.4 µg/mL of anti-IL-8 antibody (R&D, MAB208) and/or 1 µg/mL of anti-CCL2 antibody (R&D, 

196 MAB279) was added.

197 Devices were transferred onto a confocal microscope (Olympus model FV1000) fit with a humidified 

198 environmental chamber which maintained a temperature of 37 oC and 5% CO2. Macrophages were exposed 

199 for 24 h to the various stimuli, including IF, recombinant cytokines and anti-IL-8/anti-CCL2 antibodies, 

200 where their migration in 3D was tracked by time-lapse confocal microscopy, with 3D image stacks taken 

201 every 25 min at a 20X magnification (800 × 800 pixel density). As the cross-sectional area of the reservoirs 

202 was approximately 1500 times that of the hydrogel region, there was a negligible decrease in the media-

203 height difference during the 24 h duration. IMARIS 9.2 was used to track and quantify the migration 

204 directedness and speed of macrophages in 3D and to produce the cell trajectory plots of macrophage 

205 migration. 

206 Calculation and verification of interstitial flow 

207 The hydraulic permeability, K, of the 2.5 mg/mL collagen gel used in this study was previously determined 

208 by Darcy’s law to be ~ 7 x 10-14 m2 [51]. Darcy’s law was also used to determine the media-height difference 

209 that was required to establish a desirable IF velocity, v, through the microfluidic device, as represented by 

210 Eq. 1: 

211 ∆ℎ =  
𝑣𝜇𝑊
𝐾𝜌𝑔

212 where ρ is the density and  is the viscosity of cIMDM media, W is the width of the chamber, and Δh is the 

213 initial media–height difference of the reservoir [58]. Based on the geometry of the total hydrogel matrix in 

(1)
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214 the microfluidic device and the estimated hydraulic permeability, a media–height difference of 2.5 mm was 

215 needed to generate an IF velocity of approximately 3 μm/s in the hydrogel. 

216 To quantify and confirm the velocity of IF through the hydrogel at the start and end of the IF treatment, 

217 fluorescence recovery after photobleaching (FRAP) was used following a previously reported protocol [59]. 

218 Here, 100 µg/mL of 70 kDa FITC-dextran in cIMDM was added and a spot of 30 µm diameter of the 

219 hydrogel was bleached using the highest intensity of the laser, according to the microscope guidelines. After 

220 the bleaching step, time-lapse images in short intervals (~ 1.6 s) were recorded to monitor the recovery in 

221 fluorescence. Photobleaching was performed for the hydrogels in both gel microchannels. ImageJ and 

222 Matlab were used to quantify the change in fluorescence after the bleaching step. 

223 Signaling network model construction

224 A simplified version of the hypothesized signaling network model linking IL-8-based and CCL2-based 

225 signaling and IF-induced macrophage migration was constructed by analyzing literature-established 

226 signaling pathways associated with each of these extracellular stimuli. Relevant networks were analyzed 

227 for intersections (which indicate the presence of key signaling species), and using these intersections, these 

228 networks were combined into a single, unified signaling network. Our in vitro experimental data showed 

229 that similar trends are exhibited by both macrophage migration directedness and speed, suggesting the 

230 presence of a common regulator. Moreover, in the absence of a specific molecular output node in our in 

231 vitro data, we did not model complex downstream signaling and elected to keep the model as simple as 

232 possible. As such, we simplified this unified network by removing non-receptor, non-intersecting, 

233 intermediate reactions and unifying the various Rho GTPases, that are regulated by the three extracellular 

234 stimuli, into a single “common regulator” signaling node. Then, we combined the downstream signaling 

235 activity of Rho GTPases into a single regulatory node that regulated both migration directedness and speed.
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236 Mathematical model development

237 A mathematical model was constructed from the aforementioned hypothesized signaling network model. 

238 Specifically, an ordinary differential equation (ODE) model tracked the concentration of each signaling 

239 element in its active form and its interactions with other signaling elements [60,61]. The concentrations of 

240 activated receptors CXCR1/2 and CCR2 were defined in relation to the concentrations of their respective 

241 ligands IL-8 and CCL2 using steady state approximations and the ligand-receptor dissociation constant (Eq. 

242 2 and 3) [62]. The concentration of activated FAK in response to integrin-mediated, IF-induced signaling 

243 was calculated using a Hill function. Here, IF speed was correlated with the steady state concentration of 

244 activated FAK, and constants were calculated to reproduce in vitro experimental observations (Eq. 4) [51]. 

245 Next, the concentration of active G proteins dissociating from G protein-coupled receptors CXCR1/2 and 

246 CCR2 in response to IL-8 and CCL2 binding, respectively, was calculated by integrating the two receptor 

247 signals in an additive manner through Hill functions with corresponding dissociation constants (Eq. 6). 

248 Then, we calculated the concentration of active common regulator (Eq. 8). Here, the concentrations of IL-

249 8, FAK, and CCL2 additively contributed to common regulator activation through Hill functions with 

250 corresponding dissociation constants. Finally, migration directedness and speed were modeled as Hill 

251 functions that exhibit basal activity when no active common regulator is present and increase asymptotically 

252 to a maximum value as the concentration of active common regulator increases (Eq. 9 and 10). Table 1 

253 defines the signaling species being tracked by the model.
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254 Table 1. Species variable abbreviations, definitions, initial steady state values and units.

Species Abbreviation Definition Initial Value Units
S1 IL-8 Interleukin-8 9.01* nM
S2 CCL2 C-C motif chemokine ligand 2 9.07* nM
S3 IF Interstitial flow 3000 nm/s

S4 CXCR1/2 C-X-C motif chemokine receptor 1 or 2;
receptor for IL-8 0 nM

S5 CCR2 C-C chemokine receptor type 2; receptor for
CCL2 0 nM

S6 FAK Focal adhesion kinase; activated in response to 
interstitial flow 9.49 nM

S7 G proteins
Family of signaling G proteins (associated with 
G protein-coupled receptors CXCR1/2 and 
CCR2)

0 nM

S8
Common 
regulator

Downstream common regulator of migration 
directedness and speed. Potentially one or more 
Rho GTPases such as CDC42, Rac1 and/or 
RhoA

103 nM

MD Directedness Migration directedness relative to control 1.00 -
MS Speed Migration speed relative to control 1.00 -

255 *Equivalent to 100 ng/mL.

256 The mathematical modeling framework is as follows (Eq. 2 – 10): 

257 (2)𝑆4 =
𝑆4,𝑡𝑜𝑡𝑆1

𝑘1 + 𝑆1

258 (3)𝑆5 =
𝑆5,𝑡𝑜𝑡𝑆2

𝑘2 + 𝑆2

259 (4)𝑆6 = 𝑏3 +
(𝑆6,𝑡𝑜𝑡 ― 𝑏3)𝑆3

𝑘3 + 𝑆3 
,     where     𝑘3 = 𝑆3,𝑑𝑎𝑡𝑎(𝑆

𝑏3

6,𝑡

(𝛿
𝑜𝑡 

―
― 

1
𝑏

)
3― 1)

260 (5)𝑆7,𝑖 = 𝑆7,𝑡𝑜𝑡 ― 𝑆7

261 (6)
𝑑𝑆7

𝑑𝑡 = 𝑆7,𝑖 ( 𝑝4𝑆4
𝑛4

𝑘4
𝑛4 + 𝑆4

𝑛4
+ 𝑝5𝑆5

𝑛5

𝑘5
𝑛5 + 𝑆5

𝑛5) ― 𝑐7𝑆7

262 (7)𝑆8,𝑖 = 𝑆8,𝑡𝑜𝑡 ― 𝑆8

263 (8)
𝑑𝑆8

𝑑𝑡 = 𝑆8,𝑖
( 𝑝6𝑆7

𝑛6

𝑘6
𝑛6 + 𝑆7

𝑛6
+

𝑝7𝑆6
𝑛7

𝑘7
𝑛7 + 𝑆6

𝑛7
) ― 𝑐8𝑆8
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264  (9)𝑀𝐷 =  1 + (𝑟𝐷 ― 1) 𝑆8
𝑛𝐷

𝑘𝐷
𝑛𝐷 + 𝑆8

𝑛𝐷

265 (10)𝑀𝑆 =  1 + (𝑟𝑆 ― 1) 𝑆8
𝑛𝑆

𝑘𝑆
𝑛𝑆 + 𝑆8

𝑛𝑆

266 To simulate experiments involving the treatment of macrophages with TSF, or co-culture with cancer cells 

267 without IF, the following relationship was used to simulate TSF composition (Eq. 11): 

268 (11)[CCL2]𝑇𝑆𝐹 = 𝑟𝑇𝑆𝐹[IL - 8]𝑇𝑆𝐹

269 where [IL-8]TSF and rTSF are free parameters fit to experimental data. 

270 Furthermore, to simulate experiments where TSF-treated macrophages are exposed to anti-IL-8 and/or anti-

271 CCL2 antibodies, the following functions were used to determine the uninhibited concentrations of each 

272 cytokine (Eq. 12 and 13):

273            (12)[IL - 8]𝛼 = [IL - 8]𝑇𝑆𝐹( 𝑘𝛼,𝐼𝐿8[IL - 8]𝑇𝑆𝐹

𝛼𝐼𝐿8 + 𝑘𝛼,𝐼𝐿8[IL - 8]𝑇𝑆𝐹)

274 (13)[CCL2]𝛼 = [CCL2]𝑇𝑆𝐹( 𝑘𝛼,𝐶𝐶𝐿2[CCL2]𝑇𝑆𝐹

𝛼𝐶𝐶𝐿2 + 𝑘𝛼,𝐶𝐶𝐿2[CCL2]𝑇𝑆𝐹)

275 Model parameter estimation

276 The mathematical model was implemented as a purpose-constructed code in Python 2.7 and solved at 

277 50,000 time points over 48 h of simulated experimental time via the odeint solver found in the 

278 scipy.integrate module using the default settings. The model contained 36 parameters, 13 of which were 

279 assigned to experimentally derived values taken from the literature (Table 2), 2 of which were assigned 

280 based on manufacturer provided protocols for antibody blockade, and 2 of which were directly calculated 

281 from in vitro directedness and speed data. Here, the kinetics of each upstream interaction between IL-8, 

282 CCL2 or IF speed with downstream signaling elements of the model were taken from the literature. Also, 

283 initial conditions of each parameter were determined by running the model without the stimuli until it 

284 reached steady state. In addition, the total concentration of each intermediate signaling species (assumed 
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285 here to be the total concentration of each species at steady state, including both its active and inactive forms) 

286 was assigned to a known benchmark value from the literature. The remaining 19 free parameters were fit 

287 to our in vitro experimental results using a gradient descent least-squares error minimization approach that 

288 minimized the error function (Eq. 14):

289 (14)𝐸 =  ∑𝑖(𝑀𝐷,𝑖 ― 𝑚𝐷,𝑖

𝑚𝐷,𝑖 )2
+ ∑

𝑖(𝑀𝑆,𝑖 ― 𝑚𝑆,𝑖

𝑚𝑆,𝑖 )2

290 where  and  are the simulated migration directedness and speed for each stimulus, respectively,  𝑀𝐷,𝑖 𝑀𝑆,𝑖

291  and  are the experimentally measured migration directedness and speed for each stimulus, 𝑚𝐷,𝑖 𝑚𝑆,𝑖

292 respectively. Table 2 shows all model parameters, including those generated from the model fitting process. 

293 All free parameters were allowed to fit to any positive value, with the exception of δ, the fold increase in 

294 FAK activation associated with IF at a speed of S3,data, which was constrained to within 50% of the in vitro 

295 experimentally observed value [48]. Determining the free parameter values by this approach allowed for an 

296 accurate fit that was able to capture the trends across all 58 experimental data points. 

297 Table 2. Parameter values used in simulations. All activation rate constants, dissociation constants, hill 
298 coefficients, and basal activation constants are numbered such that they correspond to different signaling 
299 pathway reactions. All total species concentrations and degradation rates are numbered such that they 
300 correspond to the species numbers detailed in Table 1.

Parameter Value Units Definition Source

p4 4.27 × 10-5 1/s 1/nM
Activation rate constant 
for CXCR1/2 activating 
G proteins

Fit to in vitro experimental data

p5 1.28 × 10-4 1/s 1/nM
Activation rate constant 
for CCR2 activating G 
proteins

Fit to in vitro experimental data

p6 7.67 × 10-3 1/s 1/nM
Activation rate constant 
for G proteins activating 
common regulator

Fit to in vitro experimental data

p7 2.32 × 10-3 1/s 1/nM
Activation rate constant 
for active FAK activating 
common regulator

Fit to in vitro experimental data

k1 1.9 nM Dissociation constant for 
IL-8 binding to CXCR1/2 [63]

k2 0.77 nM Dissociation constant for 
CCL2 binding to CCR2 [64]
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k4 410 nM

Apparent dissociation 
constant for active 
CXCR1/2 activating G 
proteins

Fit to in vitro experimental data

k5 937 nM
Apparent dissociation 
constant for active CCR2 
activating G proteins

Fit to in vitro experimental data

k6 166 nM

Apparent dissociation 
constant for G proteins 
activating common 
regulator

Fit to in vitro experimental data

k7 175 nM

Apparent dissociation 
constant for active FAK 
activating common 
regulator

Fit to in vitro experimental data

n4 1.15 -
Hill coefficient for active 
CXCR1/2 activating G 
proteins

Fit to in vitro experimental data

n5 2.09 -
Hill coefficient for active 
CCR2 activating G 
proteins

Fit to in vitro experimental data

n6 5.60 -
Hill coefficient for G 
proteins activating 
common regulator

Fit to in vitro experimental data

n7 1.38 -
Hill coefficient for active 
FAK activating common 
regulator

Fit to in vitro experimental data

b3 9.49 nM Basal concentration of 
active FAK Fit to in vitro experimental data

S4,tot 500 nM
Total concentration of 
active and inactive 
CXCR1/2

[65]

S5,tot 500 nM Total concentration of 
active and inactive CCR2 [65]

S6,tot 500 nM Total concentration of 
active and inactive FAK [65]

S7,tot 500 nM
Total concentration of 
active and inactive G 
proteins

[65]

S8,tot 500 nM
Total concentration of 
active and inactive 
common regulator

[65]

c7 1.56 × 10-4 1/s
Combined degradation 
and dilution rate for G 
proteins

[66]

c8 1.56 × 10-4 1/s
Combined degradation 
and dilution rate for 
common regulator

[66]
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S3,data 3.00 ×103 nm/s
Interstitial flow (IF) speed 
associated with δ-fold 
increased FAK activation

[48]

δ 1.43 -
Fold increase in FAK 
activation associated 
with IF at S3,data nm/s

[48]

rS 3.25 -
Ratio between highest 
and lowest observed 
migration speed 

Calculated from in 
vitro experimental data

kS 131 nM
Half maximum constant 
for common regulator-
induced migration speed

Fit to in vitro experimental data

nS 8.74 -
Hill coefficient for 
common regulator-
induced migration speed

Fit to in vitro experimental data

rD 2.95 -
Ratio between highest 
and lowest observed 
migration directedness 

Calculated from in 
vitro experimental data

kD 114 nM

Half maximum constant 
for common regulator-
induced migration 
directedness

Fit to in vitro experimental data

nD 10.9 -

Hill coefficient for 
common regulator-
induced migration 
directedness

Fit to in vitro experimental data

[IL-8]TSF 1.12 nM - Fit to in vitro experimental data
rTSF 1.18 - - Fit to in vitro experimental data

αIL8 2.67 nM
Concentration of anti-IL-8 
antibody in antibody 
blockade experiments

Reflective of in vitro experimental 
conditions

kα,IL8 0.888 -
Molar ratio of antibody to 
IL-8 required for 50% 
inhibition

Based on manufacturer supplied 
datasheet

αCCL2 6.67 nM

Concentration of anti-
CCL2 antibody in 
antibody blockade 
experiments

Reflective of in vitro experimental 
conditions

kα,CCL2 1.32 -
Molar ratio of antibody to 
CCL2 required for 50% 
inhibition

Based on manufacturer supplied 
datasheet

301
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302 Sensitivity analysis

303 Stimulus sensitivity analysis was used to quantify the effect of each extracellular stimulus on the 

304 concentration of active common regulator. Here, the elasticity of the concentration of active common 

305 regulator was computed for the concentration of each stimulus using the following function (Eq. 15):

306 (15)𝜙𝐶,𝑋 = | ∆%[Common Regulator] 
∆%𝑋 |

307 where the denominator represents a 20% change in the stimulus under study (centered at the default stimulus 

308 value given in Table 1) and the numerator represents the percent change in the concentration of active 

309 common regulator. 

310 An additional stimulus sensitivity analysis was used to quantify the effect of each extracellular stimulus on 

311 the quality of the model fit against the in vitro experimental data, as quantified by the coefficient of 

312 determination (R2) value. This was done in order to determine the effect of changing the magnitude of each 

313 extracellular stimulus on the migration speed and directedness magnitudes induced by each stimulus 

314 relative to one another. This could also be conceptualized as quantifying the influence of each extracellular 

315 stimulus on the trends within the data across all extracellular stimuli. Here, the model R2 elasticity was 

316 computed for each stimulus using the following function (Eq. 16):

317 (16)𝜙𝑅,𝑋 = |∆%𝑅2

∆%𝑋 |

318 where the denominator represents a 20% change in the stimulus under study (centered at the default stimulus 

319 value given in Table 1) and the numerator represents the percent change in the R2 value between the model 

320 outputs and all in vitro experimental directedness and speed data. 

321 Parameter sensitivity analysis was used to quantify the effect of each model parameter on the concentration 

322 of active common regulator. Here, the elasticity of the concentration of active common regulator was 

323 computed for each parameter using the following function (Eq. 17):
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324 (17)𝜙𝐶,𝑃 = | ∆%[Common Regulator] 
∆%𝑃 |

325 where the denominator represents a 20% change in the parameter under study (centered at the default 

326 parameter value given in Table 2) and the numerator represents the percent change in the concentration of 

327 active common regulator. 

328 Finally, an additional parameter sensitivity analysis was used to quantify the effect of each model parameter 

329 on the quality of the model fit against in vitro experimental data, as quantified by the R2 value. This was 

330 done in order to determine the effect of changing the magnitude of each reaction parameter on the migration 

331 speed and directedness magnitudes induced by each stimulus relative to one another. This could also be 

332 conceptualized as quantifying the influence of each parameter on the trends within the data across all 

333 extracellular stimuli. Here, the model R2 elasticity was computed for each parameter using the following 

334 function (Eq. 18):

335 (18)𝜙𝑅,𝑃 = |∆%𝑅2

∆%𝑃 |

336 where the denominator represents a 20% change in the parameter under study (centered at the default 

337 parameter value given in Table 2), and the numerator represents the percent change in the R2 value between 

338 the model outputs and all in vitro experimental directedness and speed data. 

339 Statistical analysis

340 Statistical analysis of experimental data was performed using GraphPad Prism 8.2 (GraphPad Software) 

341 considering at least two regions of interest (ROIs) in the hydrogel per device. For each in vitro experiment, 

342 the average migration directedness or speed of macrophages in each ROI (~ 150 macrophages per ROI) 

343 was used to generate a data point. To quantify the agreement between the in vitro experimental data and 

344 the output values of the mathematical model, the R2 values were calculated for (1) directedness data only, 

345 (2) speed data only, and (3) all data together. At each data point, statistical analysis was performed to

346 determine if the population mean predicted by the model would be likely to produce the in vitro 
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347 experimental data. Data were plotted as the mean ± standard error of the mean (SEM), where n.s. represents 

348 not significant, * represents P ≤ 0.05, ** represents P ≤ 0.01, *** represents P ≤ 0.001 and **** represents 

349 P ≤ 0.0001. Statistical significance was determined using a Student’s t-test or where appropriate, a one-way 

350 ANOVA with Holm-Sidak’s multiple comparisons test. Only a P-value or adjusted P-value of ≤ 0.05 was 

351 taken as evidence of statistical significance.

352

353 RESULTS

354 Generation of an in vitro 3D co-culture model with tumor interstitial flow

355 Based on previously optimized protocols [51,56], we designed a 3D in vitro microfluidic model of tumor 

356 IF to specifically study macrophage migration. In this platform, we cultured tumor cells in one channel and 

357 macrophages in the adjacent channel, thus allowing us to simulate and study the impact of tumor-originating 

358 IF on macrophage migration without the influence of physical cell contact (Fig. 1). In our set-up, we 

359 confirmed that the velocity of IF through both gel channels was within the range reported for tumor tissues 

360 [25,26]. FRAP analysis revealed a mean IF velocity of 3.9 ± 0.7 µm/s at the beginning of IF exposure and 

361 4.4 ± 0.5 µm/s after 24 h (P > 0.05) (Supplementary Fig. S2). These results correspond with the height 

362 difference of 2.5 mm between the two media channels which stayed relatively unchanged over the 24 h. 

363 Thus, it could be assumed that IF velocity was relatively constant throughout the duration of IF treatment. 

364 Similar effect on macrophage migration by tumor-secreted factors and interstitial flow

365 In our first set of in vitro experiments, we observed that compared to the control macrophage monoculture 

366 without IF (Fig. 2ai), 24 h of IF exposure appeared to increase macrophage motility (Fig. 2aii) as shown by 

367 the relatively increased spread of their x-y migration path trajectories. Interestingly, it appeared that the 

368 presence of tumor cells alone without IF (TSF) also increased the spread of migration path trajectories 

369 relatively (Fig. 2aiii), suggesting that either IF or TSF alone could promote increased macrophage motility. 

Page 19 of 62

https://mc.manuscriptcentral.com/intbio

Manuscripts submitted to Integrative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

20

370 Interestingly, combining IF and TSF (at the cell concentrations tested in Fig. 2) did not have an additive 

371 effect on the spread of macrophage migration (Fig. 2aiv).

372 To ascertain the effect of each stimulus on macrophage motility, we quantified the directedness and speed 

373 of macrophage migration during the period of IF exposure following a previously reported approach (Fig. 

374 2b) [36,51]. Consistent with the observed increase in x-y migration path trajectories, IF, TSF or the 

375 combination of both could substantially increase the directedness (Fig. 2c) and speed of macrophage 

376 migration (Fig. 2d). Compared to the untreated control where the directedness and speed of macrophage 

377 migration was D = 0.31 ± 0.04 and S = 8.3 ± 1.2 µm/h, respectively, a 2-fold increase in directedness and 

378 3-fold increase in speed was observed for the conditions of IF (D = 0.57 ± 0.03, S = 19 ± 3 µm/h), TSF (D

379 = 0.63 ± 0.04, S = 23 ± 3 µm/h) and the IF-TSF combination (D = 0.62 ± 0.06, S = 24 ± 3 µm/h), and these 

380 values are within the range reported in previous in vitro investigations [51].

381 Hypothesized signaling pathway linking key tumor-secreted factors and Rho GTPase-regulated 

382 migration

383 A multiplex cytokine array of culture supernatant of the tumor cell line (Panc1) and a normal control cell 

384 line (HPNE) was conducted to identify the main cytokines within TSF that drove the migration behavior 

385 that we observed in vitro of macrophages. Our analysis on 2D cell culture-derived supernatant revealed 

386 several cytokines secreted at higher levels by the Panc1 compared to the HPNE cell line (Fig. 3a). A review 

387 of known signaling networks revealed that the upregulation of CCL2 and IL-8 is highly associated with the 

388 regulation of cell migration [67,68]. We also confirmed that Panc1 secreted higher levels of both cytokines 

389 than HPNE in the 3D in vitro culture environment (Fig. 3b), suggesting that IL-8 and CCL2 could mainly 

390 drive the migration we observed of macrophages in the 3D in vitro system. 

391 Mechanistically, IL-8 [67,69,70] and CCL2 [68,71–74] bind to G protein-coupled receptors CXCR1/2 and 

392 CCR2, respectively, resulting in the activation and subsequent dissociation of an associated G protein [75]. 

393 This releases the α subunit of the G protein to activate further intracellular signaling that results in the post-
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394 translational regulation of regulatory proteins such as small monomeric GTPases of the Rho-family, leading 

395 to polymerization and retraction of the actin cytoskeleton which are important processes for cells to migrate. 

396 Additionally, our in vitro experimental data support previous studies that have demonstrated a synergistic 

397 integration between these receptors, whereby downstream signals are significantly greater in response to 

398 the activation of both receptors than either receptor alone [76]. This synergy has been shown to depend on 

399 the activation of both receptors, suggesting that synergy is the result of intracellular signaling, as opposed 

400 to extracellular cytokine interactions or receptor-receptor associations [76]. Moreover, even in the presence 

401 of both receptors, certain cell types fail to demonstrate this synergy, suggesting this behavior arises from a 

402 characteristic intracellular signaling motif or protein that is unique to certain cell types such as macrophages 

403 [77]. G proteins represent a common element in the downstream signaling networks associated with both 

404 receptors [69,74], and are upstream of migration-regulating Rho GTPases and extracellular signal-regulated 

405 kinases (ERK) (which also exhibit a synergistic activation in response to the activation of both receptors) 

406 [76]. Thus, we hypothesized that a subset of G proteins may represent the integration point and the source 

407 of the synergy between these signaling pathways. In addition, IF-modulated signaling, as mediated by 

408 integrin-β2 and FAK, is known to drive the activation and downstream migratory activity associated with 

409 Rho GTPases [51,78]. Finally, because our in vitro experimental data show that IF and TSF induced a 

410 similar increase in directedness and speed, we hypothesized that IL-8, CCL2 and IF regulate one or more 

411 of the relevant Rho GTPases, namely CDC42, Rac1 and/or RhoA [38–40]. 

412 Notably, the purpose of our model is to infer the logical structure of the network that integrates multiple 

413 molecular (IL-8 and CCL2) and mechanical (IF) stimuli, but not the intricate details of interactions 

414 associated with the downstream Rho GTPases. For this reason, we model the Rho GTPases collectively 

415 through a single representative concentration, and hereafter denote this group of signaling species 

416 collectively as “common regulator”. Also, as downstream signaling (connecting Rho GTPase activity to 

417 migration-related processes) becomes increasingly complex, we recognize that there is no need to model 

418 all theoretical details of GTPases signaling. Moreover, the similar trends exhibited by both directedness 
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419 and speed in response to all tested stimuli could be explained simply by a common regulator, as opposed 

420 to more complex interactions between largely independent signaling pathways. Thus, we depicted 

421 directedness and speed as phenomena that are indirectly induced by this common regulator, with 

422 intermediate signaling described by respective response functions that depend on the concentration of active 

423 common regulator. These considerations led to our proposed signaling network model (Fig. 4) [37].

424 Effect of varying IL-8, CCL2 and/or interstitial flow on macrophage migration

425 A second set of in vitro experiments were conducted to confirm the central roles of IL-8 and CCL2 proposed 

426 in the signaling network model. Compared to the non-treated control, where macrophage migration 

427 directedness and speed were D = 0.35 ± 0.06 and S = 8.4 ± 1.1 µm/h, respectively, the exogenous addition 

428 of saturating concentrations (100 ng/mL) of only IL-8 (D = 0.56 ± 0.03, S = 20 ± 2 µm/h) or only CCL2 (D 

429 = 0.60 ± 0.07, S = 22 ± 4 µm/h) to a macrophage monoculture substantially increased migration directedness 

430 and speed (Fig. 5a). These increases were comparable to those obtained by exposing the macrophage 

431 monoculture to only IF (D = 0.61 ± 0.05, S = 23 ± 4 µm/h). Moreover, simultaneously exposing 

432 macrophages to IF together with either IL-8 (D = 0.59 ± 0.01, S = 19 ± 4 µm/h) or CCL2 (D = 0.60 ± 0.08, 

433 S = 22 ± 3 µm/h) did not further increase macrophage migration (Fig. 5a), supporting the notion that IF and 

434 TSF can commonly regulate macrophage migration behavior.   

435 Next, macrophages were exposed to sub-saturating concentrations of IL-8 and/or CCL2 to test if the same 

436 extent of increase in directedness and speed would be achieved as seen with either (1) a saturating 

437 concentration of individual cytokines, or (2) the 3D co-culture of macrophages and tumor cells (TSF). Sub-

438 saturating concentrations of 25 ng/mL of IL-8 and 25 ng/mL of CCL2 were identified based on prior 

439 titration experiments (Supplementary Fig. S3a and S3b). While exposure to the sub-saturating concentration 

440 of only IL-8 (D = 0.34 ± 0.03, S = 9.9 ± 1.3 µm/h) or only CCL2 (D = 0.35 ± 0.08, S = 11 ± 2 µm/h) did 

441 not result in an observable increase in directedness and speed, the combined exposure to sub-saturating 

442 concentrations of both cytokines promoted a comparable increase in directedness and speed (D = 0.54 ± 
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443 0.09, S = 21 ± 3 µm/h) to the TSF condition (D = 0.6 ± 0.1, S = 22 ± 2 µm/h) ( Fig. 5b). Importantly, the 

444 data suggest a synergistic integration of the intracellular signals associated with these two cytokines.

445 Finally, the introduction of 0.4 µg/mL of anti-IL-8 and 1 µg/mL of anti-CCL2 blocking antibodies could 

446 inhibit the TSF-mediated increase in migration directedness and speed (Fig. 5c). Compared to the co-culture 

447 condition (TSF) (D = 0.56 ± 0.10, S = 25 ± 2 µm/h), both directedness and speed were substantially 

448 decreased upon treatment with anti-IL-8 (D = 0.35 ± 0.07, S = 13.0 ± 0.3 µm/h), anti-CCL2 (D = 0.33 ± 

449 0.06, S = 13 ± 1 µm/h) or combined blockade of both cytokines (D = 0.27 ± 0.02, S = 11 ± 1 µm/h). 

450 Interestingly, IF could restore migration back to a level that was comparable to the TSF condition (D = 0.47 

451 ± 0.09, S = 21 ± 2 µm/h) despite combined antibody blockade of IL-8 and CCL2. 

452 Modeled signaling network captures fundamental migration behaviors

453 A mathematical model was developed based on the hypothesized signaling network (Fig. 4) using Hill 

454 functions: (1) to relate the concentration of active signaling proteins with the rate of activation of their 

455 downstream targets while capturing various nonlinear signaling behaviors of the system that are not 

456 explicitly modeled (Supplementary Fig. S4), and (2) to determine the steady state concentrations of bound, 

457 active cytokine receptors using dissociation constants from the literature [60,61]. Here, an ODE model 

458 tracked the concentration of each signaling element in its active form and its interactions with other 

459 signaling elements. The mathematical model exhibited similar trends between extracellular stimuli as those 

460 observed in in vitro measurements of migration directedness and speed (Fig. 6a-c). Specifically, the addition 

461 of individual or combined stimuli increased directedness and speed to approximately its maximum value, 

462 similar to in vitro observations. Also, the mathematical model results exhibited similar trends as in vitro 

463 experimentally observed migration responses to sub-saturating concentrations of IL-8 and/or CCL2 (Fig. 

464 6b), to the antibody blockade of IL-8 and/or CCL2 when tumor cells were present (Fig. 6c), and to the 

465 titration of either cytokine concentration in the absence of IF (Supplementary Fig. S3c and S3d). 

466 Quantifying this model agreement across all data points yields a mean R2 value of 0.71 for all directedness 
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467 data, 0.92 for all speed data, and 0.85 for all directedness and speed data taken together. Therefore, our 

468 model could successfully capture 85% of the variation in the in vitro experimental data. 

469 Sensitivity analysis reveals most influential stimuli and parameters

470 Sensitivity analyses were conducted to identify the most influential extracellular stimuli and reaction 

471 parameters that impacted macrophage migration speed and directedness. Specifically, they determined the 

472 influence of changing the magnitudes of different stimuli and reaction parameters on the magnitude of the 

473 migration speed and directedness response. The analyses also determined the influence of these changes on 

474 the measurements of the speed and directedness response to each extracellular stimulus relative to one 

475 another. 

476 First, we performed a stimulus sensitivity analysis to quantify the relative influence of each modeled 

477 stimulus on the concentration of active common regulator (Eq. 15) (Fig. 7a). Because directedness and 

478 speed were both regulated by the common regulator, these analyses captured the influence of each stimulus 

479 on both types of migration behaviors. IF had the greatest influence on the concentration of active common 

480 regulator, with approximately 1.5 times the influence of IL-8 and approximately 7 times that of CCL2. 

481 Then, a stimulus sensitivity analysis focusing on the R2 value was conducted to quantify the effect of 

482 varying the magnitude of each stimulus on the degree of agreement between the model and in vitro 

483 experimental data (Eq. 16) (Fig. 7b). This was done in order to determine the influence of each stimulus on 

484 the trends in directedness and speed across different stimuli as opposed to the concentration of active 

485 common regulator (which determines the magnitudes of directedness and speed). The influence of CCL2 

486 on the R2 value was over 4 times that of IF, which itself was slightly greater than that of IL-8. This analysis 

487 suggests that while IF had the greatest influence on the concentration of active common regulator, CCL2 

488 had the dominant influence on the trends in directedness and speed across different stimuli. Taken together, 

489 the considerable difference in the influence of the three modeled extracellular stimuli suggests that each 

490 plays a different role in the regulation of the downstream directedness and speed signals.
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491 Focusing on the kinetics of individual reactions, a parameter sensitivity analysis was conducted to analyze 

492 how a change in a parameter affected the concentration of active common regulator (Eq. 17) (Fig. 7c). 

493 Additionally, parameters were classified according to their associated signaling protein or motif to assess 

494 the influence of reactions associated with each network element on the overall downstream effect. Results 

495 revealed that parameters associated with common regulator and G protein activation and turnover were in 

496 general the most influential. Among G protein-associated parameters, those governing CCL2-induced G 

497 protein activation (k5 and n5) were particularly influential. Other highly influential parameters included S5,tot, 

498 which dictates the total concentration of CCL2 receptor CCR2, and two parameters associated with 

499 common regulator activation in response to CCL2 signaling (k6 and n6), which were the first and third most 

500 influential parameters, respectively. Overall, this analysis suggests an important role for G protein mediated 

501 signals, especially those driven by CCL2 signaling, in the regulation of the common regulator and thus 

502 migration directedness and speed.

503 A second parameter sensitivity analysis was conducted to quantify how varying the magnitude of each 

504 parameter changed the R2 value between the in vitro experimental data and model outputs (Eq. 18) (Fig. 

505 7d). This analysis sought to determine the influence of each parameter on the trends in directedness and 

506 speed across different stimuli as opposed to the concentration of active common regulator. Again, 

507 parameters were classified according to their associated signaling protein or motif. The most influential 

508 parameter was n7, the Hill coefficient associated with FAK-induced common regulator activation. Other 

509 parameters associated with common regulator activation and turnover were also among the most influential, 

510 including the second most influential parameter S8,tot, the total concentration of common regulator. 

511 Parameters associated with G protein activation and turnover were additional influential parameters, 

512 including S7,tot, the total concentration of G proteins, and c7, the combined degradation and dilution rate 

513 constant for G proteins. Notably, the third and fourth most influential parameters on the R2 value were kS 

514 and rS, both of which govern the speed response to common regulator activity. In contrast, among the least 

515 influential parameters were those associated with the directedness response to common regulator activity. 
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516 The disparate influence between migration speed and directedness on the R2 value suggests that trends in 

517 speed across different environmental conditions are more sensitive to changes in speed regulation, than are 

518 trends in directedness sensitive to changes in directedness regulation. Furthermore, this disparate influence 

519 between speed- and directedness-associated parameters suggests that migration directedness is more 

520 directly driven by the concentration of active common regulator. On the other hand, migration speed, 

521 although driven by the concentration of active common regulator, is governed by a more nonlinear 

522 processing of that signal. Overall, these analyses suggest that common regulator and G protein activation 

523 and turnover play a dominant role in determining the trends across different stimuli and thus the agreement 

524 between in vitro experimental data and the simulated cell migration behaviors based on the model. 

525 Furthermore, the analyses suggest that although speed and directedness are regulated by the concentration 

526 of active common regulator, these exhibit very different responses to that signal.

527

528 DISCUSSION

529 IF is an important tumor-associated biophysical factor that contributes toward cancer progression and poor 

530 patient survival [1,11–14]. Recent evidence suggests that IF also promotes the pro-tumor M2-polarization 

531 and migration activity of macrophages [51]. Moreover, clinical data demonstrate that macrophage density 

532 strongly correlates with increased metastasis [27]. Such findings suggest a plausible link between IF, 

533 macrophage activity (including their migration) and cancer metastasis, a research area that has not been 

534 widely studied [27]. In addition, macrophage migration is driven by tumor-secreted cytokines [36–40], 

535 which suggests that IF could act jointly with biochemical cues to affect macrophage migration. In this study, 

536 we demonstrate, for the first time, that IF can act in concert with tumor-secreted cytokines or factors (TSF) 

537 to regulate macrophage migration through a 3D in vitro TME-related ECM.  

538 Previously, Li et al. observed that IF-exposed mouse macrophages migrated faster than non-treated control 

539 macrophages [51]. Following their work, we were interested to explore the results generated using a co-
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540 culture set-up of tumor cells and human primary macrophages, which more closely resembles the dynamic 

541 exchange between these cell types in the in vivo human TME. Using a two-gel channel set-up with tumor 

542 cells and macrophages in co-culture in adjacent but separate channels, we could delineate between the 

543 effects of TSF and tumor-originating IF on macrophage migration. We observed that IF-exposed 

544 macrophages migrated faster and with increased directedness than non-treated controls which agrees with 

545 Li et al.’s work. To our knowledge, our model is the first co-culture system that investigates the role of 

546 tumor IF on immune cell migration.

547 The Panc1 cell line was used to create the in vitro co-culture IF system. Panc1 originates from PDAC which 

548 clinically represents one of the most malignant of cancers with one of the highest death rates [79,80]. PDAC 

549 metastasis correlates with a high macrophage infiltrate [55,81–85]. There are also numerous reports of 

550 cytokines underlying PDAC’s aggressive biology [86–89]. Therefore, PDAC seemed an appropriate 

551 cancer-immune model for investigating the effect of macrophage migration in response to PDAC-specific 

552 TSF, where the effect of IF can additionally be assessed. Also, our study integrated in silico and in vitro 

553 methods, an approach that has been highly effective in deriving insight into cell migration mechanisms [90–

554 93]. Specifically, we demonstrated that by simulating in vitro conditions, an in silico signaling network 

555 model could be obtained associating key TSF (specifically IL-8 and CCL2), IF and macrophage migration. 

556 In turn, the in silico model predictions were confirmed in vitro by adding different concentrations of 

557 exogenous IL-8/CCL2 or blocking antibodies against these cytokines and evaluating macrophage 

558 migration. 

559 In our study, we first observed that the exposure of macrophages to IF or TSF induced a comparable 

560 increase in their migration directedness and speed. Interestingly, the non-additive effect of combining IF 

561 and TSF suggests that both IF and TSF could commonly regulate downstream macrophage migration when 

562 these stimuli are at saturating levels.  Then, through a multiplex cytokine array of tumor-conditioned media, 

563 we identified IL-8 and CCL2 as the most probable cytokines driving the migration activity that we observed 

564 in the 3D in vitro system. In PDAC, acquisition of IL-8 and its receptors CXCR1 and CXCR2 on tumor 
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565 cells [94,95] and macrophages [96,97] correlates with tumor invasion [98–100] and the metastatic potential 

566 of solid tumors in murine models [101–106] and patients [107,108].  Similar to IL-8, the secretion of CCL2 

567 and macrophage expression of its receptor CCR2 has been observed in the tumor tissues of patients with 

568 advanced metastasis [109–115]. Moreover, CCR2 blockade in a PDAC mouse model could deplete 

569 macrophages from the primary tumor to reduce metastasis [116]. Therefore, we focused on IL-8 and CCL2 

570 in our study by virtue of their important role in regulating macrophage migration and PDAC metastasis. 

571 Notably, because IL-8/CCL2 are also implicated in the biology of other cancer types [42,117,118], our 

572 present findings can also be generalized to other cancers. 

573 To understand the migration mechanism underlying our in vitro observations, we developed an in silico 

574 signaling network model to associate IL-8, CCL2, IF and macrophage migration. To develop this model, 

575 we first referenced key literature describing the intracellular signaling pathways associated with IL-8 and 

576 CCL2 [38–40], and studies concerning IF-induced cell migration mechanisms based on these cytokines 

577 [51,78,119]. Our findings show that IL-8 [67,69,70] and CCL2 [74,120] activate signaling that results in 

578 the post-translational regulation of small monomeric GTPases of the Rho-family, leading to macrophage 

579 migration through the polymerization and retraction of the actin cytoskeleton. Specifically, in CCL2 

580 signaling, extracellular chemokine CCL2 binds to and activates the chemokine receptor CCR2 expressed 

581 on the cell membranes of macrophages. Subsequently, the C-terminal intracellular domain of CCR2 

582 activates intracellular signaling proteins, including phosphatidylinositol-3-kinase (PI3K), which eventually 

583 results in the activation of various Rho GTPases, in particular Rac, regulating cytoskeletal reorganization 

584 and cell migration [68,71–73,120]. In the case of IL-8 signaling, extracellular chemokine IL-8 binds to and 

585 activates receptor CXCR1/2, activating heterotrimeric small G proteins, G(γ), which then promote the 

586 activation of Rho GTPases. Notably, other signaling activity downstream of CXCR1/2 and G(γ) also 

587 activates PI3K and FAK. 

588 In addition, IF triggers a process known as outside-in signaling where it engages multiple extracellular 

589 signals to activate cell membrane-bound integrins that then initiate intracellular cytoplasmic signaling 
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590 [119]. These extracellular signals include the binding of integrins to respective ligands in the ECM, and 

591 various mechanical forces originating from IF including fluid shear stresses. Specifically, each stimuli 

592 induces a conformational change in integrin, activating the cytoplasmic signaling element of the protein 

593 and allowing it to interact with other signaling molecules involved in intracellular signaling cascades [119]. 

594 Additionally, the activation of integrin activates FAK and Src, stimulating Rho GTPases which drive 

595 macrophage cytoskeletal reorganization and migration [51,78]. Based on these findings, we hypothesized 

596 that IL-8, CCL2 and IF commonly regulate a group of Rho GTPases, including CDC42, Rac1 and/or RhoA 

597 [38–40], and this regulates macrophage migration. Additionally, the similar trends exhibited by both 

598 directedness and speed in response to all tested stimuli could be explained simply by a common regulator, 

599 as opposed to more complex interactions between largely independent signaling pathways. Finally, any 

600 attempt to fully model the highly complex signaling associated with migration regulation (that is 

601 downstream of this common signaling point) might greatly complicate the model with no added insight 

602 about how these signals are integrated. Thus, we depicted directedness and speed as phenomena indirectly 

603 induced by this common regulator, with intermediate signaling described by respective response functions 

604 that depend on the concentration of active common regulator.

605 To gain additional insight from our modeling framework, we conducted a number of simulations and model 

606 analyses. We first compared the model results to the trends of directedness and speed that we observed in 

607 vitro in response to the exposure to various combinations of IL-8, CCL2 and IF in order to determine the 

608 level of agreement between the modeled and experimental results. Quantifying this agreement by 

609 calculating the R2 value across all modeled directedness and speed data, we determined that the model 

610 successfully accounts for over 85% of the variation in the experimental data. In line with in vitro 

611 experimentally observed macrophage migration behaviors, our model also displayed an OR gate-like 

612 behavior, where the exposure to a single stimulus (of biologically consistent magnitude) results in 

613 maximum common regulator activation. We highlight that such behavior is essential for integrating 

614 multiple inputs to produce a stable output regardless of input number. It is also an important, though 
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615 conditional, example of redundant signaling where multiple signaling pathways lead to the same 

616 downstream effect.

617 Although TSF contains cytokines in addition to IL-8 and CCL2, the connections between the IL-8, CCL2 

618 and IF-induced, integrin-β2-mediated, signaling appear to suitably explain the in vitro experimentally 

619 observed macrophage migration. The relatively dominant role of IL-8 and CCL2 is reflected in a second 

620 set of experimental data where in vitro antibody blockade of IL-8 and/or CCL2 substantially inhibited the 

621 TSF-mediated increase in migration. Moreover, the simultaneous exposure of macrophages to sub-

622 saturating concentrations of both IL-8 and CCL2 was able to achieve a similar effect on migration 

623 directedness and speed as their exposure to only TSF. Of note, we recognize that IF and TSF do not appear 

624 to act additively in the tumor cell-macrophage co-culture set-up where cytokines are likely to be at 

625 saturating levels (confirmed by the similar increase in directedness/speed between the TSF condition and 

626 concentration of 100 ng/mL IL8 or CCL2 that was used to intentionally achieve saturation, Supplementary 

627 Fig. S3). Instead, the increase in directedness/speed with either (1) a combination of IL-8 and CCL2 with 

628 each cytokine at a sub-saturating level (25 ng/mL) or (2) sub-saturating level of either cytokine with IF 

629 suggests that synergies are possible at non-saturating cytokine concentrations. Such synergies have been 

630 previously demonstrated experimentally for macrophages, and have been determined to depend on the 

631 unimpaired activity of both CXCR1/2 and CCR2 receptors, suggesting the intracellular integration of both 

632 cytokine signals as the primary synergistic mechanism [76].

633 A comparison of model predictions and in vitro data of these antibody blockade and sub-saturating 

634 concentration experiments further confirms our network architecture and kinetics assumptions. First, 

635 consistent with experiments, the behavior with saturating cytokine concentrations was not observed in 

636 response to diminished concentrations. Furthermore, by accurately capturing the signaling instigated by 

637 intermediate and sub-saturating cytokine concentrations, our model showed that it is not a simple all-or-

638 nothing OR-gate, but a nuanced model that can capture the response across a gradient of stimuli. Second, 

639 the model produced simulated migration behaviors that were consistent with the in vitro antibody blockade 
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640 of IL-8 and/or CCL2, reinforcing its capability to simulate experimentally relevant phenomena and capture 

641 intermediate signaling with diminished cytokine concentrations (as quantified by the R2 values between 

642 modeled and in vitro experimental data). 

643 We then conducted a number of sensitivity analyses to determine the most influential aspects of the network 

644 on the network response magnitude and the data trends. Stimulus sensitivity analysis revealed that IF was 

645 more influential than either cytokine on the concentration of active common regulator, whereas CCL2 was 

646 the most influential extracellular stimulus on the directedness and speed trends between various 

647 extracellular stimuli (as quantified by the R2 values between modeled and in vitro experimental data). 

648 Parameter sensitivity analysis then revealed that reactions associated with common regulator and G protein 

649 activation and turnover were the most influential on the resulting concentration of active common regulator 

650 as well as the trends between various extracellular stimuli (quantified by the R2 values between modeled 

651 and in vitro experimental data). Reactions associated with CCL2 signaling were also shown to be among 

652 the most influential on the resulting concentration of active common regulator. Additionally, parameters 

653 associated with the migration speed response to the concentration of active common regulator were very 

654 influential on the trends between stimuli, whereas parameters associated with the migration directedness 

655 response were not. This suggests a more nonlinear processing of common regulator signals in the regulation 

656 of migration speed than of directedness. Notably, although the magnitude of IF velocity has significant 

657 influence on the concentration of active common regulator, the parameters associated with IF-induced 

658 signaling were not among the most influential parameters on the concentration of active common regulator.

659 Importantly, our findings substantiate the idea that IF contributes to cancer invasiveness through enhancing 

660 macrophage migration. Indeed, as macrophages would have a heightened capacity to migrate through the 

661 3D ECM, there would be increased likelihood for them to interact with and hence support cancer cell 

662 migration in the process of metastasis. The supportive function of macrophages toward cancer metastasis 

663 was previously demonstrated, where media from tumor-conditioned macrophages increased the expression 

664 of EMT genes in a low EMT-score tumor cell line [55]. Moreover, media conditioned from IF-exposed 
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665 macrophages could increase the speed of cancer cell migration through a 3D matrix [51], suggesting that 

666 IF could support the capability of macrophages to promote tumor cell invasion. These findings support the 

667 view that macrophages play a pivotal intermediary role between the stimulus of IF and the output of cancer 

668 cell invasion through 3D ECM. Notably, other stromal cells in the TME may also respond to IF and further 

669 influence macrophage and/or cancer cell migration. For example, cancer associated fibroblasts (CAFs) can 

670 secrete ECM to remodel the TME matrix and this can influence cell migration in the TME [121]. Future 

671 studies could therefore incorporate other TME-related cells, such as CAFs, to evaluate their contribution to 

672 the relationship between IF and the metastasis process. 

673 Our model was established using cancer cell lines and macrophages derived from the in vitro differentiation 

674 of blood-isolated monocytes. By incorporating patient-derived tumor explants and autologous 

675 macrophages, our platform could potentially facilitate high-throughput preclinical screening of therapies 

676 for personalized treatment. For example, a preclinical screen can be performed of single or combined 

677 antibody blockade against CCL2, IL-8 and/or β-integrin. Then, the patient-specific response to these 

678 interventions can be quantified through measuring macrophage migration across the different treatments. 

679 As such, our work potentially forms the basis for developing a companion diagnostic that comes with a 

680 biophysical component such as IF for identifying patient responders. In addition, as IF presents a physical 

681 barrier to the effective penetration of drugs into deeper regions of the TME, our model could be used to 

682 screen and guide the design of therapeutics to optimize their transport efficiency. 

683 Notably, there are some challenges that arise in the implementation of a patient-derived approach, including 

684 the optimization of cell culture media for culturing multiple cell types and the fine tuning of the gel matrix 

685 composition. However, unlike murine models, microfluidic systems allow for the precise control of spatial, 

686 pressure and chemical gradients that can be tailored to the specific application [122,123]. Moreover, 

687 although a microfluidic model system may not fully recapitulate human in vivo dynamics, it can allow for 

688 the creation of a 3D patient-specific environment that is closer to human in vivo settings than 2D in vitro 
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689 models. Microfluidic-based screening is also more rapid and less costly compared to utilizing humanized 

690 murine models [122,123]. 

691 Therefore, our work presents an integrated in silico-3D in vitro approach to evaluate the effect of IF and 

692 TSF on macrophage migration. Here, we developed a signaling network model identifying key stimuli and 

693 intermediary proteins that drive macrophage migration, thus identifying potential therapeutic targets for 

694 inhibiting macrophage migration (which evidently associates with their capability to support cancer cell 

695 invasion). Importantly, this work contributes toward an improved understanding of the signaling 

696 mechanism associating IF, macrophage motility and cancer metastasis, an area that should be studied more 

697 extensively to improve cancer treatment. 

698
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Figure 1. (A) Design of microfluidic co-culture model of tumor cells (Panc1) and macrophages with the 
incorporation of interstitial flow (IF). Representative confocal image of cell-seeded gel channels at 0 h (B) 

with tumor cells or (C) without tumor cells. 
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Figure 2. (A) X-Y path trajectories of macrophage migration in the (i) control (Cntrl) monoculture of 
macrophages without interstitial flow (IF) or exposed to (ii) only IF, (iii) only tumor cells; tumor-secreted 

factors (TSF), or (iv) both IF and TSF. (B) Quantification method of macrophage migration directedness and 
speed. (C) Directedness and (D) speed of macrophage migration under the different conditions tested. Data 

are shown as the mean ± SEM (n = 3), where statistical significance was determined using a one-way 
ANOVA with Holm-Sidak’s multiple comparisons test with * P ≤ 0.05. 
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Figure 3. Multiplex array of cytokines in culture supernatant derived (A) from cells grown as a 2D 
monolayer using the Proteome ProfilerTM antibody array (R&D Systems) or (B) from cells grown in a 3D 

matrix environment using the Milliplex 38 Cytokine kit (Millipore). Data are shown as the mean ± SEM (n = 
3), where statistical significance was determined using a Student’s t-test with * P ≤ 0.05 and **** P ≤ 

0.0001. 
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Figure 4. Hypothesized signaling model showing how signals associated with IL-8, CCL2 and interstitial flow 
(IF) activate a common regulator, both individually and in combination, to regulate macrophage migration 
directedness and speed. The input stimuli (IL-8, CCL2 and IF), associated cytokine receptors (CXCR1/2 and 
CCR2) and intermediary signaling species (S1-S8), including focal adhesion kinase (FAK) and heterotrimeric 

small G-proteins, G(α,β,γ), are identified by their respective abbreviations and species variables (Table 1 
and Eq. 2-10 in section ‘Mathematical model development’). These elements contribute toward 

interconnected signalling pathway reactions (reaction numbers R1-R7). 
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Figure 5. Directedness (top panel) and speed (bottom panel) of macrophage migration with the exogenous 
addition of a (A) saturating concentration (100 ng/mL) of IL-8 or CCL2 to a macrophage monoculture in the 

presence or absence of IF, or (B) sub-saturating concentration (25 ng/mL) of IL-8 and/or CCL2 to a 
macrophage monoculture, or the addition of (C) blocking antibodies against IL-8 and/or CCL2 to a 

macrophage-tumor cell co-culture in the presence or absence of IF. Data are shown as the mean ± SEM (n 
≥ 3), where statistical significance was determined using a one-way ANOVA with Holm-Sidak’s multiple 

comparisons test with * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. (Cntrl: control, IF: interstitial flow, Sub.: 
sub-saturating, Sub. Both: combined addition of sub-saturating concentrations of IL-8 and CCL2, TSF: 

tumor-secreted factors, αComb.: combined blockade of IL-8 and CCL2) 
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Figure 6. Comparison between in vitro experimental data (white) and model simulations (grey) of 
normalized macrophage migration directedness (top panel) and speed (bottom panel) with the exogenous 

addition of a (A) saturating concentration (100 ng/mL) of IL-8 or CCL2 to a macrophage monoculture in the 
presence or absence of IF, or (B) sub-saturating concentration (25 ng/mL) of IL-8 and/or CCL2 to a 
macrophage monoculture, or the addition of (C) blocking antibodies against IL-8 and/or CCL2 to a 

macrophage-tumor cell co-culture in the presence or absence of IF (100% antibody blockade of cytokines 
assumed). Data are shown as the mean ± SEM (n ≥ 3). The coefficient of determination (R2) values were 

used to quantify the agreement between the simulated data and in vitro experimental data. (Cntrl: control, 
IF: interstitial flow, Sub.: sub-saturating, Sub. Both: combined addition of sub-saturating concentrations of 

IL-8 and CCL2, TSF: tumor-secreted factors, αComb.: combined blockade of IL-8 and CCL2). 
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Figure 7. Sensitivity analysis that quantifies most influential stimuli and parameters on migration 
directedness and speed. The analysis considered (A) common regulator activation elasticity (Eq. 15) or (B) 

coefficient of determination (R2) elasticity (Eq. 16) in response to varying the magnitude of each 
extracellular stimulus. Also considered was (C) common regulator activation elasticity (Eq. 17) or (D) R2

elasticity (Eq. 18) in response to varying the magnitude of each parameter. The denominators Δ%X and 
Δ%P respectively represent a 20% change in the stimulus or the parameter under study. The numerator 

Δ%[Common Reg.] and Δ%R2 respectively represent the resulting percent change in concentration of active 
common regulator or the R2 value between the model simulations and the in vitro experimental data. (A-C) 

are plotted on a linear x-axis. (D) is plotted on a base-10 logarithmic x-axis. 
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Supplementary Figure S1. For generation of GFP-tagged cell lines, SB100X-mediated transposition 

compatible plasmids were used as shown in (A) ITR-CAG-DEST-IRES-Neo-ITR (control plasmid) or (B) 

ITR-CAG-GFP-IRES-Neo-ITR (DEST cassette was replaced by GFP [PE1A-GFP] through LR gateway). 

Both plasmids are similar except for the GFP segment. 
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Supplementary Figure S2. Fluorescence recovery after photobleaching (FRAP) analysis of flow velocities 

within the gel of the 3D in vitro microfluidic model of interstitial flow (IF). Mean flow velocities at the 

start and end of the 24 h of IF treatment are shown. Velocities fall within 3-5 μm/s which correspond with 

physiological values of tumour IF. Data are shown as the mean (n = 5), with lines drawn to link the data 

points obtained at 0 h and 24 h timepoints in each experiment. Statistical significance was determined using 

a Student’s t-test with P ≤ 0.05 taken as evidence of a statistically significant difference. (n.s.: not 

significant) 
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Supplementary Figure S3. Macrophage migration directedness (top panel) and speed (bottom panel) in 

response to different concentrations of (A) IL-8 or (B) CCL2 that were added to a macrophage monoculture 

in the absence of interstitial flow. Comparison between in vitro experimental data (white) and model 

simulations (grey) of normalized directedness and speed of macrophage migration for the titration of (C) 

IL-8 or (D) CCL2. Data are shown as the mean ± SEM (n = 3), where statistical significance was determined 

using a one-way ANOVA with Holm-Sidak’s multiple comparisons test with * P ≤ 0.05 and ** P ≤ 0.01 

(A, B). The coefficient of determination (R2) values were used to quantify the agreement between the 

simulated data and in vitro experimental data (C, D). (Cntrl: control, TSF: tumor-secreted factors) 
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Supplementary Figure S4. Refit parameter elasticities for all free parameters. The ability of free 

parameters to compensate for changes in other free parameters was quantified by calculating a refit 

parameter elasticity that was computed for each free parameter according to (Eq. S1): 

𝜙𝑌,𝑋 =
∆%𝑌

∆%𝑋
=  

𝑋0

𝑌0

𝑌+10%− 𝑌−10%

𝑋+10%− 𝑋−10%
(S1) 

where the denominator represents a 20% change in free parameter 𝑋 (centered at the default parameter 

value given in Table 2), the numerator represents the percent change in the value of a free parameter 𝑌 after 

a refit of the model to the in vitro experimental data, holding the perturbed value of 𝑋 constant, 𝑋0 and 𝑌0

are the default values of parameters 𝑋 and 𝑌, respectively, 𝑋+10% and 𝑋−10% are parameter X increased or

decreased by 10%, respectively, and  𝑌+10% and 𝑌−10% are the values of free parameter 𝑌 obtained when
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the 10% increase or decrease, respectively, to parameter 𝑋 is held constant and the model is refit. This 

analysis gives additional context into the relationship between the various free parameters employed in the 

model. The heatmap shows all pairwise combinations of free parameters, indicating the degree to which 

each free parameter changes in response to a change in the value of one of the other free parameters, and a 

subsequent model refit against the in vitro experimental data. 
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