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Distributed Filtering for a Class of Discrete-time
Systems Over Wireless Sensor Networks

Tao Wen, Chuanbo Wen, Clive Roberts and Baigen Cai

Abstract—This paper addresses the distributed filter
design problem for a class of dynamic systems over
wireless sensor networks. The missing measurements and
the correlation among state noises and measurement noises
are considered, where a set of mutually uncorrelated
random variables is employed to describe the missing
phenomena. Firstly, the construction of the designed filter
is proposed and the prediction of the state at each node
is given. Then, the filtering error covariance is presented
and the filter parameters are determined to minimize the
trace of such a covariance, where the network topology
data are used to simplified the singular matrix. Subse-
quently, the relationship between the filter performance
and missing probability of the measurement is discussed.
Finally, a numerical simulation is presented to illustrate
the effectiveness and capability of the proposed distributed
filters.

Index Terms—Distributed filters; wireless sensor net-
work; missing measurements; state estimation

I. INTRODUCTION

Over the past decades, filter design problems over
wireless sensor networks (WSNs) have drawn particular
research attention because of their wide-scope applica-
tions in many aspects such as multiple autonomous robot,
objective tracking, air pollution detection integrated pa-
tient monitoring and so on [1]–[5]. Generally, a WSN
contains a large number of intelligent sensing nodes.
These nodes are distributed over a certain geographic
area and have the capability of measuring the targets,
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processing received data, and sending information to
their neighbors [6]–[8]. A fundamental issue over WSNs
is the distributed filter design, where each node shares
the local data over the network to help its neighbors
complete the tasks. The key for the distributed filter
design with a high precision is how to make rational
use of the measurement information from each node in
a cooperative manner.

For the distributed filtering problems, early work
mainly focus on filter design for the network without
information communication among nodes. To be specific,
in [12], with the assumption that the system state satisfies
Gaussian distribution, the optimal distributed filter de-
sign has been developed, which is furtherly indicated to
be equal to the traditional least square estimate algorith-
m. In [13], by using the scalar weighting fusion structure,
a distributed optimal fixed-lag Kalman smoother has
been proposed for a class of discrete-time systems. The
optimal sequential fusion problem with correlated mea-
surement noises issue has been investigated in [9], where
a successive orthogonalization of the correlated noises is
performed. Furthermore, the work [14] has considered
the weight design problem for the system with unknown
noises statistics, where several different fusion schemes
have been proposed by using the upper bounds of both
the system noise variances and measurement noise vari-
ances. It should be pointed out that the aforementioned
distributed filter design approaches were presented under
the condition that each local estimate is calculated only
based on its own measurements, not considering the
helpful information from its neighbours [16]–[18]. Thus,
these algorithms are not applicable directly to the state
estimation problem over the WSNs. This is because each
node in a WSN can communicate with its neighbors and
obtain the estimate of the state by using the data not only
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from itself but also from other nodes in the light of the
topology of networks.

In the WSNs environment, by assuming the directed
graph representing the network topology is strongly
connected, a consist distributed state estimator for the
systems with global observability has been develope-
d in [19]. In [22], a distributed Kalman filter over
WSNs has been proposed without requiring directed
graph being strongly connected. In such an algorithm,
each node receives measurements from its neighbors.
Different from [22], a different distributed filter has been
constructed in [7] by communicating the innovation data
between neighbors. The filter construction makes it being
able to use the information from all the nodes directly
or indirectly. By using a set of matrix inequalities, a
distributed set-membership filtering method has been
proposed for the systems with event-based communi-
cation mechanism in [23], [24]. Following [10], [11],
the recursive distributed estimators for a class of state-
saturated systems have been proposed over the WSNs.
Their limitation is that only the upper bounds of the
estimation error covariances are guaranteed, which limits
their applications. In [25], for the WSNs systems with
sensor gain degradation, solving a set of Riccati-like
matrix equations, the exact expressions of the estimation
error covariances has been given and the distributed
minimum-variance filter has been designed, where the
boundedness and monotonicity of the estimation error
covariance has been also discussed. However, the filter
gain, though flexible, is not accurate since the pseudo-
inverse used in the computation process. Furthermore,
the disturbances of the system model and measurements
of each node under consideration are assumed to be un-
correlated with each other, which is not always satisfied
in practical applications. The above discussion stimulates
the main motivation for the work in this paper.

On the other hand, the filter performance is often af-
fected by fading or missing phenomenon of the measure-
ments. In fact, these phenomena are usually inevitable
for a great deal of reasons, such as unreliable commu-
nication channels, power failures and potential sensor
failures. Generally speaking, the fading phenomenon and
missing phenomenon are often described by uniform

distributed variables and Bernoulli distributed variables,
respectively. To obtain accurate estimation of the state,
when designing a filter to handle the observed targets,
it is necessary to consider the influence from this in-
complete information. The distributed filtering method
for the system subject to fading measurements has been
presented in [25], where the relationship between fading
probability and filter performance also has been ana-
lyzed. Recently, the filter design problems for the sys-
tems with such phenomena have been investigated and a
great deal of research results has been reported [19], [21].
Note that above works concern with dealing with the
missing phenomenon and designing the corresponding
distributed filter, but they do not consider neither the
noises correlation among noises nor discussing how
the missing probability affects the filter performance.
Therefore, there is an essential need to investigate the
distributed filter design problem for the system over
WSNs subject to correlated noises and missing measure-
ments.

Summarizing the above discussion, it can be conclud-
ed that the distributed filter design problems over WSNs
have obtained a few initial results. When it comes to dis-
tributed filter design for the systems subject to correlated
noises, despite their practical significance, the available
results have been scattered. Note that such perturbations
add substantial difficulties to the filter design and per-
formance analysis such as the computation of estimation
error covariance, not to mention the challenges offered
from the missing measurements. As such, we intend to
present the distributed filters over WSNs for a class of
discrete-time systems with correlated noises and missing
measurements. The main contributions of the article are
summarized as follows: 1) the distributed filter for the
system that covers the missing measurements, random
parameter matrices and the correlated noises is con-
structed over the WSNs; 2)the exact expression of the
estimation error covariance is obtained, where a new
matrix simplification method is employed to overcome
the difficulties coming from the connection situation of
the WSN nodes; and 3) the monotonicity of the arrival
probability of the measurements and the precision of the
designed distributed filter is studied.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider the following discrete time-varying system
(target plant):

xk+1 = Akxk +

M∑

l=1

ξl,kGl,kxk + Γkwk (1)

where xk ∈ Rn is the system state to be estimated,
ξl,k ∈ R (l = 1, 2, · · · ,M ) is the multiplicative noise
with zero mean and variance Ξl,k, and wk ∈ Rp is
the system noise. Ak, Gl,k and Γk are known system
matrices of appropriate dimensions. The initial values of
xk are E{x0} = µ0 and E{(x0 − µ0)(x0 − µ0)

T = P0.
To observe the target, a WSN is used to measure the

system, whose directed topology information is repre-
sented by a graph G = (V, E , A) of order N with the set
of nodes V = {1, 2, · · · , N}, set of edges E ⊆ V×V , and
a weighted adjacency matrix A = [aij ] with nonnegative
adjacency elements aij . The pair (i, j) stands for an
edge of G. The adjacency elements associated with the
edges of the graph are nonnegative. When aij > 0,
it means that node i can receive data from node j.
Furthermore, aii (i ∈ V) is assumed to be 1. The set of
neighbors of node i plus the node itself are represented
by Ni = {j ∈ V : aij > 0}. For the ith (i = 1, 2, · · · , N )
node, the output of the sensor is modeled by:

zi,k = λi,kCi,kxk + vi,k (2)

where zi,k ∈ Rmi is the measurement of sensor i,
random variable λi,k taking values of 0 and 1 describes
the missing phenomenon of the measurement, and vi,k

is the measurement noise. Ci,k is a known matrix of
appropriate dimension.

The following assumptions are made in this paper.
Assumption 1: wk and vi,k are correlated Gaussian

noises with E{wk} = 0, E{vi,k} = 0 and

E

{[
wk

vi,k

]
[
wT

t vT
j,t

]
}

=

[
Qk, Sj,k

ST
i,k, Rij,k

]
δkt. (3)

Assumption 2: ξl,k and λi,k are independent of each
other and of other random variables. The mean and
variance of λi,k are λ̄i,k and λ̄i,k(1 − λ̄i,k), respectively.

Assumption 3: The initial value x0 is uncorrelated
with wk, vi,k and λi,k.

Let x̂i,k|k−1 and x̂i,k|k to be the prediction and the
estimate of xk at i-th sensor node, respectively. Next,
we are aim to design the following distributed filter:

x̂i,k|k−1 = Ak−1x̂i,k−1|k−1 + Γk−1ŵi,k−1|k−1, (4)

x̂i,k|k = x̂i,k|k−1 +
∑

j∈Ni

aijKij,krj,k (5)

where ŵi,k−1|k−1 is the estimation of wk−1 at the ith
node, rj,k = zj,k − λ̄j,kCj,kx̂j,k|k−1 is the innovation of
node j and Kij,k is the filter gain to be designed. The
initial values of x̂i,k|k is x̂i,0|0 = µ0 and Pi,0|0 = P0 for
each node.

Remark 1: From the construction of the above filter,
it can be seen that x̂j,k|k−1 (j ∈ Ni) is employed to
update x̂i,k|k−1 and obtain x̂i,k|k. Note that x̂j,k|k−1 is
calculated by using the measurements of node j and its
neighbors, which may not connect with node i. It implies
that, at each node, the estimate x̂i,k|k is obtained by using
the information not only from itself and its neighbors,
but also from the nodes that cannot connect with it.
Compared with the traditional filter, the new designed
filter indirectly employs more adequate information, and
thus it may result better estimation results.

B. Preliminaries

For node i, estimate x̂i,k|k is calculated by using its
own measurement and the data sent from its neighbors.
These measurements will be employed in section III to
derive the estimation error of the filter, and the compact
form of corresponding measurement equation can be
written as

z̄i,k = θi,kČi,kxk + v̄i,k (6)

where

z̄i,k = colNi
{zj,k}, Či,k = colNi

{Cj,k},

v̄i,k = colNi
{vj,k}, θi,k = diag{λj,kI},

j ∈ Ni (7)

Furthermore, with Assumptions 1 and 2, it can be known
that v̄i,k (i = 1, 2, · · · , N ) is a random vector with zero-
mean and covariance R̄ij,k = E

{
v̄i,kv̄

T
j,k

}
= [Rtl,k],

t ∈ Ni, l ∈ Nj , and θi,k is a random vector with mean
θ̄i,k = diag

{
λ̄j,kI

}
and covariance Θ̌i,k = θ̄i,k(I− θ̄i,k).
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Before establishing the main results, we would like
to present some lemmas, which will be used in the
following sections.

Lemma 1: [15] Let R = [rij ]p×q be a real-valued
matrix and M = diag{m1,m2, · · · ,mp} and N =

diag{n1, n2, · · · , nq} be a diagonal random matrix.
Then

E{MRN} =


E{m1n1} E{m1n2} · · · E{m1nq}
E{m2n1} E{m2n2} · · · E{m2nq}

...
...

. . .
...

E{mpn1} E{mpn2} · · · E{mpnq}




◦ R

where ◦ is the Hadamard product.
Lemma 2: [7] For matrices A, Z, E and L of

appropriate dimensions, the following equalities hold:

∂

∂Z
tr(AZT ) = A,

∂

∂Z
tr(AZT E) = EA,

∂

∂Z
tr(AZEZT L) = F T LT ZET + LAZE,

∂

∂Z
tr(AZE) = AT ET ,

∂

∂Z
tr(ZA) = AT (8)

III. DISTRIBUTED FILTER DESIGN

The distributed filter is composed of the prediction
(4) and update (5). In this section, the prediction (4)
and the prediction error covariance are firstly presented.
Subsequently, a new extended form of the error model
for the whole sensor network is constructed and the
corresponding estimation error covariance is constructed.
Moreover, the filter gain Kij,k is designed to minimize
such a covariance.

In order to derive the prediction error covariance
and estimation error covariance, we first give the state
second-order moment matrix. Denote the second-order
moment matrix of xk as Xk = E

{
xkx

T
k

}
, it follows

from (1) and Assumption 3 that

Xk+1 = AkXkA
T
k +

M∑

l=1

Ξl,kGl,kXkG
T
l,k + ΓkQkΓ

T
k ,

(9)
where the initial value X0 = µ0µ

T
0 + P0.

The calculation of prediction x̂i,k|k−1 and the cor-
responding prediction covariance is summarized as the
following Theorem.

Theorem 1: For system (1)-(2) and the one step pre-
dictor (4), for the ith sensor, the prediction x̂i,k|k−1 is
computed by

x̂i,k|k−1 = Ak−1x̂i,k−1|k−1 + Γk−1Hi,k−1z̄i,k−1 (10)

where

Hi,k−1 = S̄i,k−1

(
Θ̌i,k−1 ◦

(
Či,k−1Xk−1Č

T
i,k−1

)

+R̄ii,k−1

)−1
,

S̄i,k−1 = colN [Sj,k−1], j ∈ Ni. (11)

Denote x̃i,k|k−1 = xk − x̂i,k|k−1. The corresponding pre-
diction error covariance Pii,k|k−1 and cross-covariance
Pij,k|k−1 are

Pii,k|k−1 = E
{

x̃i,k|k−1x̃
T
i,k|k−1

}

= Ak−1Pii,k−1|k−1A
T
k−1

+Γk−1

[
Qk−1 − Hi,k−1S̄

T
i,k−1

]
ΓT

k−1

+

M∑

l=1

Ξl,k−1Gl,k−1Xk−1G
T
l,k−1, (12)

and

Pij,k|k−1 = E
{

x̃i,k|k−1x̃
T
j,k|k−1

}

= Ak−1Pij,k−1|k−1A
T
k−1 +

M∑

l=1

Ξl,k−1Gl,k−1Xk−1

×GT
l,k−1 + Γk−1

(
Qk−1 − Hi,k−1S̄

T
i,k−1 − S̄j,k−1

×HT
j,k−1 + Hi,k−1

[
Θ̌ij,k−1 ◦

(
Či,k−1Xk−1Č

T
j,k−1

)

+R̄ij,k−1

]
HT

j,k−1

)
ΓT

k−1, (13)

respectively, where Θ̌ij,k−1 = E
{

θi,k−1θ
T
j,k−1

}
can be

computed according to the statistical properties of θi,k−1

(i = 1, 2, · · · , N ) and the topology structure of the
WSNs.

Proof: It can be seen from (4) that x̂i,k|k−1 will
be obtained if ŵi,k−1|k−1 is known. Since wk−1 is
correlated with vi,k−1, i = 1, 2, · · · , N , it is correlated
with zi,k−1. For node i, we can calculate ŵi,k−1|k−1 by
using measurements z̄i,k−1 described in (6). It follows
from the projection theory that

ŵi,k−1|k−1 = E {wk−1|z̄i,k−1}
= Hi,k−1z̄i,k−1 (14)

where Hi,k−1 is the gain to be calculated.
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It is clear that w̃i,k−1|k−1⊥z̄i,k−1, namely,

E
{
w̃i,k−1|k−1z̄

T
i,k−1

}
= 0 (15)

Inserting (14) into (15), Hi,k−1 can be expressed as

Hi,k−1 = E
{
wi,k−1z̄

T
i,k−1

}
E−1

{
z̄i,k−1z̄

T
i,k−1

}

= S̄i,k−1E−1
{
z̄i,k−1z̄

T
i,k−1

}
(16)

It follows from Lemma 1 that

E
{
z̄i,k−1z̄

T
i,k−1

}

= E
{
(θi,k−1Či,k−1xk−1 + v̄i,k−1)

× (θi,k−1Či,k−1xk−1 + v̄i,k−1)
T
}

= Θ̌i,k−1 ◦
(
Či,k−1Xk−1Č

T
i,k−1

)
+ R̄ii,k−1 (17)

Combining (16) with (17), we have

Hi,k−1 = S̄i,k−1

(
Θ̌i,k−1 ◦

(
Či,k−1Xk−1Č

T
i,k−1

)

+R̄ii,k−1

)−1 (18)

Inserting (18) and (14) into (4), we have (10).
Denote w̃i,k−1|k−1 = wk − ŵi,k−1|k−1 (i =

1, 2, · · · , N ). It follows from (1) and (4) that

x̃i,k|k−1 = Ak−1x̃i,k−1|k−1 +

M∑

l=1

ξl,k−1Gl,k−1xk−1

+Γk−1w̃i,k−1|k−1 (19)

and the corresponding error covariance and cross-
covariance are

Pii,k|k−1 = E
{

x̃i,k|k−1x̃
T
i,k|k−1

}

= Ak−1Pii,k−1|k−1A
T
k−1 +

M∑

j=1

Ξl,k−1Gl,k−1Xk−1

×GT
l,k−1 + Γk−1E

{
w̃i,k−1|k−1w̃

T
i,k−1|k−1

}
ΓT

k−1

= Ak−1Pi,k−1|k−1A
T
k−1

+Γk−1

[
Qk−1 − Hi,k−1S̄

T
i,k−1

]
ΓT

k−1

+

M∑

l=1

Ξl,k−1Gl,k−1Xk−1G
T
l,k−1 (20)

and

Pij,k|k−1 = E
{

x̃i,k|k−1x̃
T
j,k|k−1

}

= Ak−1Pij,k−1|k−1A
T
k−1 +

M∑

l=1

Ξl,k−1Gl,k−1Xk−1

×GT
l,k−1 + Γk−1E

{
w̃i,k−1|k−1w̃

T
j,k−1|k−1

}
ΓT

k−1

= Ak−1Pij,k−1|k−1A
T
k−1 +

M∑

l=1

Ξl,k−1Gl,k−1Xk−1

×GT
l,k−1 + Γk−1

(
Qk−1 − Hi,k−1S̄

T
i,k−1 − S̄j,k−1

×HT
j,k−1 + Hi,k−1

[
Θ̌ij,k−1 ◦

(
Či,k−1Xk−1Č

T
j,k−1

)

+R̄ij,k−1

]
HT

j,k−1

)
ΓT

k−1, (21)

respectively. The proof is complete.
Based on x̂i,k|k−1, we are now in a position to calcu-

late x̂i,k|k by employing measurements from itself and
its neighbors. Considering the missing phenomena and
using Assumption 2, (2) can be rewritten as

zi,k = λ̄i,kCi,kxk + (λi,k − λ̄i,k)Ci,kxk + vi,k,

i = 1, 2, · · · , N. (22)

Denote x̃i,k|k = xk − x̂i,k|k (i = 1, 2, · · · , N ). It follows
from (1) and (5) that

x̃i,k|k

= x̃i,k|k−1 −
∑

j∈Ni

aijKij,k(zj,k − λ̄j,kCj,kx̂j,k|k−1)

= x̃i,k|k−1 −
∑

j∈Ni

aijKij,kλ̄j,kCj,kx̃j,k|k−1

−
∑

j∈Ni

aijKij,k(λj,k − λ̄j,k)Cj,kxk

−
∑

j∈Ni

aijKij,kvj,k (23)

To facilitate the later research, (23) can be rewritten
in a compact form for the whole sensor network.

x̃k|k = x̃k|k−1 −
N∑

i=1

EiKkFiΛ̄kC̃kx̃k|k−1 −
N∑

i=1

Ei

×KkFiΛ̃kC̄kxk −
N∑

i=1

EiKkFivk, (24)

where

x̃k|k = colN{x̃i,k|k}, x̃k|k−1 = colN{x̃i,k|k−1},

vk = colN{vi,k}, Ei = diag{0, · · · , 0︸ ︷︷ ︸
i−1

, I, 0, · · · , 0︸ ︷︷ ︸
N−i

},

Fi = diag {ai1I, · · · , aiNI} , C̄k = colN {Ci,k} ,

Λ̄k = diag
{
λ̄1,kI, · · · , λ̄N,kI

}
, Λ̃k = Λk − Λ̄k,

Λk = diag {λ1,kI, · · · , λN,kI} ,Kk = [Kij,k]N×N ,

C̃k = diag {C1,kI, · · · , CN,kI} .
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Furthermore, letting L̄i = diag{√
aijI} and noting

that aij = 0 makes some columns of L̄i to be zero,
a simple matrix denoted as Li will be obtained after
deleting the corresponding zero columns of L̄i, which
will be used in the following main results.

Theorem 2: For system (1)-(2) and filter (5), for the
ith sensor, filtering gain matrix Kij,k is computed by

Kij,k =

{
K̄ij,k

√
aij

−1, ifj ∈ Ni

0, ifj /∈ Ni.
(25)

where K̄ij,k (j ∈ Ni) is the j-th element of K̄
(i)
k

and K̄
(i)
k = D

(i)
k Li

(
LT

i BkLi

)−1, D
(i)
k is the i-th

line submatrix of Dk, Dk = Pk|k−1C̃
T
k Λ̄T

k , Bk =

Λ̄kC̃kPk|k−1C̃
T
k Λ̄T

k +Λ̌k ◦
(
C̄kXkC̄

T
k

)
+Rk, Λ̌k = Λ̄kΛ̃k

and Rk = [Rij,k]N×N .
The filtering error covariance Pii,k|k is

Pii,k|k = E
{

x̃i,k|kx̃
T
i,k|k
}

= Pii,k|k−1 +
∑

t∈Ni

∑

l∈Ni

aitailλ̄t,kλ̄l,kKit,kCt,k

×Ptl,k|k−1C
T
l,kK

T
il,k +

∑

t∈Ni

a2
itλ̄t,k(1 − λ̄t,k)Kit,k

×Ct,kXkC
T
t,kK

T
it,k +

∑

t∈Ni

∑

l∈Ni

aitailKit,kRtl,kK
T
il,k

−
∑

t∈Ni

aitλ̄t,kKit,kCt,kPti,k|k−1

−
∑

t∈Ni

aitλ̄t,kPit,k|k−1C
T
t,kK

T
it,k (26)

and

Pij,k|k = E
{

x̃i,k|kx̃
T
j,k|k

}

= Pij,k|k−1 +
∑

t∈Ni

∑

l∈Nj

aitajlλ̄t,kλ̄l,kKit,kCt,k

×Ptl,k|k−1C
T
l,kK

T
jl,k +

∑

t∈Ni

∩ Nj

aitajtλ̄t,k(1 − λ̄t,k)

×Kit,kCt,kXk−1C
T
t,kK

T
jt,k +

∑

t∈Ni

∑

l∈Nj

aitajlKit,k

×Rtl,kK
T
tl,k −

∑

t∈Ni

aitλ̄t,kKit,kCt,kPtj,k|k−1

−
∑

l∈Nj

ajlλ̄l,kPil,k|k−1C
T
l,kK

T
jl,k (27)

Proof: Let Pk|k−1 and Pk|k denote the prediction
error covariance and estimation error covariance of the
extended state, respectively. From (24), we have

Pk|k

=

(
I −

N∑

i=1

EiKkFiΛ̄kC̃k

)
Pk|k−1

×
(

I −
N∑

i=1

EiKkFiΛ̄kC̃k

)T

+

(
N∑

i=1

EiKkFi

)

×E
{

Λ̃kC̄kxkx
T
k C̄T

k Λ̃T
k

}( N∑

i=1

EiKkFi

)T

+

(
N∑

i=1

EiKkFi

)
Rk

(
N∑

i=1

EiKkFi

)T

(28)

where Pk|k−1 can be obtained from (12), (13) and

Pk|k−1 = [Pij,k|k−1]N×N . (29)

After some algebraic manipulation, (28) becomes

Pk|k

= Pk|k−1 −
(

N∑

i=1

EiKkFiΛ̄kC̃k

)
Pk|k−1

−Pk|k−1

(
N∑

i=1

EiKkFiΛ̄kC̃k

)T

+

(
N∑

i=1

EiKk

×FiΛ̄kC̃k

)
Pk|k−1

(
N∑

i=1

EiKkFiΛ̄kC̃k

)T

+

(
N∑

i=1

EiKkFi

)
Λ̌k ◦

(
C̄kXkC̄

T
k

)

×
(

N∑

i=1

EiKkFi

)T

+

(
N∑

i=1

EiKkFi

)
Rk

×
(

N∑

i=1

EiKkFi

)T

. (30)

Note that, for arbitrary matrix J of appropriate dimen-
sion and i ̸= j, we have

tr{EiJET
j } = tr{ET

j EiJ} = 0. (31)

Based on (31), we can obtain

tr(Pk|k)

= Pk|k−1 −
(

N∑

i=1

EiKkFiΛ̄kC̄k

)
Pk|k−1

−Pk|k−1

(
N∑

i=1

EiKk+1FiΛ̄k+1C̃k

)T

+

N∑

i=1

EiKkFi

×Λ̄kC̄kPk|k−1

(
N∑

i=1

EiKkFiΛ̄kC̃k

)T
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+

(
N∑

i=1

EiKkFi

)
Λ̌k ◦

(
C̄kXkC̄

T
k

)

×
(

N∑

i=1

EiKkFi

)T

+

(
N∑

i=1

EiKkFi

)
Rk

×
(

N∑

i=1

EiKkFi

)T

= tr(Pk|k−1) − tr

(
N∑

i=1

EiKkFiΛ̄kC̃kPk|k−1

)

−tr

(
Pk|k−1(

N∑

i=1

EiKk+1FiΛ̄k+1C̃k)
T

)

+tr

(
N∑

i=1

EiKkFiΛ̄kC̃kPk|k−1(EiKkFiΛ̄kC̃k)
T

)

+tr

(
N∑

i=1

EiKkFiRk(EiKkFi)
T

)
+ tr

(
N∑

i=1

EiKk

×FiΛ̄kC̄k Λ̌k ◦
(
C̄kXkC̄

T
k

)
(EiKkFiΛ̄kC̄k)

T
)
. (32)

Setting the partial derivation of tr(Pk|k) with respect
to Kk to be zero and using Lemma 2, we obtain

∂tr(Pk|k)

Kk
= 2

N∑

i=1

EiKkFiΛ̄kC̃kPk|k−1(FiΛ̄kC̃k)
T

−2

N∑

i=1

EiPk|k−1(FiΛ̄kC̃k)
T

= 2

N∑

i=1

EiKkFiBkF
T
i − 2

N∑

i=1

EiDkF
T
i

= 0 (33)

Recalling the definition of Ei, we can rewrite (33) as

K
(i)
k FiBkF

T
i = D

(i)
k F T

i , i = 1, 2, · · · , N. (34)

where D
(i)
k is the i-th line submatrix of Dk. From the fact

that Fi can be expressed as Fi = LiL
T
i , (34) becomes

K
(i)
k LiL

T
i BkLiL

T
i = D

(i)
k LiL

T
i (35)

It can be easily verified that Li is a matrix with full row
rank, thus we have

K
(i)
k LiL

T
i BkLi = D

(i)
k Li (36)

and thus

K
(i)
k Li = D

(i)
k Li

(
LT

i BkLi

)−1
(37)

where we have used the fact that matrix LT
i BkLi is

invertible. Noting the construction of LT
i , we can obtain

the filter gain Kij,k as described in (25).
Note that Pii,k|k = E

{
x̃i,k|kx̃T

i,k|k

}
and Pij,k|k =

E
{

x̃i,k|kx̃T
j,k|k

}
. By using the expression of x̃i,k|k in

(23) and filter gain (25), we have (26) and (27), which
completes the proof.

Remark 2: In Theorems 1 and 2, a distributed filtering
algorithm over the wireless sensor network is presented
for the addressed discrete-time systems. To minimize
the estimation error covariance Pk|k, we take the partial
derivation of tr{Pk|k} and obtain (34). Unfortunately,
since each node only transmits data to its neighbors, Fi

(i = 1, 2 · · · , N ) in (34) may be singular, and it makes
difficulty in calculating the inverse of matrix FiBkF

T
i .

To solve this problem, a new method is used to design
the gain by using the topology information of the WSN.
Specially, the simplified matrix Li is adjusted in light of
the adjacency elements of each node, which implies that
the topology information is also employed.

Finally, let us summarize the algorithm of designing
distributed filter (4)-(5) as follows,

Algorithm 1 Distributed filtering algorithm
Step 1. Calculate x̂i,k|k−1 by (10) and (11). Calcu-
late Pii,k|k−1 and Pij,k|k−1 by use (12) and (13),
respectively. Obtain Pk|k−1 by (29).
Step 2. Calculate Kij,k by (25).
Step 3. Calculate Pii,k|k and Pij,k|k by use (26) and
(27), respectively.

Remark 3: In [25], the filter gain is is obtained by
using the Moore-Penrose pseudo inverse of a singular
matrix. In the current paper, to avoid using the Moore-
Penrose pseudo inverse, matrix Fi is simplified. Specif-
ically, a novel matrix simplification technique is used
to handle Fi by using Fi = LiL

T
i , based on which, an

new invertible matrix LT
i BkLi is obtained. The filter gain

Kij,k is computed without using Moore-Penrose pseudo
inverse.

IV. PROPERTY ANALYSIS

Above section has given the recursive distributed
filter. It can be seen from the filtering process that the

                  



SUBMITTED 8

precision of the proposed filter is related with the missing
probability of the measurements. In this section, we will
study how the arrival probabilities of the measurements
affect the estimation error covariance of the proposed
filter. Before analyzing the performance, we need first
introduce the following assumption.

Assumption 4: At time instant k, the arrival probabil-
ities of all the measurements are the same, i.e. λ̄i,k = λ̄k

(i = 1, 2, · · · , N).
Theorem 3: For system (1)-(2) and filter (4)-(5). Giv-

en the estimation error covariance Pk−1|k−1, at time
instant k, tr

{
Pk|k

}
is non-increasing as λ̄k increases.

Proof: From (32), we can obtain

tr
{
Pk|k

}

= tr
{
Pk|k−1

}
+ tr

{
N∑

i=1

EiKkFiBkF
T
i KT

i ET
i

}

−tr

{
N∑

i=1

EiKkFiΛ̄kC̃kPk|k−1 − Pk|k−1

×
N∑

i=1

(
EiKkFiΛ̄kC̃k

)T
}

. (38)

Note that the second item on the right-hand side of
(38) becomes

tr

{
N∑

i=1

EiKkFiBkF
T
i KkE

T
i

}

= tr

{
N∑

i=1

EiDkFiK
T
k ET

i

}

= tr

{
Pk|k−1C̃

T
k Λ̄T

k

N∑

i=1

(EiKkFi)
T

}
. (39)

and we have

tr
{
Pk|k

}
= tr

{
Pk|k−1

}
−tr

{
N∑

i=1

EiKkFiΛ̄kC̃kPk|k−1

}
.

(40)
On the other hand, similar to (37), from (33), we can

also have

KkLi = DkLi

(
LT

i BkLi

)−1
, (41)

inserting which into (40), we have

tr
{
Pk|k

}
= tr

{
Pk|k−1

}
− tr

{
N∑

i=1

EiDkLi

×
(
LT

i BkLi

)−1
LT

i Λ̄kC̄kPk|k−1

}
(42)

Moreover, from Assumption 4, the mean and vari-
ance of λi,k can be calculated as λ̄k and λ̄k(1 − λ̄k),
respectively. Correspondingly, we have Λ̄k = λ̄kI and
Λ̌k = λ̄k(1−λ̄k)I , combining which with (42), we obtain

tr
{
Pk|k

}

= tr
{
Pk|k−1

}
− tr

{
N∑

i=1

EiDkLi

(
LT

i BkLi

)−1

× LT
i Λ̄kC̃kPk|k−1

}
.

= tr
{
Pk|k−1

}
− tr

{
N∑

i=1

λ̄2
kEiPk|k−1C̃

T
k Li

×
(
LT

i B̄kLi

)−1
LT

i C̃kPk|k−1

}
. (43)

where

B̄k = λ̄2
kC̃kPk|k−1C̃

T
k + λ̄k(1 − λ̄k)

(
C̄kX̄kC̄

T
k

)
+ Rk

(44)
Following the expressions of (12), (13) and (29), it can

be seen that, for a given Pk−1|k−1, the value of Pk|k−1

will also be determined. Pk|k and B̄k are affected by the
arrival probability λ̄k. Taking the derivative of Pk|k with
respect to parameter λ̄k, we have

∂

∂λ̄k
tr
{
Pk|k

}

= −tr

{
N∑

i=1

2λ̄kEiPk|k−1C̃
T
k Li

(
LT

i B̄kLi

)−1
LT

i

× C̃kPk|k−1

}
+ tr

{
λ̄2

k

N∑

i=1

EiPk|k−1C̃
T
k Li

(
LT

i B̄k

×Li)
−1 LT

i B̃kLi

(
LT

i B̄kLi

)−1
LT

i C̃kPk|k−1

}

= tr

{
λ̄k

N∑

i=1

EiPk|k−1C̃
T
k Li

(
LT

i B̄kLi

)−1
LT

i

× [λ̄kB̃k − 2B̄k]Li

(
LT

i B̄kLi

)−1
LT

i C̃kPk|k−1

}
(45)

where

B̃k =
∂B̄k

∂λ̄k

= 2λ̄kC̃kPk|k−1C̃
T
k + (1 − 2λ̄k)C̄kXkC̄

T
k (46)

Note that

λ̄kB̃k − 2B̄k = −λ̄kC̃kPk|k−1C̃
T
k − 2Rk

< 0 (47)
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Then combining (45) and (47), we have

∂

∂λ̄k
tr
{
Pk|k

}
≤ 0.

Thus, we can conclude that tr{Pk|k} is non-increasing
as λ̄k increases, which completes the proof.

Above theorem discusses the relationship between
arrival probability of the measurements and the filter
performance, which shows that the estimation error
covariance is non-increasing as the arrival probability
increases.

Remark 4: Theorem 3 investigates the monotonicity
of the filter performance with respect to the missing
probability. In such a case, the systems noises and mea-
surement noises are allowed to be correlated with each
other. It is different with [25], where the monotonicity
is discussed for the systems with uncorrelated noises.

V. A NUMERICAL EXAMPLE

To illustrate the effectiveness and the potential ap-
plicability of the proposed filtering method, a second-
order discrete-time system is investigated in this section.
Assume the dynamic of the targeted follows the system
(1) with parameters:

Ak =

[
1 T

0 1

]
, Γk =

[
0.7

0.25

]
,

Gl,k =

[
0.46 sin(lk) 0.05

0 0.14 cos(lk)

]
, l = 1, 2, 3.

The state xk = [x1, x2]
T , whose first and second el-

ements are the position and velocity, respectively. Let
sample time T = 1s, Ξl,k = 0.1, l = 1, 2, 3 and wk is a
Gaussian white noise with zero-mean and variance 0.3.

The mean and the covariance of the initial
state x0 are µ0 = [0, 1]T and P0 = diag{2, 1},
respectively. The WSNs used to track the target is
consisting of 4 nodes, where the set of edges E =

{(1, 1), (1, 4), (2, 2), (2, 4), (3, 2), (3, 3), (4, 2), (4, 4)},
and all the adjacency elements are aij = 1.

The measurement matrices are:

C1,k = [0.8 + 0.2 sin(k), 0.1 cos(k)],

C2,k = [0.6, 0.2 + sin(k)],

C3,k = [0.4, 0],

C4,k = [0.9e−k, 0.3].

The variances of the measurement noises are Rii,k = 0.3

(i = 1, 2) and Rii,k = 0.4 (i = 3, 4). The correlation
parameters among state noises and measurement noises
are Rij,k = 0.05, (i, j = 1, 2, 3, 4, i ̸= j) and Sj,k =

0.03 (j = 1, 2, 3, 4). The means of λi,k are 0.4 + 0.1i,
respectively.

According to (25), (4), (5), (26) and (27), the estimate
and estimation error covariance of xk are computed
recursively. Simulation curves are presented in Figs.1-5.
Specifically, Figs.1-2 show the true state and respective
estimates at each node with λ̄i,k = 0.8 (i = 1, 2, 3, 4).
It is verified that the performance of the proposed filter
is favorable. To compare the filter precision, the curves
of the estimation error covariance at node 1 based on
the new method and the traditional method are given
in Figs.3-4, from which we can see that the former
has higher estimation precision. This is because the
traditional method can only use the measurements from
the neighbors of this node, while the construction of new
filter (4)-(5) makes it able to use the information from
all nodes directly or indirectly. To show the relationship
between the filter performance and the arrival probability
of the measurements, the curves of the traces of the
estimation error covariances of the extended state are p-
resented with λ̄k = 0.3, 0.6, 0.8, 0.9, respectively, where
the arrival probabilities of all the sensors are assumed
to be the same. It can be seen that the trace becomes
smaller as the arrival probability increases.

VI. CONCLUSION

Some mutually independent Bernoulli random vari-
ables are employed to describe the missing measure-
ments where all sensors are allowed to be with individual
arrival probabilities. By using projection theory and the
correlation information of the noises, at each node,
the system noise as well as the system state has been
predicted. Subsequently, the estimation error covariance
has been presented and the filter gain has been proper-
ly designed. Moreover, the monotonicity property with
respect to the arrival probability has been investigated
in the case that all the sensors have the same means.

                  



SUBMITTED 10

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

k/step

x k1  a
nd

 it
s 

es
tim

at
es

 

 
plant
Node 1
Node 2
Node 3
Node 4

Fig. 1. State x1,k and its estimation.
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Fig. 2. State x2,k and its estimation.
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Fig. 3. Estimation error variance of x1
k.
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Fig. 4. Estimation error variance of x2
k.
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Fig. 5. Trace of the estimation error covariance with λ̄k =

0.3, 0.6, 0.8, 0.9, respectively.

Finally, a numerical example is employed to show the
usefulness of the new distributed filter.
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