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Highlights 

 This paper proposes a novel algorithm for segmentation of SAR image. 

 THFCM firstly divides the image into pixel groups to extract local feature. 

 The major pixels of each pixel group are selected to construct a thumbnail.  

 The thumbnail approach leverages local image information, helping to overcome speckle noise.  

 Experiments suggest that THFCM outperforms several other state-of-the-art algorithms in terms of both 

segmentation accuracy and running time. 
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Abstract—This paper proposes a novel algorithm for 

segmentation of synthetic aperture radar (SAR) image, our 

proposed algorithm (THFCM) is based on thumbnail image 

representations and a hierarchical fuzzy C-means (FCM) 

approach. THFCM firstly divides the image into pixel groups 

to extract local feature, and the major pixels of each pixel 

group are selected to construct a thumbnail. FCM is then used 

to segment each thumbnail, and hierarchical segmentation is 

then performed on the overall image data, based on the results 

of thumbnail clustering. The thumbnail approach leverages 

local image information, helping to overcome speckle noise, 

while the hierarchical approach improves computational 

efficiency. Experiments on simulated and real SAR images 

suggest that THFCM outperforms several other 

state-of-the-art algorithms in terms of both segmentation 

accuracy and running time. 

Index Terms—Fuzzy C-means, Neighborhood information, 

Speckle phenomenon, SAR image segmentation, Thumbnail. 

I. INTRODUCTION 

Radar-based machine vision is a rapidly evolving branch of 

machine intelligence. It has been extensively used in target 

detection, change detection and tracking, in diverse 

applications such as military surveillance, environmental 

monitoring and others [1-3]. In particular, the problem of 

SAR image segmentation has drawn increasing attention 

from many researchers [4]. However, the trade-off between 

suppressing speckle noise (prevalent in SAR images), while 

also limiting computational complexity, remains a difficult 

open problem. This paper attempts to tackle this problem, 

presenting a method based on thumbnails. These are 

constructed by dividing the original SAR image into a 

number of non-overlapping but connected homogeneous 

regions [5, 6]. 

 The speckle phenomenon of SAR images is one of their 

inherent characteristics, which brings some difficulties to the 

segmentation task [7, 8]. Therefore, many conventional 

image segmentation methods do not yield good results on 

SAR images [9]. Hence, many researchers have proposed 

despeckling filters to improve SAR image segmentation 

accuracy [14]. Some methods have a filter operation before 

segmenting [13]. [10] extracted texture features to reduce the 

influence of speckle noise. Clustering results, based on the 

learned texture features, can improve the performance 

significantly [11]. The concept of non-local filtering appears 

to have been gradually demonstrating superior performance 

in recent years [15]. The method in [12] extracts features from 

several sub-images obtained by a Gabor filter bank, which 

can reduce the adverse effects of speckle noise. 

There are many other algorithms trying to solve this 

problem of image segmentation. For example, variety of early 

work was based on thresholding of pixel values [16]. 

Expectation-Maximisation (EM) [17], and other methods, 

e.g. Kittler Illingworth (KI) [18], have been proposed for 

determining optimal threshold values. In 1988, Kass et al. 

proposed an active contour model, introducing a new 

approach to solve image segmentation by minimizing an 

energy function [19, 20]. A statistical active contour model 

was applied to the problem of oil slick segmentation in [21]. 

The level set model is one of the active contour methods [22]. 

The multi-layer level set method efficiently segments SAR 

images and promotes further image interpretation in the 

imaged areas [23]. Methods based on the random field model 

can preserve the context information in an image [24], and the 

Markov Random Field (MRF) as one of the typical random 

field models have been widely adopted [25]. Later, the 

conditional random field model was proposed to overcome 

the Markovian restriction of conditional independence [26]. 

The clustering methods contain many kinds of algorithms, 

such as spectral clustering [27], K-means clustering, FCM 

and others [28]. This paper makes use of the FCM algorithm 

and combines the idea of superpixel and despeckling filters 

[29]. 

In FCM algorithm, similar pixels are clustered into the 

same class by optimizing the objective function and updating 

membership degree for every pixel to every cluster iteratively 

[30]. FCM has been widely studied and applied in many fields 

of SAR image processing, such as change detection [31] and 

segmentation [32]. Many researchers have made 

improvements from different perspectives. A variety of 

improvements can be made by modifying the objective 

function [33], e.g. to combine cost terms from several models 

[34]. An adaptive fuzzy local information c-means 

(ADFLICM) clustering approach was proposed in [35] 

incorporating local spatial information. Gong et al. proposed 

a fuzzy clustering algorithm to segment the difference image 

in a change detection task, in which the MRF model was used 

to calculate the membership degree [36]. The calculation of 

cluster centers in FCM affects the updating operation and 
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consequently influences the convergence properties of 

algorithm. Later work by Zhang et al. in [37] presented a new 

method to calculate the clustering centers which improved the 

segmentation accuracy. Ju et al. changed proposed an 

alternative distance metric, of each element from its 

corresponding cluster center, which resulted in assigning 

more appropriate class labels to each pixel at each iteration 

[38]. 

Several recent FCM-based methods have demonstrated 

good performance in SAR image segmentation. Shang et al. 

presented an algorithm called clone kernel spatial FCM 

(CKSFCM), to overcome the problem of FCM’s sensitivity to 

random initialisation conditions [39]. The immune clone 

algorithm is used to generate the initial cluster centers, and 

helps prevent the algorithm from converging on local optima. 

However, this method spends a large amount of computation 

time on initialing and clustering. In [40] Ji et al. proposed a 

non-local fuzzy clustering algorithm with between-cluster 

separation measure (NSFCM), which incorporates non-local 

spatial information using an improved non-local mean 

method. NSFCM makes full use of the information in the 

image, however this leads to information redundancy, which 

can be reduced by using other approaches to improve 

efficiency. Thus, Liu et al. incorporated adaptive local 

information into fuzzy clustering (ALFCM) [41]. This paper 

pays closer attention to the selection of local information, 

which also improves the segmenting accuracy. Shang et al. 

divided the image into key pixels and non-key pixels, and 

used the key pixels to segment the remaining non-key pixels 

[42]. This method is called fast fuzzy C-means clustering 

based on key pixels (FKPFCM). The FKPFCM algorithm 

performs Gaussian filtering and non-maximum suppression 

operations before clustering.  

Although the above mentioned algorithms achieve good 

results, there are many other algorithms for image 

segmentation. Such as patch-based methods divide the image 

into square regions first, and assign the same label to every 

pixel in each patch [43]. This algorithm exploits 

morphological processing to reduce the misclassification 

phenomenon at the boundaries in the result map [44]. The 

method of using image patches as processed elements is also 

widespread in deep learning methods [45]. Moreover, the 

concept of superpixels has also drawn much attention in the 

image segmentation literature [46]. Generating more 

appropriate superpixels can also improve the performance of 

segmentation [47]. The simple linear iterative clustering 

(SLIC) algorithm is a commonly used method that generates a 

certain number of superpixels [48]. It can be used in 

FCM-based segmentation methods to help reduce the 

algorithm running time. However, for SAR image 

segmentation, it is necessary to adjust the SLIC algorithm 

[49]. 

In this paper, a new unsupervised SAR image segmentation 

algorithm, called thumbnail-based hierarchical fuzzy c-means 

(THFCM), is proposed. The main contributions are as 

follows: 

 In order to improve the segmentation efficiency, the 

proposed method firstly divides the image into pixel 

groups, then generates a thumbnail which is much 

smaller than the original image. That can help reduce the 

time used for the clustering operation on thumbnail 

compared with attempting clustering on the entire input 

image. 
 In contrast to other region-based segmentation methods, 

the proposed method selects the major pixels in the pixel 

groups, and calculates the mean values to generate a 

thumbnail. Then it segments the thumbnail using local 

spatial information. The influence of noisy pixels on the 

clustering result of the overall region can be reduced.  
 To make the segmentation result more uniform and 

accurate, clustering results of the thumbnail are used to 

segment the input SAR image hierarchically.  

The remainder of this paper is structured as follows. 

Section II describes the THFCM algorithm in detail. Section 

III presents the results of empirical experiments to evaluate 

performance. The variable-controlling method is employed to 

analyze the sensitivity of the parameters, then the 

performance of our proposed THFCM algorithm is evaluated 

in comparison with four other state-of-the-art algorithms. 

Comparison experiments are preformed using both simulated 

and real SAR images. 

II. PROPOSED METHOD 

The SAR segmentation task is to assign a proper label for 

every pixel in the input SAR image, then obtain a 

segmentation result map R＝{rij, 0iM, 0jN}. In this 

paper, the input SAR image is X＝{xij, 0iM, 0jN}, and it 

can be segmented into C regions. Where xij represents the 

intensity value of the pixel at the i-th row and the j-th column.  

THFCM works on thumbnails and can improve 

segmentation efficiency while guaranteeing state-of-the-art 

segmentation accuracy. The proposed algorithm has three 

main steps as follows.  

 (1) Generate the thumbnail 

The SAR image is divided into pixel groups through an 

iterative clustering process. The major pixels are selected 

according to the intensity histogram of each pixel group. And 

the pixel value of the thumbnail is obtained by calculating the 

mean intensity of the major pixels in the corresponding pixel 

group.  

(2) Segment the thumbnail 

 The FCM algorithm is used to segment the thumbnail, and 

a regularization term is adopted in THFCM to alleviate the 

influence of the neighbor pixels [50]. The neighborhood level 

is used to control the scale of the irregular neighborhood 

window. 

(3) Segment the input SAR image 

The major pixels, selected in step (1), are segmented 

according to the clustering results of their thumbnail. The 

proposed algorithm gives the corresponding label to the 
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selected major pixels in every pixel group. Then hierarchical 

segmentation is performed for the remaining pixels by 

combining the obtained clustering centers and then a majority 

voting approach. The flow chart of the method is shown in 

Fig. 1.  

 

Fig. 1.  The flow chart of THFCM. 

A. Generation of the Thumbnail 

The thumbnail is generated to improve the segmentation 

efficiency, and to suppress the influence of speckle noise. To 

achieve these effects, the thumbnail needs to satisfy the 

following requirements. 1) The size of the thumbnail must be 

significantly smaller than the overall input image. 2) The 

thumbnail should adequately represents the features of the 

input image. 3) The thumbnail should be less affected by the 

speckle noise. 

A simple strategy, to generate a low-resolution thumbnail, 

is that of using the average pooling operation to represent a 

square patch of pixels by a single pixel. Then clustering is 

performed on the thumbnail, which is computationally 

cheaper than clustering the original input image. However, 

the pixels in each square patch might belong to different 

regions (different classes). Therefore, adopting a simple 

regular grid of pixel patches as the clustering unit may result 

in the loss of some useful information. Many researchers, e.g. 

SLIC [49], modify the original pixel patches into superpixels, 

whose boundaries are more consistent with the real edges in 

the input image. This seems a sensible way to overcome the 

weakness of regular square pixel patches. Nevertheless, the 

superpixels in SAR images typically still contain some small 

regions or discrete pixels, and the SLIC merges them into the 

neighbor superpixels. That is obstacle for the generation of 

thumbnail because the locations of superpixels are not regular. 

In this paper, THFCM divides the input SAR image into 

feature-similar pixel groups and uses them to generate the 

thumbnail.  

The process of generating feature-similar pixel groups is as 

follows. Firstly, each pixel xij is represented by a 

9-dimensional eigenvector v(xij), which is composed of 

intensity values in the 3×3 neighborhood centered on pixel xij. 

Next, the input image X is divided into pixel patches in the 

size of P×P, and each pixel patch forms an initial pixel group. 

In each pixel group, at each time step, the eigenvector is 

represented by the average eigenvector of all pixels, and its 

center position is represented by the average position of all 

pixels. Next, two steps are performed alternately in each 

iteration: the allocating step and the updating step. 

In the allocating step, the group center of each non-group 

pixel is searched, and this pixel is allocated to the group 

center with the most similar intensity in the S×S 

neighborhood window, where S=2P-1. The distance   

between the center pixel xij and its neighbor pixel xi'j' based on 

the pixel patch is 
2( , ) || ( ) ( ) || .ij i j ij i jx x x x     v v                   (1)                                                                       

The structure similarity of two pixels can be measured 

according to this distance. The smaller the  , the more 

similar the two pixels are. After all pixels are allocated to the 

pixel group, the eigenvector and center position of each pixel 

group are updated in the updating step, by calculating the 

average eigenvector and average position of the pixels in the 

pixel group. The obtained group eigenvector and center 

position will be used to measure the feature similarity in the 

allocating step of the next iteration. These two steps are 

performed in sets of ten iterations alternately, to output the 

feature-similar pixel groups. 

To intuitively illustrate the process of modifying the 

regular square pixel patches into pixel groups, a 15×15 

example image is shown in Fig. 2. 

 

Fig. 2.  Schematic diagram of pixel group generating process. 

As shown in Fig. 2, the initial patch size P=5, and the 

image of size 15×15 is divided into nine square patches. The 

central pixel of every regular square patch is used as an initial 

group center. Nine different colors are used to represent the 

group centers of each patch. Then, the most similar pixels to 

the group centers are obtained by equation (1) in the window 

of S×S where S=9. These are labeled as the same group. After 

the algorithm converges, the feature-similar pixels are 

marked the same color in each pixel group. The pseudo-code 

for the pixel groups generating process is summarized in 

Algorithm 1. 
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After the input SAR image is divided into pixel groups, the 

major pixels are selected from each pixel group to generate 

the thumbnail. To obtain the major pixels, we establish the 

intensity histogram for each pixel group. The smallest and 

largest intensity values are recorded in every group. Then the 

intensity range is divided into B bins. For each pixel group, 

major pixels are selected that the bin with the largest number 

of pixels.  

Algorithm1: process of generating pixel groups. 

Input: SAR image X, patch size P, the max number of iteration TG. 

Output: pixel groups map RG 

Begin 

1. Divide the image X into P×P regular square patches, and 

initialize the group centers, set tG=1; 

2. For each pixel except the group centers, calculate the similarity 

with the group centers in the range of S×S, where S=2P-1; 

3. Mark every pixel as the same group as the most similar group 

center in the range of S×S around the proposed pixel; 

4. Update the gray value of the group centers using the mean 

intensity of current pixel groups; 

5. If tG>TG, execute step 6; otherwise, tG=tG+1 and go to step 2; 

6. Output the pixel group map RG. 

End 

After the major pixels of every group is obtained, the pixel 

group is represented by mean intensity of these major pixels 

in this group. So that the size of thumbnail is P times smaller 

than the original image. Here a real SAR image is adopted as 

an example, SAR image and obtained thumbnail are shown in 

Fig. 3(a) and (b). It can be seen that edges in the original 

image have been preserved in thumbnail. 

     

(a)                                            (b) 

Fig. 3.  Comparison of the original SAR image and the thumbnail. (a) the 

Input SAR image; (b) Thumbnail. 

B. Segmentation of the Thumbnail 

In section A, we have obtained the thumbnail S＝{sij, 

1im, 1jn}, where m=⌈M/P⌉, n=⌈N/P⌉ where m and n are 

the width and height of thumbnails, M and N are the width and 

height of input image, P is the patch size. Inspired by 

ADFLICM [35] and FKPFCM [42], we segment the 

thumbnail using FCM algorithm with a regularization term, 

incorporating spatial local information in the thumbnail. That 

is equivalent to using the spatial non-local information in the 

input SAR image. The process of generating thumbnail in 

section A uses the spatial local information of the input SAR 

image. So the proposed method actually combines the spatial 

information on different scales. In order to maintain the 

diversity of the neighborhood window, we use an irregular 

window [50] centered at the central pixel.  

The objective function to be minimized is as follows: 

   
2

2

1 1 1 ( , ) W

( ) 1
m n C ff

ijc ij c cij ijc ij
i j c i j L

J u s v w u s v
   

 
     
 
 

  .

                    
(2) 

where sij is the pixel value at the i-th row and the j-th column 

in the thumbnail which is also the current central pixel, C is 

the number of clusters, uijc indicates the membership degree 

of the pixel xij belonging to the c-th cluster, and vc is the c-th 

cluster center,  f is the fuzzy factor which is usually taken as 2, 

WL is the set of all pixels in the L-level neighborhood window 

of the processed central pixel sij. The coefficient ijw controls 

the influence that every neighbor pixel has on the central 

pixel sij. The proposed method uses the neighbor pixels on 

different scales by adjusting the neighborhood level L, which 

is illustrated in (3) as follows:  

  2 2 1W ( , ) ( ) ( ) 2 .L
L i j i i j j                   (3)   

We set the neighborhood range as a 9×9 square window 

centered at the pixel sij. The pixels outside this area are not 

considered. Therefore, the possible value of the neighborhood 

level L is in the set {1, 2, 3, 4, 5, 6}. We show the varying 

values of neighborhood level for pixels within the maximum 

area in Fig. 4. 

 

Fig. 4.  Distribution diagram of the neighborhood level. 

As shown in Fig. 4, the darker the color is, the smaller the 

value of neighborhood level is. After the parameter L is set, 

all the pixels whose level value is smaller than L are used to 

segment the central pixel sij. 

The weight ijw in (2) is determined by the similarity 

between ijs and the central pixel ijs . The more similar these 

two pixels are, the larger the weight ijw is. Then the greater 

the influence that ijs has on the current center pixel ijs . As 

shown in (4), the weight ijw is composed of two parts: 

distance weight wd and intensity weight wi. 

2 2

1
exp log

( ) ( ) 1

ij
d iij

ij

s
w w w

si i j j

 
     
      

,  (4)  

where wd is determined by the Euclidean distance between the 

position of central pixel ijs and the corresponding 

6 6 6 6 5 6 6 6 6

6 6 5 5 5 5 5 6 6

6 5 4 4 3 4 4 5 6

6 5 4 2 1 2 4 5 6

5 5 3 1 sij 1 3 5 5

6 5 4 2 1 2 4 5 6

6 5 4 4 3 4 4 5 6

6 6 5 5 5 5 5 6 6

6 6 6 6 5 6 6 6 6
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neighborhood pixel ijs . The smaller the distance is, the larger 

the weight wd is. Moreover, the weight wi reflects the 

similarity between the two pixels in the term of intensity 

values. The larger the disparity between their intensity values 

is, the smaller the weight wi is. These two items evaluate the 

similarity between these two pixels from different 

perspectives. 

Taking the derivative of the objective function, the update 

formulas of the membership degree matrix can be obtained 

and the cluster center vector as follows: 

1 1

1 1

( )

,

( )

m n
t f
ijc ij

i jt
c m n

t f
ijc

i j

u s

v

u

 

 






                         (5)

 

 

 

   

   

1
121

( , ) W

211
( , ) W

1

1

1

t

ijc
f f

t
C ij c ijc cij iji j ij

m
tc

ij c ijc cij iji j ij

u

s v w u s v

s v w u s v







  



 
    

 
     
 






.

                                             

(6) 

In each iteration t, the membership degree and the cluster 

centers are updated separately until the algorithm reaches the 

termination condition. According to the final membership 

matrix, we give each pixel in the thumbnail the class label 

corresponding to the maximum membership degree as shown 

in (7):  

 arg max , 1, 2, ..., .ij c ijcrs u c C                     (7) 

In this paper, In order to make apple-to-apple comparison 

with other state-of-the-art algorithms, the number of clusters  

is adopting as same as it in the compared algorithms. 

Then the thumbnail segmentation result map is 

consequently obtained after the defuzzification process. In 

summary, the process of the thumbnail segmentation is 

shown in Algorithm2. 

Algorithm2: process of the thumbnail segmentation. 

Input: the thumbnail S, the number of clusters C, the max number 

of iterations T, the patch size P, the number of histogram bins B, the 

neighborhood level L. 

Output: the clustering result map of the thumbnail Rs. 

Begin 

1. Extend the boundary of the S and find the neighborhoods in level 

L for every pixel sij, set the iterative counter t=1; 

2. Initialize the membership matrix U by FCM; 

3. Update the clustering center vector V using (5); 

4. t＝t＋1, and update the membership degree matrix U using (6); 

5. If t>T, execute step 6; otherwise, go to step 3; 

6. Label every pixel in the thumbnail using (7); 

7. Output the clustering map RS. 

End 

C. Segmentation of the input SAR Image  

Some patch-based or superpixel-based image segmentation 

methods often assign the same result label directly to all the 

pixels belonging to the patch or superpixel. And the 

subsequent morphologic processing may be performed on the 

obtained result map [44]. This approach can loose some 

detailed information, and it requires that the image resolution 

is high enough. The reason we use a region to be segmented 

as a whole is that the pixels in the region are very similar. 

However, there are always some pixels whose value has a 

very large disparity with others. These pixels contain not only 

the seriously noisy pixels but also the edges or boundaries in 

the input SAR image. Inspired by [42] and [51], we leave 

these pixels behind and firstly process the major pixels. Then 

we segment these remaining pixels according to the 

pre-clustered pixels in their neighborhood window. This 

approach is also beneficial to obtain a more homogeneous 

segmentation result map.  

In particular, the pixels in the input SAR image need to be 

traversed three times to complete the final segmentation map. 

1) The major pixels of every pixel group: In the process of 

constructing the thumbnail, we select the major pixels in the 

pixel groups to calculate the average intensity and average 

position. When segmenting the input SAR image, the 

proposed algorithm firstly assigns the obtained pixel group’s 

label to the corresponding major pixels: 

if ( , ) S
,

 0   otherwise

ij ij ij

ij

r rs i j

r

 



                          (8)

  

 

where, S
ij

is the set of the major pixels in the input SAR 

image of the pixel group corresponding to the position ( , )i j

in the thumbnail. The label rij=0 means that the current pixel 

has not been segmented in this traversal. 

2) Pixels that obtained consistent label through two 

different approaches: After the first traversal, most of the 

pixels in the uniform region have been segmented. And the 

remaining part mainly contains the pixels with complex local 

structures. According to the fuzzy clustering centers obtained 

by clustering the thumbnail, a possible label value raij can be 

obtained by comparing the difference between the current 

pixel and the different clustering centers: 

1

arg min .ij ij c
c C

ra x v
 

                            (9)  

In addition, most of the pixels in the neighborhood of the 

remaining pixels have been given a class label in the first 

traversal. Since the pixels of the same region tend to gather in 

a continuous area, we can obtain another possible label value 

rbij through the majority voting approach, selecting the label 

that occurs most frequently in the P×P window of the current 

pixel: 

arg max | W |,ij r
r

rb                         (10)  

where, Wr represents the set of pixels whose label is r in the 

P×P window centered at the current pixel.  
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The intuitive interpretation of the majority voting approach 

is shown in Fig. 5. 

NSFCM incorporation

  
Fig. 5.  Schematic diagram of the majority voting approach. 

As shown in Fig. 5, after we assign the thumbnail’s label to 

the corresponding major pixels, there are some uncolored 

pixels remained to the next traversal. Using majority voting 

approach, we firstly extract the P×P window centered at the 

current uncolored pixel, then assign the label that occurs most 

frequently to it. 

If the label obtained by the two approaches is consistent, 

the label will be assigned to the current pixel. Otherwise, the 

current pixel can still not be segmented in this traversal: 

if
.

 0   otherwise

ij ij ij ij

ij

r ra ra rb

r

 



                     (11) 

3) The final remaining pixels: After the second traversal, 

the remaining pixels are mainly discrete noisy pixels. For 

these pixels, we perform a majority vote operation again 

according to the results of the previous two traversals to 

determine the labels of the remaining pixels. In this way, the 

original SAR image segmentation result map R has been 

completely obtained. 

In summary, we have completed the segmentation process 

of the input SAR image. Here we show the pseudo-code of 

the algorithm THFCM in Algorithm 3. 

Algorithm3: process of THFCM. 

Input: SAR image X, segmentation class number C, patch size P, 

the number of histogram group B, neighborhood level L, the 

max number of iteration T. 

Output: final segmentation map R. 

Begin 

1. Divide the image X into pixel groups and find the major pixels; 

2. Construct the thumbnail using the method in Algorithm1; 

3. Segment the thumbnail using the method in Algorithm2 and 

obtain the thumbnail clustering map RS; 

4. Label the major pixels using RS; 

5. Label the remaining pixels using the method in section C; 

6. Output the segmentation map R. 

End 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, THFCM is performed in two simulated 

SAR images and four real SAR images separately. In order to 

show the effectiveness of the proposed algorithm in terms of 

segmentation accuracy and operating time, four 

state-of-the-art FCM-based SAR image segmentation 

methods is adopted named CKSFCM [39], NSFCM [40], 

ALFCM [41], and FKPFCM [42], and one semi supervised 

deep learning algorithm called SRDNN-MD [51] for 

comparison and analysis. 

A. Experimental images 

In order to observe and evaluate the segmentation results of 

THFCM, simulated SAR images which obtain by adding 

multiple speckle noise of 1, 2, 4, and 6 looks to the standard 

images are chose as the input data [52, 53]. The 1-look images 

of the selected simulated SAR images and their ground truth 

map are shown in Fig. 6(a)-(d). 

     

(a)                                       (b)   

    

(c)                                         (d)  

Fig. 6.  Simulated SAR images. (a) 1-SI1; (b) 1-SI2; (c) Ground truth map of 

SI1; (d) Ground truth map of SI2. 

SAR systems often perform multi-look processing on 

images, the larger the number of looks, the less the image is 

affected by the speckle noise, the higher the image quality is 

[53]. In order to observe the segmentation results of the 

proposed algorithm, the images we select are different in the 

size, the number of clusters, the intensity values of cluster 

centers and so on. The detailed information of the two 

simulated SAR images is shown in Table I. 

 TABLE I  RELEVANT INFORMATION OF THE SIMULATED SAR IMAGES 

                        Size Clusters Looks Intensity values 

SI1 256×256 4 1,2,4,6 30,92,184,255 

SI2 1000×1000 5 1,2,4,6 10,60,120,180,255 

As shown in Table I, SI1 is a 4-cluster simulated SAR 

image in a size of 256×256. The original standard image sets 

higher intensity values for the four cluster centers. The gap 

among each cluster are small and it is convenient for a pixel to 

obtain a similar value with another neighbor cluster after 

adding artificial noise. SI2 is a larger image whose size is 

1000×1000. The size of SI2 increases significantly compared 

with SI1, and its cluster number changes to 5. The gap among 

the various cluster centers’ intensity value becomes smaller. 

SI2 is more greatly affected by noise because the speckle 

noise is a typical multiplicative noise. And the brighter area 

usually has a greater range of fluctuation. We perform 

experiments on the two different simulated SAR images. 
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Moreover, we also use three real SAR images to observe 

the segmentation results of the proposed THFCM algorithm 

and the other comparison algorithms. The three real SAR 

images we selected is shown in Fig. 7(a)-(c). 

     

                     (a)                                      (b)                                (c)  

Fig. 7.  Real SAR images. (a) XIAN; (b) MARICOPA; (c) NORDLINGER. 

Fig. 7(a) shows the first real SAR image, called XIAN, was 

taken in the X-band by TerraSAR viewing Xi’an, China, at a 

resolution of 1 meter. The size of image XIAN is 256×256, 

This dataset can be divided into three different regions 

containing different crops. Fig. 7(b) shows the second real 

SAR image named MARICOPA, imaged in the Ku-band and 

VV polarization, located at the Maricopa Agricultural Center 

near Arizona. The size is 350×350 and the resolution is 1 

meter. This image can be segmented into 4 classes including 

three different kinds of XIAN and water area. The third image 

shown in Fig. 7(c) is called NORDLINGER with the original 

resolution of 1 meter, HH polarization and in X-band. It was 

captured by TerraSAR-X, situated in the middle of the 

Swabian Jura, the Nӧrdlinger Ries. When the image is 

segmented, the class number is set to be 4. 

B. Comparison Algorithms and Evaluation Indicators 

In order to verify the effectiveness of the proposed method 

THFCM on SAR images segmentation problem, in this 

section we use four state-of-the-art comparison algorithms 

including the immune clone clustering algorithm based on 

non-local mean (CKSFCM) [39], the non-local fuzzy 

clustering algorithm with between-cluster separation measure 

(NSFCM) [40], the fuzzy clustering algorithm based on 

adaptive local information (ALFCM) [41] and the fast SAR 

image segmentation algorithm based on key pixels 

(FKPFCM) [42]. As illustrated in section I, CKSFCM firstly 

uses the immune clone algorithm to initialize the clustering 

centers, then adds non-local information to the clustering 

process to overcome the effect of speckle noises. NSFCM 

incorporates the non-local spatial information obtained using 

an improved non-local mean method and introduces a fuzzy 

between-cluster variation term into the original objective 

function ALFCM combining the information of region level 

and pixel level to perform fuzzy clustering. Region-level 

local information is used to adaptively control the range and 

strength of interactive pixels. FKPFCM selects key pixels 

from the image and clusters the key points first. Then it 

processes the last non-key points by the key points’ clustering 

results. In addition, using pixel patches to construct thumbnail 

can also achieve good results. That means, after we divide the 

image into regular square patches, the major pixels are 

selected in every patch directly to construct the thumbnail. 

We called this method patch-based hierarchical fuzzy 

C-means algorithm (PHFCM), which is also tested as a 

comparison algorithm. 

In order to evaluate the performance of the algorithms, we 

select the segmentation accuracy (SA) and algorithm running 

time (Time) as the evaluation indicators. The segmentation 

accuracy is the percentage of the correctly segmented pixels 

in the segmentation result map compared to the ground truth 

map, which is calculated by 

 1 1
1

,

M N
ij iji j

R G
SA

MN

 



 

                   (12)   

where 1(●) is an indicator function whose value is 1 if and 

only if the expression between the brackets is real, and 0 

otherwise. Rij and Gij severally represent the segmentation 

result label obtained by the algorithm and the real ground 

truth label of the pixel xij in the input SAR image.  

C. Parameters analysis  

In the proposed methods, the size of pixel patches P, the 

number of histogram bins B, and the neighborhood level L 

need to be adjusted. Here we select the simulated image 2-SI1 

to analyze the parameters of THFCM, observe and record the 

influence of these parameters on segmentation accuracy and 

algorithm running time. 

1) Pixel patch size P: The size of pixel patches P 

determines the reduction ratio of the thumbnail relative to the 

input SAR image. Intuitively, the larger the pixel patch size P 

is, the smaller the size of the resulting thumbnail, and the less 

the algorithm’s running time used for clustering. However, as 

P increases continuously, more and more pixel information 

will be obscured by the averaging operation, which can also 

have adverse effects on the algorithm’s results.  

Here we fix the other two parameters B=3, L=1, for the 

PHFCM and THFCM and just adjust the parameter P in the 

set {3, 5, 7, 9, 11, 13, 15}. Then run the proposed algorithms 

for 10 times setting every selected value of P and calculate the 

average results to observe and record how the segmentation 

accuracy (SA) and algorithm running time (Time) change 

with P constantly increases. 

       

(a)                                                           (b) 

Fig. 8.  The effect of pixel patch size P on PHFCM and THFCM.  (a) 

Segmentation accuracy; (b) Running time. 

From Fig. 8, we can see that with the increase of the pixel 

patch size P, the running time of both algorithms is gradually 

reduced. But meanwhile, the segmentation accuracy of the 

algorithms is also decreasing constantly. Fig. 8(a) compares 
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the decreasing trend of the segmentation accuracy of PHFCM 

and THFCM with the increase of pixel patch size P. It can be 

seen that the running time of the two methods changes in a 

similar rate, but the segmentation accuracy of PHFCM 

decreases more quickly than that of THFCM. That means the 

sensitivity of the proposed THFCM to parameter P is 

reduced, so that we can increase the pixel patch size P as 

much as possible to further shorten the algorithm running 

time under the premise of ensuring the segmentation 

accuracy. 

2) Neighborhood level L: During thumbnail segmentation 

process, the neighborhood level L controls the scale of the 

neighborhood information in the thumbnail. For different 

images, we need to adjust L to control the use of the local and 

non-local information. When processing a central pixel, the 

intensity information of the adjacent or nearby pixels can also 

be used to reduce the influence of noises. However, if we 

consider the pixels in a very large window, some important 

details can be neglected.  

Here we fix the other two parameters P = 5 and B = 3 for 

the proposed algorithm THFCM, and let L take the values of 

the set {1, 2, 3, 4, 5, 6} in proper order. For each value we run 

the proposed THFCM algorithm independently for 10 times 

to obtain the average results, record the segmentation 

accuracy (SA) and algorithm running time (Time) with L 

changing. The test results are shown in Fig. 9. From the 

experimental results in Fig.9, we can see that the 

neighborhood level L is another important parameter that 

affects the running time of the algorithm. As L increases, the 

algorithm needs to utilize the pixel information in a larger 

range and spend more calculation time on clustering 

operation. For the tested image, we obtain the largest 

segmentation accuracy when L=1. And the SA’s change 

range is not very large within a range of about 1.5 percent, 

which means that the proposed THFCM algorithm has nearly 

stable performance when L changes. 

     

(a)                                                            (b) 

Fig. 9.  The effect of neighborhood level L on THFCM. (a) Segmentation 

accuracy; (b) Running time. 

3) Histogram groups number B: When selecting the major 

pixels to generate the thumbnail, we construct the intensity 

histogram and the quantity of pixels in each intensity value 

range needs to be counted. The number of histogram bins B 

directly affects the quantity of selected major pixels. If B is 

small, most of the pixels in a pixel group may concentrate in 

one intensity bin and be selected as the major pixels. 

Otherwise, the algorithm will leave more pixels to be 

segmented in the next traversal. To show that, we also record 

the number of pixels that are left to the next traversal, which is 

represented by “LPN” in Fig. 10.  

Here we fix the other two parameters P = 5, L = 1, let  B  

take the values in the set {3, 5, 7, 9, 11, 13, 15} in a proper 

order. For each value we run the proposed THFCM algorithm 

independently for 10 times. We record the segmentation 

accuracy (SA), the algorithm running time (Time) and the 

number of last pixels (LPN) in the Fig. 10 as B changes. 

     

(a)                                                    (b)    

 

(c) 
Fig. 10.  The effect of histogram group number B on THFCM.  (a) 

Segmentation accuracy; (b) Running time; (c) Last pixels’ number. 

As shown in Fig. 10, as the number of histogram bins 

increases, the quantity of last pixels becomes larger and 

larger, and meanwhile the segmentation accuracy decreases 

constantly. The size of image SI2 is 256×256, which contains 

65536 pixels. When we set the parameter B as the smallest 

value “3”, the number of last pixels is 14555, which means 

nearly 20 percent of all the pixels are left to the second layer 

for segmentation. When B takes the largest value B=15, there 

are more than 50 percent, 39958 pixels left, and we obtain a 

bad result because of excessively ignoring the useful image 

information. Fig. 10(c) shows that the running time stays 

almost stable within the change range less than 0.1s, which 

means that the parameter B has small effects on the running 

time of THFCM.  

In summary, increasing the segmentation accuracy and 

decreasing the algorithm’s running time are two different 

aspects in the task of improving the algorithm performance. 

The experimental results show that we have reduced the 

sensitivity of the modified algorithm THFCM to the 

parameters. That enables the algorithm to further shorten the 

algorithm running under the premise of ensuring the 

segmentation accuracy. 

D. Computational Complexity Analysis 

In the above parameter analysis section, we have analyzed 

the variety of the algorithm running time while the parameter 

P,  L, or B is changing. Except for these parameters, the size 

of the input SAR image is also a decisive factor for 

computational complexity. We assume that the input SAR 

image has D pixels. To show the influence of these 
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parameters on the algorithm running time, we use D, P, L and 

B to represent the computational complexity. The time 

complexity of the thumbnail generating process is O(D). And 

we obtain a thumbnail that has N/P2 pixels. So the time 

complexity of the thumbnail segmenting process is 

O(DNL/P2), where NL is the number of used neighbor pixel 

when the neighborhood level is L. Finally, the time 

complexity of the input SAR image segmenting process is 

O(D). It is intuitive that generating thumbnails can reduce the 

time spent on clustering. 

E. Experimental conditions 

All the experiments were executed in MALAB R2017a 

environment, using a computer with an Intel core i5 

3.30-GHz CPU and 8-GB RAM. In order to show the 

effectiveness of the proposed THFCM, firstly we select two 

simulated SAR images and three real SAR images. For the 

two simulated SAR images, the parameters of THFCM are set 

as follows: The parameter P is 5 for every simulated SAR 

image. And the parameter B is 3 for every simulated SAR 

image. The parameter L is 3 for all the simulated images 

except the two 1-look images: for 1-SI, L=4, for 1-SI2, L=2. 

For the three real SAR images, the parameters of THFCM are 

set as follows: for XIAN, P=5, L=3, B=5; for MARICOPA, 

P=3, L=1, B=3; for NORDLINGER, P=3, L=2, B=7. 

Furthermore, to observe the running time, the max number of 

iteration T is set as 100 for every image. Our experimental 

results confirm that the proposed method generates good 

segmentation results by using these choices of parameters. 

F. Results and analysis on simulated SAR images 

In order to observe the experimental results, we show the 

segmentation result maps of each method and record the 

segmentation accuracy and the running time.  

FCM algorithm and its series of varieties have a problem 

that they are sometimes sensitive to the randomly set initial 

condition. That can make the algorithm converge to the local 

optimum. During our experiments, it is also found that some 

algorithms obtain fluctuant results under different initial 

conditions, especially when segmenting the simulated SAR 

images in lower look. That is because the gap among every 

cluster center is too small. There are some runs in which the 

algorithms obtain a very low segmentation accuracy because 

of a whole region misclassification phenomenon. Therefore, 

except the segmentation accuracy and the running time, we 

also record the number of times that the algorithm obtains 

higher segmentation accuracy as the effective number in the 

20 runs, which is represented by “EN” in the following tables. 

That can reflect whether the algorithm can reduce the 

dependency on the initial conditions. In addition, the 

statistical segmentation accuracy and running time in the 

following results are calculated by the mean value or better 

results of 20 runs. Similarly, we select the representative 

better segmentation result maps of the algorithms in the EN 

runs of  20 as shown in the following figures. 

1) Results and analysis of SI1: The simulated SAR image 

SI1 can be segmented into four classes, corresponding to the 

four different intensity values shown in Table I. The obtained 

segmentation maps of 2-SI1 are shown in Fig. 11(a)-(f).  

      

(a)                                  (b)                                  (c) 

      

(d)                                   (e)                                   (f) 

Fig. 11.  Segmentation result maps of the six algorithms on 2-SI1. 

 (a) THFCM; (b) PHFCM; (c) FKPFCM; (d) NSFCM; (e) ALFCM; (f) 

CKSFCM. 

Fig. 11 shows that each algorithm can segment the image 

into four regions, but all methods have different degrees of 

misclassification phenomenon. The inherent speckle noise of 

SAR image is a typical multiplicative noise, and the brighter 

regions in the image are more affected by that. From our 

experimental results, it can also be seen that each algorithm 

has the misclassification regions mainly in the brighter areas, 

which is represented by yellow. Compared with the other 

comparison algorithms, ALFCM obtains the clearest 

boundaries. However, its misclassification regions also cover 

a large proportion in the segmentation result map (Fig. 11(e)). 

The FKPFCM reduces the discrete misclassified pixels in a 

great degree (Fig. 11(c)). The result maps of NSFCM and 

CKSFCM are not ideal enough at the boundary regions.  

The PHFCM algorithm significantly reduces the number of 

discrete misclassified pixels in the segmentation map. That 

makes the results more homogeneous and improves the 

segmentation accuracy (Fig. 11(b)). However, compared with 

the modified method THFCM, the boundary in the result map 

of PHFCM is not clear enough. In particular, the boundary 

between the yellow and green region produces a patch-level 

mismatch phenomenon. As shown in Fig. 11(a), THFCM 

obtains a result map that is more consistent with the 

boundaries and details because of the modification operation 

of the pixel groups.  

To observe the results more intuitively, Table II compares 

the segmentation accuracy (SA) and the running time (Time) 

of each algorithm. It can be seen that the proposed THFCM 

algorithm not only has the advantages of segmentation 

accuracy, but also reduces the running time of the algorithm. 

That is because the algorithm performs clustering only on the 

thumbnails rather than all the image pixels. And as it is 

illustrated in the parameters analysis section, the modified 

method THFCM is more effective than PHFCM. We can 

increase the pixel patch size P as much as possible to further 
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shorten the running time under the premise of ensuring the 

qualified segmentation accuracy. As shown in Table II, when 

segmenting the image 6-SI1, PHFCM obtains the highest 

segmentation accuracy, but its running time is not very 

ascendant among all the algorithms. That is because we set 

the patch size P=3, which is the smallest available value that 

we can select. The proposed THFCM uses the shortest 

running time on every image, and the segmentation accuracy 

is almost the highest.  

 TABLE II RESULTS ON THE SIMULATED IMAGES OF SI1 

Algorithms 
1 look 2 looks 4 looks 6 looks 

EN SA(%) Time(s) EN SA(%) Time(s) EN SA(%) Time(s) EN SA(%) Time(s) 

CKSFCM 20 65.77 367.26 20 82.37 174.64 20 86.63 99.21 20 89.89 71.87 

NSFCM 20 87.80 25.83 15 92.94 25.86 18 96.66 25.87 16 97.92 25.85 

ALFCM 0 42.43 51.76 20 86.54 33.69 20 94.57 23.05 20 97.79 14.55 

FKPFCM 20 96.47 24.27 20 97.98 26.86 19 98.53 24.43 18 98.60 23.97 

PHFCM 20 97.23 34.02 20 98.42 33.52 20 98.54 33.10 20 98.79 32.92 

THFCM 20 97.43 16.74 20 98.51 8.62 20 98.59 8.56 20 98.67 8.51 
 
Through Table II we can see that when performing the 

ALFCM algorithm on the 1-look images, we always obtain a 

very low segmentation accuracy. So the ALFCM algorithm is 

limited when segmenting the images seriously affected from 

speckle noise. But ALFCM has another advantage that as the 

number of looks increases, the convergence rate of ALFCM 

becomes higher and higher. The CKSFCM algorithm spends 

the longest running time on the segmentation of SI1 because of 

its initialization operation. Moreover, the best result is obtained 

on 6-SI1 of each algorithm comparing that on other three looks. 

So that we can summarize out that the more seriously the image 

is affected by the noise, the disparity among the algorithms’ 

effects.  

In addition, the FCM algorithm and its varieties are 

sometimes sensitive to the random initial conditions. So that the 

segmentation accuracy of some algorithms may fluctuate 

greatly in different runs. For this processed image, FKPFCM 

algorithm has a high segmentation accuracy and the running 

time of it is also superior among the algorithms. But because 

the gap among the intensity value of different cluster centers is 

very small, there are a small number of low accuracy results 

among the 20 operations of FKPFCM. These runs are not 

included in the average operation used to obtain the results in 

Table II. The method NSFCM obtain more fluctuate results 

than FKPFCM, although it can also create good results in most 

efficient runs of the 20. The proposed methods PHFCM and 

THFCM reduces the possibility of this phenomenon and obtain 

more stable segmentation results.  

2) Results and analysis of SI2: Except the above small-scale 

simulated image, we also need to observe the segmentation 

results on a larger image. The size of SI2 is 1000×1000, which 

is much larger than SI1. In addition, we choose five different 

intensity values for five clustering centers in SI2. That also 

makes the differences among every region become smaller. The 

SI2 images are affected by the speckle noise more seriously. 

And the boundaries in SI2 are more complicated, which 

requires greater segmentation performance. We show the 

segmentation result maps on the image 2-SI2 in Fig. 12(a)-(h). 

From Fig. 12 we can see that the yellow region is still the 

easiest misclassified one and all the algorithms have some 

discrete wrong pixels there. Fig. 12(d) shows that the result of 

NSFCM is qualified and the segmentation map is more 

homogeneous than the other comparison algorithms, but the 

boundaries is not clear enough. It can be seen in Fig. 12(b) that 

THFCM can obtain a very homogeneous segmentation result 

map with nearly no discrete misclassified pixels. But in the 

same way as SI1, there are a large quantity of pixels that are 

segmented into the third type at the boundaries of two different 

colors. This is because the algorithm performs averaging 

operation on the pixels belonging to different regions while 

segmenting some of the pixels around boundaries. However, 

the proposed THFCM algorithm adjusts the edge of the pixel 

patches and modifies the pixel patches into pixel groups that are 

more consistent with the image details. So that the THFCM 

algorithm achieves great improvement at the boundary under 

the premise of a certain degree of uniformity (Fig. 12(a)). This 

image has a larger size, and the running time of these six 

algorithms has many differences. Similarly, we give the 

concrete results in Table III. 

        

(a)                                  (b)                                   (c) 

       

(d)                                   (e)                                   (f) 

Fig. 12.  Segmentation result maps of the six algorithms on 2-SI2: (a) THFCM; 

(b) PHFCM; (c) FKPFCM; (d) NSFCM; (e) ALFCM; (f) CKSFCM.  

Table III shows that although the images are more complex, 

the segmentation accuracy of each algorithm has improved 

compared with the previous SI1. This is because the image size 

becomes larger, the number of pixels in the homogeneous area 

increases more greatly than that of boundary area, so that the 

segmentation accuracy values increase. However, these 

indicators can still reflect the segmentation effects of different 

algorithms on the same image. We can see that when 

segmenting 1-SI2, both the CKSFCM and ALFCM obtain a 

low segmentation accuracy. The result map of CKSFCM 

algorithm has many discrete misclassification pixels so that 
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result is not very good, while the result of ALFCM is even 

worse because there is a whole region being wrongly 

segmented. In addition, although the PHFCM algorithm obtains 

nearly the most homogeneous segmentation result map, it also 

has the whole region misclassification phenomenon when 

segmenting 1-SI2, the THFCM algorithm more effectively 

avoids this situation from occurring.  

TABLE III RESULTS ON THE SIMULATED SAR IMAGES OF SI2 

Algorithms 
1 look 2 looks 4 looks 6 looks 

EN SA(%) Time(s) EN SA(%) Time(s) EN SA(%) Time(s) EN SA(%) Time(s) 

CKSFCM 20 69.58 3210.54 20 81.67 3044.16 20 88.04 1934.51 20 91.34 1581.54 

NSFCM 20 92.77 1016.17 20 95.63 1009.27 20 96.38 1011.72 20 96.77 1011.94 

ALFCM 0 67.10 8241.84 20 81.68 2065.32 20 92.37 978.43 20 92.46 533.26 

FKPFCM 20 96.59 839.31 17 97.44 856.80 19 97.99 861.36 15 98.18 926.52 

PHFCM 11 96.01 474.64 20 97.72 470.71 20 98.03 469.11 20 98.12 467.57 

THFCM 20 97.08 161.18 20 97.92 153.02 20 98.25 152.80 20 98.38 153.01 
 
In summary, the above experimental results prove that the 

proposed PHFCM and THFCM algorithms obtain the best 

segmentation results in terms of segmentation accuracy, 

running time, and algorithm stability for the simulated SAR 

images selected in this paper.  

G. Results and analysis on real SAR images 

The performance of the algorithms needs to be tested in 

practice. We apply the proposed algorithms and a series of 

comparison algorithms to the real SAR images illustrated in the 

previous section A. In order to visually observe the 

segmentation performance of each algorithm, we show the 

segmentation result map of each algorithm separately for 

comparison and analysis. Then at the end of this section, we list 

the segmentation accuracy and the running time for each 

method in one table. According to the land types of every real 

SAR image, the cluster numbers in the proposed methods for 

the three images named XIAN, MARICOPA and 

NORDLINGER are separately set as 4. 

1) Results and analysis of XIAN: The first real SAR image is 

named XIAN as shown in Fig. 13(a). It has four different 

regions, which are respectively marked by four different colors 

named yellow, red, blue, and green in the ground truth map 

(Fig. 13(b)). In addition, the segmentation result maps of the 

proposed THFCM algorithm and the five comparison 

algorithms are respectively presented in Fig. 13(c)-(h). 

As shown in Fig. 13(a)-(h), the yellow region in the image 

XIAN is easier to be misclassified than any other regions in 

different colors. The algorithm FKPFCM only mark a small 

part of yellow region pixels (Fig. 13(e)), while the comparison 

algorithm NSFCM wrongly segment many pixels that are 

supposed to be marked in blue into the yellow region (Fig. 

13(f)). The obtained position of each region through the 

algorithm ALFCM and CKSFCM is roughly accurate, but there 

are still too many discrete misclassified pixels that are wrongly 

segmented, which makes the segmentation result maps of these 

algorithm not homogeneous and accurate enough (Fig. 

13(g)-(h)). Fig. 13(d) shows that the PHFCM algorithm obtains 

a more accurate segmentation result map compared to the other 

comparison algorithms, but there are still some unfaithful 

squared boundaries in it. This is because it uses regular square 

pixel patches for clustering, which reduces the information of 

the boundary areas by the averaging operation. Then as shown 

in Fig. 13(c), the proposed THFCM algorithm reduces the 

appearance of gridding edges through generating pixel groups 

with similar sizes and makes the segmentation map more 

consistent to the ground truth map of XIAN. 

    

(a)                                   (b) 

         

(c)                                    (d)                                   (e)  

       

(f)                                     (g)                                  (h) 

Fig. 13.  Segmentation result maps of the six algorithms on XIAN: (a) XIAN;  

(b) Ground truth map of XIAN; (c) THFCM; (d) PHFCM; (e) FKPFCM; (f) 

NSFCM; (g) ALFCM; (h) CKSFCM. 

2) Results and analysis of MARICOPA: Then we show the 

results that we use the six algorithms to segment the second real 

SAR image called MARICOPA, which has four different 

regions marked by red, blue, green and yellow. Fig. 14(a) and 

Fig. 14(b) separately shows the image MARICOPA and its 

ground truth map. And we use Fig. 14(c)-(h) to show the 

segmentation result maps of the proposed methods and the 

comparison algorithms in a certain order. 

The different regions of MARICOPA images are easy to be 

confused. As shown in Fig. 14(g) and Fig. 14(h), the ALFCM 

algorithm and CKSFCM algorithm cannot basically obtain a 

clear and homogeneous yellow area. The green regions actually 

take a small proportion in the ground truth map. But many of 

the comparison algorithms obtain more green pixels in the other 

regions. In addition, all the methods fail to segment out the blue 

region completely, which can contain some linear structures in 

the image.  

As shown in Fig. 14(c)-(d), although there are also some 

misclassified discrete pixels in our results, the four regions are 
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still clearly distinguished from each other by PHFCM and 

THFCM. Comparing the two algorithms, the PHFCM 

algorithm obtain more clear blue details which can be some 

linear structures, but the result map of THFCM is more 

homogeneous than that of PHFCM.  

     

(a)                                  (b)                                                            

        

 (c)                                   (d)                                  (e)                                                    

       

(f)                                   (g)                                  (h) 

Fig. 14.  Segmentation result maps of the six algorithms on MARICOPA:  (a) 

MARICOPA; (b) Ground truth map of MARICOPA; (c) THFCM;  

(d) PHFCM; (e) FKPFCM; (f) NSFCM; (g) ALFCM; (h) CKSFCM.  

3) Results and analysis of NORDLINGER: Next we use the 

third real SAR image called NORDLINGER to show the 

performance of the two proposed methods and the four 

comparison algorithms. As illustrated in Fig. 15(a) and Fig. 15 

(b), the image NORDLINGER has four different regions, 

colored in yellow, blue, green and red. Similar with the 

previous sections, we show the segmentation result maps of the 

six algorithms in Fig. 15(c)-(h). 

As shown in Fig. 15(e)-(h), the algorithm FKPFCM obtains 

the most homogeneous segmentation map among the 

comparison algorithms, but it fails to segment out a part of the 

green region, which contains some very thin lines. At this 

respect, the green region in the result of NSFCM is more 

complete, but it has too many discrete misclassified areas and 

the yellow region is not clear enough (Fig. 15(f)). As shown in 

Fig. 15(g)-(h), the algorithms ALFCM and CKSFCM are more 

seriously affected by this phenomenon so that they can hardly 

obtain a homogeneous blue region.  

Comparing the proposed two methods, the THFCM segment 

out the green region more completely. And the segmentation 

result maps obtained by them are more accurate and 

homogeneous than other comparison algorithms. 

      

(a)                                    (b)                                                  

       

 (c)                                   (d)                                   (e) 

       

 (f)                                 (g)                                  (h) 

Fig. 15.  Segmentation result maps of the six algorithms on NORDLINGER: (a) 

NORDLINGER; (b) Ground truth map of NORDLINGER; (c) THFCM;  

(d) PHFCM; (e) FKPFCM; (f) NSFCM; (g) ALFCM; (h) CKSFCM.  

4) Statistical results and analysis: To observe and analyze 

the performance more intuitively, we give the specific results 

containing the segmentation accuracy (SA) and algorithm 

running time (Time) in Table IV.  

TABLE IV RESULTS ON THE REAL SAR IMAGES 

Algorithms 
XIAN MARICOPA NORDLINGER 

SA(%) Time(s) SA(%) Time(s) SA(%) Time(s) 

CKSFCM 71.57 263.65 54.52 435.48 64.81 702.64 

NSFCM 65.43 34.06 64.87 54.90 79.73 90.36 

ALFCM 74.49 56.25 58.50 113.22 67.04 271.13 

FKPFCM 73.73 25.54 68.80 50.68 77.75 92.05 

PHFCM 75,93 30.62 72.52 57.58 80.05 93.03 

THFCM 78.52 9.16 72.66 40.16 83.98 70.04 
 
Table IV shows the segmentation accuracy of the four real 

SAR images and the algorithm running time of the proposed 

algorithm and the comparison algorithms separately. We can 

see that as the same as the simulated image segmentation 

results, the algorithm CKSFCM takes the longest time because 

it uses an immune clone algorithm to initialize the cluster 

centers. FKPFCM has a certain degree of superiority in both 

segmentation accuracy and running time. The algorithm 

FKPFCM proposes an idea of selecting key pixels and 

combines the non-local information to cluster them, which 

spends shorter time on clustering operation. In addition, it 
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ignores some pixels when clustering, which makes the 

segmentation result map more homogeneous. 

Both the proposed PHFCM and THFCM have a dominant 

performance on three real SAR images. The segmentation 

accuracy of these two is almost the highest among the six 

algorithms. But the THFCM has more impressive superiority in 

terms of algorithm running time. The thumbnails obtained by 

the two algorithms are both smaller than the original images by 

several times, which can be determined by the parameter P. The 

algorithm THFCM can further shorten the running time 

because it modifies the pixel patches into pixel groups which 

are more consistent to the boundaries in the original images. 

Moreover, the robustness of the proposed method needs to be 

tested by executing several times. We run the THFCM for 100 

times on every real SAR image. And the best, mean, worst and 

variance values of the segmentation accuracy (SA) and 

algorithm running time (Time) are shown in Table V. 

TABLE V ROBUSTNESS ANALYSIS ON THE REAL SAR IMAGES 

Images 
SA(%) Time(s) 

best mean worst variance best mean worst variance 

XIAN 78.56 78.52 78.48 4.23e-08 9.21 9.26 9.32 6.32e-04 

MARICOPA 72.77 72.68 72.52 4.52e-07 39.18 39.57 39.86 0.01 

NORDLINGER 84.23 84.04 83.89 1.69e-06 67.91 68.39 70.40 0.27 
 
Table V shows that during the 100 runs, the segmentation 

accuracy and running time have very small fluctuations. The 

gap are small between the best and worst values and the 

variance values are very small. That means that the proposed 

THFCM has a stable performance with different values of the 

random initial solutions for the algorithm. 

H. Comparison with semi supervised deep learning algorithm 

SRDNN-MD on XIAN dataset 

There are many deep learning methods have achieved a great 

success in image segmentation. These methods, however, are 

supervised or semi supervised. The proposed algorithm is 

unsupervised. In order to prove the performance of our 

algorithm, we compared it with semi supervised deep learning 

algorithm SRDNN-MD in [51] on XIAN dataset. The result 

map of the proposed THFCM and the compared method is 

shown in Fig. 16(a) and Fig. 16(b) respectively.  

          
(a)                                                        (b)  

 Fig. 16.  Segmentation result maps of the two algorithms on XIAN: 

 (a)THFCM; (b) SRDNN-MD.  

It can be seen from the result map that THFCM and 

SRDNN-MD have obtained the similar result. Both of them can 

segment the edge well and retain the homogeneity of each 

region. Compared with the middle part of the two figures, there 

are less noise in Fig. 16(b), however, the performance of edge 

segmentation of SRDNN-MD is almost the same as THFCM. 

The detailed results are shown in Table VI. 

TABLE VI RESULTS ON THE REAL SAR IMAGES 

Dataset 
THFCM SRDNN-MD 

SA(%) Time(s) SA(%) Time(s) 

XIAN 78.52 9.16 79.61 549.07 

As indicated in Table VI, the segmentation accuracy of 

SRDNN-MD is 79.61%, which is 1 percentage point higher 

than that of our algorithm 78.52%, but the time-consuming of 

this algorithm 549.07 is much higher than that of our algorithm 

9.16. This prove the contribution of our methods that thumbnail 

is introduced as the basis of preliminary segmentation, thus, the 

proposed algorithm can maintain a comparable segmentation 

accuracy while improving segmentation efficiency. 

In summary, compared with the simulated SAR images, the 

real SAR images can more accurately reflect the effectiveness 

of different segmentation algorithms because of their broader 

extent and more complex land types. And for different number 

of looks dataset, increasing the number of looks benefits SAR 

image segmentation accuracy. However, it can be known from 

the result map of XIAN and NORDLINGER in Fig. 13 and Fig. 

15, for different input data, the regular degree of edge also has a 

great influence on segmentation results. The results show that 

reduce the influence of speckle phenomenon during the 

segmentation process can improve the efficiency of solving the 

problem. The above experiments and results show that the 

proposed THFCM algorithm have a certain degree of 

superiority in terms of both the segmentation accuracy and the 

algorithm running time. 

I. Simulation results on ground truth with speckle noise 

In order to provide a fair test for all algorithms, the speckle 

noise with the statistical model of Gaussian distribution is 

added to the ground truth of 1 look simulated SAR dataset 

1-SI1. Fig. 17 (a) and (b) show the ground truth and the added 

speckle noise with the mean and variance are 0 and 0.01 of 

1-SI1 respectively.  

       
(a)                                                  (b) 

Fig. 17. Ground truth of Simulated SAR images 1-SI1. (a) Ground 

truth; (b) Ground truth with speckle noise. 
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The test results of the proposed method and the compared 

algorithms on the ground truth with speckle noise are listed in 

table VII. 

TABLE VII RESULTS OF 1-SI1 ON THE GROUND TRUTH WITH SPECKLE NOISE  
Algorithms CKSFCM NSFCM ALFCM FKPFCM PHFCM THFCM 

SA(%) 69.81 62.57 72.93 70.47 73.06 75.77 

The segmentation results of the algorithms on ground truth 

with speckle noise in Table VII is lower than those shown in 

Table II. The proposed THFCM and the compared NSFCM, 

FKPFCM and PHFCM are around 3% lower than what there 

are on the ground truth without speckle noise. The larger 

reduction arose on the algorithms with homogeneous 

segmentation result, such as THFCM and PHFCM. The 

segmentation result with many coarse region is less affected by 

the speckle noise, such as CKSFCM and ALFCM. The 

segmentation accuracy of these two algorithms are around 

1.5% lower than the result show in Table II. But the best 

segmentation accuracy among these methods is obtained by the 

proposed algorithm THFCM. This result indicates the 

robustness of the proposed algorithm. 

J. Simulation results on single look dataset 

In this section, we perform the critical case experiment on 

single look dataset to show the performance of the proposed 

THFCM on challenge situation. The single look dataset is 

employed in this paper shown in Fig. 18. There are four 

different regions, which are respectively marked by four 

different colors named red, blue, green and yellow in the result 

map of the proposed and compared algorithms. The size of this 

image is 512 * 512 and the resolution is 0.5 meter. As the single 

look dataset, there are also many irregular regions compared 

with the former real SAT images. Thus, this dataset can reflect 

the performance of algorithms more objectively. 

 
Fig. 18 Sing look SAR image. 

 The parameters of THFCM P, B and L are set as 3, 5 and 3 

respectively. The segmentation result of the proposed THFCM 

under the choice of parameters and the compared algorithms 

while the parameters set same as they are in the corresponding 

reference shown in Fig. 19.  

It can be seen from Fig. 19 that each algorithm has the 

miss-segmentation regions, which mainly appear in the brighter 

regions in Fig. 18 for the speckle noise. Compared with other 

algorithms, PHFCM performs the more accurate segmentation 

result map. But many information on the boundary is missed for 

it uses regular square pixel patches for clustering. For NSFCM 

and ALFCM, a large number pixels are miss-segmentation 

among each class region. This phenomenon, however, can be 

found more usual in Fig. 19 (f) for there are many speckle noise 

compared with multi look datasets. As for the proposed 

THFCM, the results show that the algorithm is better than the 

compared algorithms in the discrimination between classes and 

homogenization in each class. 

      
(a)                                                     (b) 

       
(c)                                                   (d) 

         
(e)                                                     (f) 

Fig. 19. Segmentation result maps of the six algorithms on single look dataset. 

(a) THFCM; (b) PHFCM; (c) FKPFCM; (d) NSFCM; (e) ALFCM; (f) 

CKSFCM. 

IV. CONCLUSION 

In this paper, an unsupervised thumbnail-based hierarchical 

fuzzy clustering method THFCM has been proposed for SAR 

image segmentation. The method constructs thumbnails for the 

input SAR image by using the major pixels in pixel groups, and 

using the thumbnails’ clustering results to hierarchically 

segment the input SAR image. The process of generating and 

clustering thumbnails is capable of incorporating a combination 

of both local and non-local information in the image. This 

combination of data reduces the adverse influence of speckle 

noise on the segmentation result. It also reduces the 

computational time spent on the clustering operation and 

greatly improves the segmentation efficiency. We have 

performed experiments on three simulated SAR images, with 

different numbers of looks, and four real SAR images, 

comparing the performance of THFCM against five 

state-of-the-art algorithms. The experiments show that our 

proposed method has observable superiority in terms of 

running time and segmentation accuracy.  

In future work, the ideas of this paper can be combined with 

other algorithms and used in other images. Some possible 
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extensions include the following. 1) By extracting effective 

semantic features using a variety of possible methods, each 

pixel could be represented by a feature vector. An interesting 

extension of this work, would be to segment the image using 

the method proposed in this paper, while changing the 

clustering element into a vector, rather than a scalar pixel 

intensity value. 2) By judging the complexity of the region to 

which every pixel belongs, the image can be divided into 

homogeneous and non-homogeneous regions in advance. Then 

we can segment these different regions separately. At this time, 

the ideas of the pixel groups and thumbnails can also be used to 

improve the segmentation efficiency. 
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