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Intelligent Acoustic-based Fault Diagnosis of Roller Bearings Using a Deep 
Graph Convolutional Network 

Dingcheng Zhang1*, Edward Stewart1, Mani Entezami1, Clive Roberts1, Dejie Yu2

1.School of Engineering, University of Birmingham, Birmingham, B152TT, United Kingdom
2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 
Changsha, 410082, China

Abstract: Roller bearings form key components in many machines and, as such, their health 

status can directly influence the operation of the entire machine. Acoustic signals collected 

from roller bearings contain information on their health status. Hence, acoustic-based fault 

diagnosis techniques can provide novel solutions as condition monitoring tools for roller 

bearings. Traditionally, acoustic fault diagnosis methods have been based on conventional 

signal processing methods in which prior expert knowledge has been required in order to 

extract and interpret the health information contained within the collected acoustic signals. As 

an alternative, deep learning methods can be used to obtain heath information from the 

collected signals by constructing ‘end-to-end’ models that do not rely on prior knowledge. 

These approaches have been successfully applied in the condition monitoring of industrial 

machinery. However, conventional deep learning methods can only learn features from the 

vertices of input data and thereby ignore the information contained in the relationships (edges) 

between vertices. In this paper, which combines graph convolution operators, graph coarsening 

methods, and graph pooling operations; a deep graph convolutional network (DGCN) based on 

graph theory is applied to deliver acoustic-based fault diagnosis of roller bearings. In the 

proposed method, the collected acoustic signals are first transformed into graphs with 

geometric structures. The edge weights represent the similarity between connected vertices, 

which enriches the input information and hence improves the classification accuracy of the 

deep learning methods applied. To verify the effectiveness of the proposed system, experiments 

with roller bearings of varying condition were carried out in the laboratory. The experimental 

results demonstrate that the DGCN method can be used to detect different kinds and severities 

of faults in roller bearings by learning from the constructed graphs. The results have been 

compared to those obtained using other, conventional, deep learning methods applied to the 

same datasets. These comparative tests demonstrate improved classification accuracy when 

using the DGCN method. 

Keywords:  acoustic-based fault diagnosis, roller bearing, graph theory, deep learning, deep graph 
convolutional network 
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1. Introduction 

Roller bearings play an important role in industry and are widely used in many different 

kinds of machines. Roller bearings often carry substantial loads and may even support the 

whole weight of the machines of which they are part. Under these conditions, it is possible for 

faults to develop and for those faults to have significant potential consequences. In order to 

avoid failures, maintenance of bearings and bearing components tends to be preventative, but 

this can lead to over-maintenance and inefficiency. In order to reduce costs and maximise the 

availability of machines, condition monitoring of bearings is an increasingly popular approach, 

and a vital step towards condition-based maintenance. Acoustic-based fault diagnosis is one 

such monitoring technique; it involves analysis of acoustic signals collected from microphones. 

The technique has been applied to many systems, such as railway bridges [1], gearboxes [2], 

motors [3], etc. Acoustic-based fault diagnosis has also successfully been applied to roller 

bearings [4, 5]. 

In acoustic-based fault diagnosis, microphones are installed adjacent to target bearings. 

The recorded acoustic signal is then analysed in order to detect faults within those bearings 

with no requirement for direct access to them in order to install the equipment [5, 6]. Hence, 

acoustic-based fault diagnosis techniques have obvious advantages in terms of practicality and 

cost when compared to other techniques such as vibration-based or acoustic emission-based 

approaches. However, acoustic signals normally have high-levels of background noise and may 

contain acoustic signals generated by other components in the machine. Hence, signal-

processing methods are required in order to realise the health analysis benefits. For example: a 

method considering the amplitude of particular frequencies of the acoustic signals was used to 

identify fault-features in [4]; and a method combining improved singular value decomposition 

with resonance-based signal sparse decomposition was proposed in [6]. Conventional signal 

processing-based methods, such as these, have been shown to achieve good performance in 

many cases, however, expert knowledge is generally required to support and interpret the 

results of fault detection systems based on them. Also, each signal sample has to be analysed 

by signal processing-based methods. It is time-consuming as large volumes of data need to be 

processed. Furthermore, stochastic factors in the real operating environment will affect the 

acoustic signals and hence may reduce the effectiveness of these conventional signal 

processing based methods. 

Deep learning (DL) is a powerful machine learning approach which is currently prevalent 

among machine learning techniques. DL has recently demonstrated strong performance in a 
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number of areas, in particular in condition monitoring applications [7]. DL models can be 

trained by learning abstract features from massive datasets off-line and then the trained model 

can be directly used to identify different fault types or fault severities, which are efficiency 

procedures [8]. Intelligent condition monitoring systems based on DL have successfully been 

applied to induction motors [9], planetary gearboxes [10],  axial piston pumps [11], etc. There 

is also a range of work focusing on intelligent fault detection of for bearings. For example, 

Zhang et al proposed an ensemble DL method combining convolution neural networks (CNN) 

and a small batch training [12]. In [13], an improved convolutional deep belief network (DBN) 

was proposed by combining a standard DBN with a compressed sensing technique. The 

approach also used an exponential moving average method to smooth the weightings in the DL 

algorithm. Jia et al proposed a parameter selection strategy for the deep autoencoder (DAE) 

method in [14]. The deep recurrent neural network (DRNN) constructed from long-short term 

memory (LSTM) units was introduced to roller bearing fault diagnosis in [15]. In addition, 

many other DL methods have been proposed to build intelligent condition monitoring systems 

for bearings by analysing vibrational signals [16, 17]. Inspired by those successful cases, an 

intelligent acoustic-based fault diagnosis on DL, is implemented for train bearing monitoring 

in this work. The approach taken here uses Graph Neural Networks. 

Graph neural networks (GNN) were first proposed by Scarselli et al [18], who aimed to 

build a neural network for data held in the graph domain based on graph theory. In the graph 

domain, the geometry structure of the data can provide additional information, including not 

only the values of the nodes but also the relationships between them [19]. Hence, more 

information can be provided in the graph domain than in a general data domain. Bruna et al. 

introduced the convolution operation into GNN based on spectral graph theory, and built the 

first graph convolutional network (GCN) model [20]. Compared with the conventional CNN 

method, GCN has advantages in dealing with the discriminative feature extraction of signals 

in the discrete spatial domain [21]. Up to now, the GCN method has been successfully applied 

to many research areas, such as website recommendation systems [22], electrocardiogram 

detection [23], etc. In this work, a deep graph convolutional network (DGCN) model is built 

and applied to form an intelligent acoustic-based fault diagnosis method.

The proposed DGCN model is constructed by multiple graph convolutional blocks [24], 

one fully connected layer, and one classification layer. The graph convolutional block includes 

one graph convolutional layer, one graph coarsening layer, and one graph pooling layer. 

Different from the convolution operator in the conventional CNN, the graph convolution layer 

used here uses a fast-localized spectral filter constructed according to a Chebyshev polynomial. 
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In order to operate the pooling procedure after convoluting, a graph coarsening procedure is 

first used to group together similar vertices. Those vertices are then rearranged as a balanced 

binary tree before regular 1D pooling is undertaken. The effectiveness of the proposed 

intelligent system is verified using laboratory experiments comparing its performance with a 

range of conventional DL methods. The DGCN method is shown to outperform the 

conventional methods in terms of classification accuracy. 

This paper is organised as follows: the deep graph convolutional network method is 

introduced in section 2. In section 3 the intelligent acoustic-based fault diagnosis using deep 

graph convolutional network is demonstrated. The experimental results, demonstrating the 

performance of the proposed method and comparing it to conventional techniques, are 

described in section 4. The conclusions are then presented in the final section.

2.  Graph Convolutional Network

A graph convolutional network has four main steps: input, convolution, coarsening, and 

pooling. (ⅰ) Graphs, as the input to a neural network, can represent the geometry and structure 

of data, and hence provide more information compared to more general data formats. (ⅱ) To 

undertake a convolution operator on a graph, fast-localized filters are constructed based on the 

graph spectral theory and Chebyshev expansion. (ⅲ) A graph coarsening procedure is used to 

group similar vertices together. (ⅳ) For graph pooling, a rearrangement procedure is applied 

to the vertices by creating a balanced binary tree and then applying regular 1D pooling.

2.1 Graph representation 

Undirected and connected graphs can be defined as  in which:  represents a 𝒢 = (𝒱,ℰ,𝑊) 𝒱

set of vertices with the number of ;  denotes the set of edges connecting these vertices; |𝒱| = 𝑁 ℰ

and  is an adjacency matrix demonstrating the connections between any two vertices. 𝑊 ∈ ℝ𝑛 × 𝑛

For example,  is the weight of the edge  ( , if there is no edge between vertices 𝑊𝑖,𝑗 ℰ𝑖,𝑗 𝑊𝑖,𝑗 = 0

 and ).  Fig.  1 is an example of an undirected graph containing five vertices (a) and its 𝒱𝑖 𝒱𝑗

adjacency matrix (b). In this paper, the Euclidean distance between two vertices is set to , 𝑊𝑖,𝑗

as shown in Eq. (1). 
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Fig.  1. An undirected graph and the corresponding adjacency matrix. (a) the connections of the five nodes (b) the 
adjacency matrix. 

𝑊𝑖𝑗 = ‖𝒱𝑖 ― 𝒱𝑗‖ (1)
In spectral graph analysis, the graph Laplacian is a key operation which is defined as shown 

in Eq. (2). In Eq. (2),  is the identity matrix;  is the diagonal degree matrix as shown in Eq. 𝐼𝑛 𝐷

(3). The graph Laplacian , which is a real symmetric matrix, can be operated by 𝐿

orthogonal decomposition as shown in Eq. (4). Hence,  has a set of orthogonal eigenvectors 𝐿

 and corresponding eigenvalues . In graph Fourier theory, the eigenvalues are {𝑢𝑙}𝑛 ― 1
𝑙 = 0 {𝜆𝑙}𝑛 ― 1

𝑙 = 0

the Fourier basis and are the frequencies of the graph. 

𝐿 = 𝐼𝑛 ― 𝐷 ―1 2𝑊𝐷 ―1 2 (2)

𝑑𝑖 =
𝑁

∑
𝑗 = 1,𝑗 ≠ 𝑖

𝑊𝑖𝑗 (3)

𝐿 = 𝑈Λ𝑈𝑇 (4)

where  and . Λ = diag([𝜆0,𝜆1,⋯,𝜆𝑛 ― 1]) U = [𝑢0,𝑢1,⋯,𝑢𝑛 ― 1]

A graph :   defined on the i-th vector of  represents 𝑥 𝒱 (𝑣1, 𝑣2⋯,𝑣𝑁) → ℝ𝑁 (𝑥1, 𝑥2⋯,𝑥𝑁) 𝑥

the i-th vertex value. The graph Fourier transform of  is defined in Eq. (5). 𝑥

𝑥 =
𝑁

∑
𝑖 = 1

𝑢𝑙(𝑖) ∗ 𝑥(𝑖) = 𝑈𝑇𝑥
(5)

The inverse graph Fourier transform is defined as shown in Eq. (6). 

𝑥 =
𝑁 ― 1

∑
𝑖 = 0

𝑥(𝑖) ∗ 𝑢𝑙(𝑖) = 𝑈𝑥 (6)

where   is the representation of the graph signal  in the Fourier domain.𝑥 𝑥

2.2 Convolution operation for graph signals

The general convolution operation cannot be directly applied to graphs. However, a 

generalization method based on the graph Laplacian can be used to conduct convolution on 

file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=orthogonal
file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=decomposition
file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=orthogonal
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graphs[25], as shown in Eq. (7). According to Eq. (4) and Eq. (7), graph convolution can be 

expressed as Eq. (8).
𝑦 = 𝑔𝜃(𝐿)𝑥 (7)

𝑦 = 𝑈𝑔𝜃(Λ)𝑈𝑇𝑥 (8)

The calculation of  is a difficult and time-consuming procedure [23]. To overcome 𝑔𝜃(Λ)

this, a Chebyshev polynomial expansion can be used to simplify the calculation of  [24]. 𝑔𝜃(Λ)

This is the approach followed in this work where  can be approximated using a th order 𝑔𝜃(Λ) 𝐾

Chebyshev polynomial as shown in Eq. (9). 

𝑔𝜃(Λ) =  
𝐾 ― 1

∑
𝑘 = 0

𝜃𝑘𝑇𝑘(Λ) (9)

where  is a vector of Chebyshev coefficients and  is a recursive calculation as 𝜃𝑘 𝑇𝑘(𝑥)

demonstrated in Eq. (10).  is a normalized version of , which can be obtained according to Λ Λ

Eq. (11).  is the largest element of . Hence, elements in   are in a range from -1 to 1. 𝜆𝑚𝑎𝑥 Λ Λ

{ 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥
𝑇𝑘(𝑥) = 2𝑥𝑇𝑘 ― 1(𝑥) ― 𝑇𝑘 ― 2(𝑥),   𝑘 ≥ 2 (10)

Λ =  
2Λ

𝜆𝑚𝑎𝑥
― 𝐼𝑛 (11)

According to Eq. (8) and Eq. (9), the graph convolution operation can be rewritten as Eq. 

(12). 

𝑦 =
𝐾 ― 1

∑
𝑘 = 0

𝑈[𝜃𝑘𝑇𝑘(𝜆0) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃𝑘𝑇𝑘(𝜆𝑁 ― 1)]𝑈𝑇𝑥 =

𝐾 ― 1

∑
𝑘 = 0

𝜃𝑘𝑇𝑘(𝐿)𝑥 (12)

where . 𝐿 = 2𝐿 𝜆𝑚𝑎𝑥 ― 𝐼𝑛

In GCNs which include multiple graph convolution layers, the  output features of a 𝑗th

sample  are given by Eq. (13). 𝑠

𝑦𝑠,𝑗 =
𝐹𝑖𝑛

∑
𝑖 = 1

𝑔𝜃𝑖,𝑗(𝐿)𝑥𝑠,𝑗 (13)

where  are the input.  are the trainable parameters of the layer, which are vectors of 𝑥𝑠,𝑗 𝜃𝑖,𝑗 𝑗th

Chebyshev coefficients. In order to train the convolutional layers, a backpropagation algorithm 

is applied according to the two gradients in Eq. (14).

{∂𝐸
∂𝜃 =

𝑆

∑
𝑠 = 1

[𝑥𝑠,𝑗,0,⋯,𝑥𝑠,𝑗,𝐾 ― 1]𝑇 ∂𝐸
∂𝑦𝑠,𝑗

∂𝐸
∂𝑥𝑠,𝑗

=
𝐹𝑜𝑢𝑡

∑
𝑗 = 1

𝑔𝜃𝑖,𝑗(𝐿)
∂𝐸

∂𝑦𝑠,𝑗

(14)
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where  is the energy loss for one batch with  samples. The gradients above can be efficiently 𝐸 𝑆

computed by using a parallel architecture combined with tensor operations. 

2.3 Graph coarsening

Before using a pooling operation for graphs, meaningful neighbourhoods on the graphs, 

i.e. similar vertices, must be clustered together. In this work, a multilevel clustering algorithm 

is used to obtain a coarser graph for each level in the GCN method. In the multilevel clustering 

algorithm, a greedy algorithm, also used in the weighted kernel k-means method, is applied to 

minimize the spectral clustering objective function and then for coarsening the graph. 

Comparing this with other spectral clustering methods, this method has advantages in terms of 

the quality of the results, speed of implementation, and memory usage [26].

Given  (  are different sets in ), weights between vertices in  and  can be 𝒜,ℬ ⊂ 𝒱 𝒜,ℬ 𝒱 𝒜 ℬ

defined as shown in Eq. (15). 

links(𝒜,ℬ) = ∑
𝑖 ∈ 𝒜,𝑗 ∈ ℬ

𝑊𝑖,𝑗
(15)

The purpose of the graph clustering is to classify the graph into k sub-graphs, i.e.  𝒱𝑙,⋯,𝒱𝑘

. To achieve this, some standard graph clustering objectives were considered. The ⊂ 𝒱

normalized cut objective, one of most commonly used methods, is applied as part of the 

proposed GCN method. The objective is expressed in Eq. (16).  

NCut(𝒢) = min
𝒱𝑙,⋯,𝒱𝑘  

𝑘

∑
𝑐 = 1

links(𝒱𝑐,𝒱 ∕ 𝒱𝑐 )
links(𝒱𝑐,𝒱) (16)

The minimization objective above is equivalent to maximizing with-in-cluster association 

relative to the size of the cluster. Using the weighted kernel k-means method, Eq. (16) can be 

expressed as a trace maximization problem, as in Eq. (17).  

max{ 𝑘

∑
𝑐 = 1

links(𝒱𝑐,𝒱𝑐 )
degree(𝒱𝑐) =

𝑘

∑
𝑐 = 1

𝑥𝑇
𝑐 𝑊𝑥𝑐

𝑥𝑇
𝑐 𝐷𝑥𝑐

=
𝑘

∑
𝑐 = 1

𝑥𝑇
𝑐 𝑊𝑥𝑐} (17)

where  is the indicator vector of sub-graph c.  is the graph adjacency matrix.  is a diagonal 𝑥𝑐 𝑊 𝐷

degree matrix with , and . 𝐷𝑖,𝑗 = ∑𝑛
𝑗 = 1𝑊𝑖,𝑗 𝑥𝑐 = 𝑥𝑐 (𝑥𝑇

𝑐 𝐷𝑥𝑐)1/2

By maximizing Eq. (17) at each coarsening level, one unmarked vertex, , can be selected 𝒱𝑖

and it’s matching neighbours, , identified. Each two matched vertices are then marked and 𝒱𝑗

the coarsened weights are set as the sum of their individual weights. The matching process is 

conducted iteratively until all vertices in the graph have been matched to. In this way, the 

number of vertices in one level can then be approximately divided in two. 
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2.4 Pooling operation for graphs 

Although the vertices are clustered using graph coarsening, the marked vertices in each 

group are still in an arbitrarily order which blocks the pooling operation for graphs. In this work, 

a binary tree structure is constructed using the coarsened vertices. A rearrangement method is 

then used to sequence the vertices to be compatible with the pooling operation [24]. The 

arranged vertices can then be processed using a 1D pooling operation. The coarsening and 

pooling operations for a graph with 12 vertices are demonstrated in Fig.  2(a) and (b). In Fig.  

2(a), a maximum pooling of size 4, i.e. size of 2 for each pooling, is applied to a graph with 12 

vertices. Fig.  2(b) shows how the vertices are then rearranged to implement the pooling. The 

lines in Fig.  2(a) have the same colour if they connect matched vertices, otherwise they are 

shown with different colours. The vertex enumerators shown in the three levels are allocated 

for each level, with the relationships shown in Fig.  2(b).

After the coarsening procedure described above, each vertex is normally matched and has 

two children (e.g. vertex 0 in level 1 in Fig.  2(b)). Some vertices, known as singletons, occur 

in the last level and only have one child. They occur when the child vertex cannot be matched 

in the coarsening process. Vertices that do not connect with any neighbours (e.g. vertex 1 in 

level 1 in Fig.  2(b)) are known as fake vertices. A balanced binary tree can only be constructed 

if every vertex has two children. In this structure, one singleton and one normal vertex can 

form the two children of a vertex (e.g. vertex 0 in level 2 in Fig.  2(b)). Fig.  2(a) shows an 

original graph (Graph 0) where the input consists of 8 vertices in an arbitrarily order, and 4 

fake vertices. By coarsening and rearranging the vertices to give those shown in Graph 1 / 

Level 1, the pooling operation is rendered similar to a regular 1D pooling operation.
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Fig.  2. Graph coarsening and pooling. (a) the coarsening operations for a graph with 12 vertices, (b) the pooling 
operations for the rearranged vertices. 

3. Intelligent Acoustic-based Fault Diagnosis of Roller Bearings Using Deep Graph 
Convolution Network

In this work, an intelligent acoustic-based fault diagnosis method is proposed using deep 

graph convolution network (DGCN). Acoustic signals are collected using a fixed microphone 

and then transformed into graphs, i.e. from the general data domain to the graph domain. The 

acoustic signals are divided into “samples”, where each sample consists of 3600 points of the 

recorded signal. To generate graphs for the DGCN inputs, each acoustic sample, 𝐱 =

, is mapped into a matrix of size 60×60, where the first 60 points from sample [𝑥1,𝑥2,⋯,𝑥3600]

 form the first row of the matrix. The matrices are then used to form graphs in which each 𝐱

matrix entry and it’s 8 neighbouring points become vertices connected by edges. The edge 

weights are calculated from the vertex values as described in Eq.(1)  The transformation 

procedure from the general data domain to the graph domain is demonstrated in Fig.  3.
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Fig.  3. Schematic diagram for the construction of graphs

After obtaining the graphs, multiple graph convolutional blocks are then used to extract 

abstract features. Each block includes one graph convolution layer, one graph coarsening layer, 

and a graph pooling layer. The graph convolutional layer is implemented according to the graph 

Laplacian and a Chebyshev polynomial. The graph coarsening layer is based on the weighted 

kernel k-means method and is used to cluster neighbourhoods together in a form compatible 

with the pooling layer. Following this rearrangement strategy, a graph pooling layer based on 

a 1D pooling operation is then applied to those clustered neighbourhoods. Multiple blocks can 

then be used iteratively to extract fault features from inputs. The learned features (i.e. the 

outputs of the blocks) are then fed into a fully connected layer and a SoftMax layer for fault 

detection. The performance of the DGCN approach is tested using testing samples in Section 

4. A flow chart summarising the DGCN approach is presented in Fig.  4.
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Fig.  4. Flow chart of the intelligent acoustic-based fault diagnosis using deep graph convolution network

4. Experimental Validation 
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4.1 Acoustic signal acquisition  

The centre of this paper is to verify effectiveness of the proposed method for acoustic-

based fault diagnosis. In this paper, a roller bearing test rig, shown in Fig.  5 (a), was used to 

collect the acoustic signals in the laboratory. The test rig supports multiple bearings, but in this 

case only a single bearing was used at any time and the data collected using Microphone 2. The 

type of test bearings used were 801023AB tapered roller bearings. 7 bearings were tested, 

including one healthy bearing, two bearings with outer race faults, two bearings with roller 

faults, and two bearings with cage faults. The faults present in the test bearings are shown in 

Fig.  5 (b) – (g), respectively.  The fault details and the methods of artificially creating them 

are summarised in 

Tab. 1. Vertical load was added to the test bearing using a Hydraulic jack. In the experiments, 

the sampling frequency was 12500 Hz. 
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Test bearing

Tacho 

Microphone 1

Microphone 2

Hydraulic jack

Motor(a)

(b) (d) (f)

(c) (e) (g)

Fig.  5. Test rig and faulty bearings

Tab. 1. Fault conditions for test bearings
Bearing ID Description 

H Healthy statue without any fault

RF1 A minor scratch fault in one roller of bearing, shown in Fig.4 (b). The fault is inflicted 
using the electrical discharge engraver. 

RF2 A greater spalling fault in surface of one roller than that of RF1, shown in Fig.4 (c). A 
small rotary grindstone is used to remove surface material in the roller. 

OF1 A minor scratch fault in the outer race, shown in Fig.4 (d). Fault length is 2.9% of 
circumference. The fault is inflicted using the same method as RF2.

OF2 Similar with OF1. But the scratch area in the outer race becomes widener and deeper, 
shown in Fig 4 (e). Fault length is 10% of circumference.

CF1 The bearing cage cracked in one place, shown in Fig.4 (f). The damage is achieved by 
cutting and applying excess force with a screwdriver. 

CF2 The increased cage fault, shown in Fig.4 (g). The fault is inflicted using the same 
method as CF1.
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In this work, each fixed-speed and fixed-load recording from the test rig was divided up to 

form 600 “audio clips”, where each clip is formed of 3600 data points. The time domain 

waveforms of the acoustic signals for both healthy and faulty bearings are shown in Fig.  6. 

The figure shows that the collected acoustic signals have serious harmonic interference. 80% 

of the audio clips are randomly selected to be training samples, and remaining samples are used 

as testing samples.
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Fig.  6. Example time domain waveforms of the acoustic signals for both healthy (a) and faulty (b-g) bearings

4.2 Parameter identification of DGCN

To identify the structure of the DGCN, i.e. the depth (D) and the width (W), experiments 

using healthy bearings (H) and bearings with roller faults (RF1 and RF2) were conducted at a 

speed of 500 RPM. A stepwise optimisation strategy was applied in the parameter selection 

procedure. The depth was first fixed as 1 (D1) and the width varied with the resulting accuracies 

shown in Tab. 2. From this, the width of the first layer, WD1, is selected to be 64. After fixing 

the width of the first layer, a similar experiment is conducted to identify an appropriate value 

for the width of the second layer (D2). The experiment shows that the best performance is 

obtained when the widths of the first two layers, WD1×D2, are selected as 64×256. Experiments 

are conducted repeatedly using this format to obtain the final structure parameters with the 

depth ultimately being selected as 3 and the corresponding widths as 64, 256, and 32.  
Tab. 2 DGCN performance for different structural parameters

WD1 32 64 128 256

Accuracy 78.81% 80.93% 80.08% 76.27

WD1×D2 64×32 64×64 64×128 64×256
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Accuracy 85.17% 86.86% 89.83% 90.25%

WD1×D2×D3 64×256×32 64×256×64 64×256×128 64×256×256

Accuracy 95.76% 94.07% 90.25% 86.86%

WD1×D2×D3×D4 64×256×32×32 64×256×32×64 64×256×32×128 64×256×32×256

Accuracy 93.13% 91.36% 88.53% 84.79%

The order number of the Chebyshev polynomial expansion in Eq. (9), known as kernel 

length K, is another core parameter for the DGCN model and its value directly affects the 

classification result. To select the optimal value of kernel length, a comparison experiment was 

conducted using the proposed method and varying the kernel length. The boxplot in Fig.  7 

shows the comparison results. The figure shows that the median value of the testing accuracy 

increases as the kernel length is increased from 3 to 7 and then the decreases as the kernel 

length is further increased from 7 to 15. Hence, the best performance is obtained with a kernel 

length of 7, and this is used in the DGCN model.
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Fig.  7. Accuracy results for different kernel lengths

4.3 Detection of different fault severities

Under real operation, the speed of roller bearings varies with time. Hence, the DGCN’s 

robustness for varying speed was tested using a further comparison experiment. In the 

experiment, acoustic signals were collected from testing bearings operating at 400 rpm, 500rpm 

and 600 rpm. Three fault cases were included in the experiment: Case 1 used bearings H 

(healthy), RF1 and RF2 (both roller faults); Case 2 used bearings H (healthy), OF1and OF2 

(both outer race faults); and Case 3 used bearings H (healthy), CF1and CF2 (both cage faults). 

Three trials were conducted for each fault case in order to verify the stability of the proposed 

model. The comparison results are shown in Fig.  8. The figure shows that good performance 

can be obtained from the DGCN model regardless of rotational speed. Furthermore, the 

stability of the proposed model is verified. 
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Fig.  8. Classifier accuracy results for bearing classification of 3 fault cases at varying speeds: (a) 400 rpm, (b) 
500 rpm and (c) 600 rpm

4.4 Detection of different fault types 

To further test the effectiveness of the DGCN model, an experiment was conducted using 

test bearings with different faults and at different speeds. In the experiment, bearings H, RF1, 

OF1 and CF1 were selected as the test bearings. The confusion matrixes of the classification 

results are shown in Fig.  9. The classification accuracy shown in Fig.  9 demonstrates that the 

DGCN model can be used to detect multiple kinds of faults effectively. The confusion matrixes, 

and in particular the overall accuracy, are similar when samples are collected at different 

operating speeds. There is a slight variation in overall accuracy above 600 rpm, this is mainly 

because the background noise in the collected acoustic signal becomes more significant with 

the increase in speed. 
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Fig.  9. Confusion Matrixes showing the classification results using the DGCN model: (a) 400 rpm, (b) 500 rpm 
and (c) 600 rpm

4.5 Detection with different levels of background noise 

Significant background noise is usually included in the acoustic data. The level of this 

noise directly affects the performance of any classification model. Hence, the robustness of the 

system against noise is important. To test the performance of the DGCN model in relation to 

noise, a further comparison experiments was conducted using the test bearings H, RF1, OF1 
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and CF1, operating at different speeds. Multiple deep learning algorithms were then used to 

classify the different faults and their performance compared to the proposed method. 

The first comparison method used was the conventional convolutional neural network 

(CNN). This was constructed using three convolutional blocks (convolution layer + pooling 

layer) to extract features from the raw acoustic data. The other parameters in the CNN are the 

same as that in reference [9]. The second comparison method uses a deep recurrent neural 

network (DRNN) [15]. The third one comparison method was a deep belief network (DBN) 

constructed from three Boltzmann machine layers and used to automatically extract features 

[27]. The final comparison method used a deep autoencoder (DAE) with three neural layers to 

extract features [28]. Additive White Gaussian Noise (AWGN) with different levels was added 

to the collected acoustic signals to vary the signal-to-noise ratio (SNR) from 0 dB to 10 dB. 

The comparison experiment was conducted at different speeds (400, 500 and 600 RPM). The 

results of the comparison experiment are shown in Fig.  10. The figure shows that for all of the 

classifiers, the accuracy decreases as the background noise increases. The figure also shows 

that the DGCN model has the best performance of all the methods compared for all of the 

speeds considered.
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Fig.  10. Testing accuracy results for different classification methods with varying SNR at (a) 400 rpm, (b) 500 
rpm and (c) 600 rpm

4.6 Detection with different sample sizes

In real operating conditions it is often difficult to collect large quantities of data, and as 

such classification systems that can operate with smaller datasets may be preferable. The 

accuracy of most classifiers is sensitive to the size of their training dataset. To test the 

performance of the DGCN model against the other learning algorithms considered in section 

4.5 in the case of limited datasets, a further comparison experiment was conducted using testing 

bearings H, RF1, OF1 and CF1 operating at 500 rpm. The classifier results are shown in Fig.  

11. The figure shows that the testing accuracy for all methods decreases as the number of 

training samples is reduced. The proposed DGCN method is shown to produce the most 

accurate classification result compared to the other methods considered. This is largely due to 

its capability for learning the geometric information of graphs. Although the DGCN model can 

obtain the best result for each dataset size, its classification accuracy still follows the trends of 
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all of the methods – i.e. decreasing with dataset size. All of the methods show a significant 

decrease in accuracy as the training proportion falls below 30%. 
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Fig.  11.  Testing accuracy results for different classifiers based on different dataset sizes

5. Conclusions 

In this work, an intelligent acoustic-based fault diagnosis using deep graph convolution 

networks has been proposed and demonstrated to be suitable for identifying roller bearing faults. 

In the approach, the collected acoustic signals are transformed into graphs, i.e. from the general 

data domain to the graph domain. The training sets of graphs, as inputs, are then fed into the 

deep graph convolution network which includes multiple feature extraction blocks, one fully 

connected layer, and a SoftMax layer. For the feature extraction blocks in the DGCN model, 

there are three core procedures: graph convolution, coarsening, and pooling operations based 

on spectral graph theory. Finally, the testing sets of graphs are used to validate the performance 

of the trained DGCN model. The performance of the proposed scheme has been verified under 

a range of scenarios using multiple experiments and comparisons with other methods. The 

methods have been considered for their performance in terms of: consistency, stability with 

speed, fault type, fault severity, noise tolerance, and dataset size. The following conclusions 

are obtained through consideration of the experimental results:

(1) The graphs constructed using vertices and edges can provide more information for 

training the DL model. Hence, the results of the experiments demonstrate that The DGCN 

method is superior to conventional DL methods for identifying different fault severities and 

different kinds of bearing faults.

(2) The graph construction methods described work well in the proposed approach and in 

comparison to a range of other popular methods as demonstrated. However, there are many 

other methods, including different geometry structures, weighted methods, etc. and so further 

comparative studies are required. 
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(3) It has been shown that the results of the proposed scheme can be obtained using the 

collected acoustic signals from the test rig in the lab. The intelligent method has, however, not 

yet been validated using real-world data. 

Acknowledgements

This study was supported by the China Scholarship Council, the National Natural Science 

Foundation of China (51875182) and the Guangzhou Science and Technology Plan (Ref. 

201704030048). 

References 

1. Zhang, X., et al., Acoustic performance of a semi-closed noise barrier installed on a high-speed 
railway bridge: Measurement and analysis considering actual service conditions. 
Measurement, 2019. 138: p. 386-399.

2. Baydar, N. and A. Ball, Detection of gear failures via vibration and acoustic signals using 
wavelet transform. Mechanical Systems and Signal Processing, 2003. 17(4): p. 787-804.

3. Glowacz, A., Fault diagnosis of single-phase induction motor based on acoustic signals. 
Mechanical Systems and Signal Processing, 2019. 117: p. 65-80.

4. Glowacz, A., et al., Early fault diagnosis of bearing and stator faults of the single-phase 
induction motor using acoustic signals. Measurement, 2018. 113: p. 1-9.

5. Wang, C., et al., Doppler Effect removal based on instantaneous frequency estimation and time 
domain re-sampling for wayside acoustic defective bearing detector system. Measurement, 
2014. 50: p. 346-355.

6. Zhang, D., et al., Adaptive fault feature extraction from wayside acoustic signals from train 
bearings. Journal of Sound and Vibration, 2018. 425: p. 221-238.

7. Guo, X., L. Chen, and C. Shen, Hierarchical adaptive deep convolution neural network and its 
application to bearing fault diagnosis. Measurement, 2016. 93: p. 490-502.

8. Liu, R., et al., Artificial intelligence for fault diagnosis of rotating machinery: A review. 
Mechanical Systems and Signal Processing, 2018. 108: p. 33-47.

9. Ince, T., et al., Real-time motor fault detection by 1-D convolutional neural networks. IEEE 
Transactions on Industrial Electronics, 2016. 63(11): p. 7067-7075.

10. Zhao, M., et al., Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for 
Fault Diagnosis of Planetary Gearboxes. IEEE Transactions on Industrial Electronics, 2018. 
65(5): p. 4290-4300.

11. Wang, S., et al., A data indicator-based deep belief networks to detect multiple faults in axial 
piston pumps. Mechanical Systems and Signal Processing, 2018. 112: p. 154-170.

12. Zhang, W., et al., A deep convolutional neural network with new training methods for bearing 
fault diagnosis under noisy environment and different working load. Mechanical Systems and 
Signal Processing, 2018. 100: p. 439-453.

13. Shao, H., et al., Rolling bearing fault feature learning using improved convolutional deep belief 
network with compressed sensing. Mechanical Systems and Signal Processing, 2018. 100: p. 
743-765.

14. Jia, F., et al., Deep neural networks: A promising tool for fault characteristic mining and 
intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal 
Processing, 2016. 72: p. 303-315.

15. Jiang, H., et al., Intelligent fault diagnosis of rolling bearings using an improved deep recurrent 
neural network. Measurement Science and Technology, 2018. 29(6): p. 065107.



20

16. Gan, M. and C. Wang, Construction of hierarchical diagnosis network based on deep learning 
and its application in the fault pattern recognition of rolling element bearings. Mechanical 
Systems and Signal Processing, 2016. 72: p. 92-104.

17. Mao, W., et al., Online sequential prediction of bearings imbalanced fault diagnosis by extreme 
learning machine. Mechanical Systems and Signal Processing, 2017. 83: p. 450-473.

18. Scarselli, F., et al., The graph neural network model. IEEE Transactions on Neural Networks, 
2009. 20(1): p. 61-80.

19. Ortega, A., et al., Graph signal processing: Overview, challenges, and applications. Proceedings 
of the IEEE, 2018. 106(5): p. 808-828.

20. Bruna, J., et al., Spectral networks and locally connected networks on graphs. arXiv preprint 
arXiv:1312.6203, 2013.

21. Such, F.P., et al., Robust spatial filtering with graph convolutional neural networks. IEEE 
Journal of Selected Topics in Signal Processing, 2017. 11(6): p. 884-896.

22. Ying, R., et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems. 
arXiv preprint arXiv:1806.01973, 2018.

23. Song, T., et al., EEG Emotion Recognition Using Dynamical Graph Convolutional Neural 
Networks. IEEE Transactions on Affective Computing, 2018.

24. Defferrard, M., X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs 
with fast localized spectral filtering. in Advances in Neural Information Processing Systems. 
2016.

25. Shuman, D.I., et al., The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains. IEEE Signal Processing 
Magazine, 2013. 30(3): p. 83-98.

26. Dhillon, I.S., Y. Guan, and B. Kulis, Weighted graph cuts without eigenvectors a multilevel 
approach. IEEE transactions on pattern analysis and machine intelligence, 2007. 29(11).

27. Ma, M., C. Sun, and X. Chen, Discriminative deep belief networks with ant colony optimization 
for health status assessment of machine. IEEE Transactions on Instrumentation and 
Measurement, 2017. 66(12): p. 3115-3125.

28. Shao, H., et al., A novel deep autoencoder feature learning method for rotating machinery 
fault diagnosis. Mechanical Systems and Signal Processing, 2017. 95: p. 187-204.



21

Highlights

 Intelligent acoustic-based fault diagnosis is applied to roller bearings;

 Combining with graph theory and deep learning, DGCN is proposed;

 The raw signals are transformed from general data domain to graph domain;

 Experiments verify the effectiveness of the proposed method;

 The proposed method has obvious advantage in terms of accuracy, de-noising etc.
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