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21

22 Regional Climate Models (RCMs) are an essential tool for analysing regional climate change impacts, 

23 such as hydrological change, as they provide simulations with more small-scale details and expected 

24 smaller errors than global climate models. There has been much effort to increase the spatial resolution 

25 and simulation skill of RCMs (i.e. through bias correction), yet the extent to which this improves the 

26 projection of hydrological change is unclear. Here, we evaluate the skill of five reanalysis-driven Euro-

27 CORDEX RCMs in simulating precipitation and temperature, and as drivers of a hydrological model to 

28 simulate river flow on four UK catchments covering different physical, climatic and hydrological 

29 characteristics. We use a comprehensive range of evaluation indices for aspects of the distribution such 

30 as means and extremes, as well as for the structure of time series. We test whether high-resolution RCMs 

31 provide added value, through analysis of two RCM resolutions, 0.44° (50 km) and 0.11° (12.5 km), which 

32 are also bias-corrected employing the parametric quantile-mapping (QM) method, using the normal 

33 distribution for temperature, and the Gamma (GQM) and Double Gamma (DGQM) distributions for 

34 precipitation. The performance of these is considered for a range of meteorological variables and for the 

35 skill in simulating hydrological impacts at the catchment scale.
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36 In a small catchment with complex topography, the 0.11° RCMs clearly outperform their 0.44° version 

37 for precipitation and temperature, but when used in combination with the hydrological model, fail to 

38 capture the observed river flow distribution. In the other (larger) catchments, only one high-resolution 

39 RCM consistently outperforms its low-resolution version, implying that in general there is no added value 

40 from using the high-resolution RCMs in those catchments. Both resolutions produce river flow simulations 

41 that cover the observed flow duration curve, but the ensemble spread is large and therefore the 

42 simulations are difficult to use in practice. GQM decreases most of the simulation biases, except for 

43 extreme precipitation and high flows, which are further decreased by DGQM, which also reduces the 

44 multi-model simulation spread. Bias correction does not improve the representation of daily temporal 

45 variability measured by the Nash-Sutcliffe Efficiency Index, but it does for monthly variability, in particular 

46 when applying DGQM, which reduces most of the simulation biases. Overall, an increase in RCM resolution 

47 does not imply a better simulation of hydrology and bias-correction represents an alternative to ease 

48 decision-making. 

49

50

51

52 1. Introduction

53 Global General Circulation Models (GCMs) are the main tool for climate change projections. However, 

54 their spatial resolution is usually not finer than 100 km x 100 km (Rummukainen, 2016), limiting their skill 

55 to simulate local climate. Regional Climate Models (RCMs) focus on specific subcontinental or subnational 

56 domains, incorporating regional features such as topography, coasts and islands more accurately. 

57 Consequently, RCMs improve the simulation of small-scale processes that affect precipitation, such as 

58 orographic forcing (Rummukainen et al., 2015; Di Luca et.al, 2015), and are expected to yield more 

59 accurate projections of climate change at finer spatial scales. RCMs have been used extensively to evaluate 

60 the impacts of climate change on hydrology, such as changes in mean river flow, floods or low flows (e.g. 

61 Kay et al., 2015; Kay and Jones, 2012; Mendoza et al., 2016; Teng et al., 2015; Prudhomme et al., 2013; 

62 Cloke et al., 2013).

63 The resolution of RCMs has increased over time with the availability of higher computer power. 

64 Currently, the spatial resolution of RCMs varies from 50 km x 50 km to less than 5 km x 5km (Rummukainen, 
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65 2016; Rockel et al., 2015). Due to their increased representation of regional features and small-scale 

66 processes, RCMs generally simulate the current regional climate better than their driving data (Feser et al. 

67 2011; Di Luca et al., 2015). Nevertheless, this might not be true in regions mainly influenced by large-scale 

68 climatic processes (Eden et al., 2014). Therefore, the added value of high-resolution RCMs depends on 

69 the analysed region, variable and context (Rummukainen, 2016). 

70 An important driver for increasing RCM resolution is the need to improve the analysis of climate change 

71 impacts for decision-making (e.g. Macadam et al., 2016; Qian et al., 2015). For hydrology, the standard 

72 analysis of climate change impacts generally involves coupling uncorrected or bias-corrected GCM or RCM 

73 precipitation and temperature outputs with hydrological models to simulate river flow scenarios (e.g. 

74 Teutschbein and Seibert; 2012; Huang et al., 2014; Teng et al., 2015). In Great Britain, these studies focus 

75 on one (or more) of four main topics: 1) the contribution of the GCMs, RCMs, emission scenarios and bias-

76 correction techniques to the uncertainty of the change projection (e.g. Prudhomme and Davies, 2009; Kay 

77 et al., 2009; Arnell, 2011; Christierson et al., 2012), 2) the impact of the bias correction techniques on the 

78 projections (e.g. Prudhomme et al., 2013; Cloke et al., 2013; Wetterhall et al., 2012; Kim et al., 2016), 3) 

79 projections of future floods (Cloke et al., 2013; Kay et al., 2015; Wetterhall et al., 2012; Kay and Jones, 

80 2012),  and, 4) projections of future low flows (Wilby and Harris, 2006; Arnell, 2011; Fowler and Kilsby, 

81 2007).

82 Some studies have identified a consistent improvement in hydrological simulation skill with increasing 

83 RCM resolution for the annual mean river flow (Huang et al. 2014). For the simulation of river flow peaks 

84 as a response to extreme precipitation events, previous studies found no improvement when increasing the 

85 model resolution (Kay et al. 2015; Huang et al., 2014). Others studies found that the improvement depends 

86 on the catchment size and on the evaluation index (Dankers et al. 2007), whilst others found an 

87 improvement when simulating seasonal flow and hydrologic signatures aimed to represent diverse 

88 hydrologic processes (e.g. runoff ratio, center time of runoff) (Mendoza et al., 2016). However, these studies 

89 have only used one RCM to perform the comparison as, to date, there has been no systematic study using 

90 a large number of RCM simulations to test the effect of RCM resolution on hydrological simulation skill.  
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91 The first aim of this paper is to use the EURO-CORDEX simulations (Jacob et al. 2014) to robustly 

92 assess the added value of increasing RCM resolution on hydrological simulations.  The Euro-CORDEX 

93 simulations at  0.11° (12.5 km x 12.5 km) and 0.44° (50 km x 50km) have the same lateral boundaries and 

94 the parameterisations of each RCM are the same at both resolutions, thus making them ideal for such a 

95 comparison.  This work builds on assessments of the 0.11° and 0.44° Euro-CORDEX RCMs at reproducing 

96 observed temperature and precipitation distributions, including extremes and dry/wet spell lengths. Results 

97 vary among the studies. Some found a higher accuracy for the 0.11 RCMs for Europe when evaluating the 

98 mean and extreme precipitation at a daily and sub-daily temporal resolution (Prein et al. 2015, Fantini et al 

99 2016), whereas others did not find an improvement in accuracy when assessing the spatio-temporal 

100 patterns of the monthly and seasonal precipitation and temperature (Kotlarski et al. 2014).  For the Alps 

101 Torma et al. (2015) found a higher skill for the 0.11 RCMs when simulating the spatial distribution of the 

102 mean, extreme and intensity of precipitation, while Casanueva et al. (2016) showed for the Alps and Spain 

103 that the best performance depends on the RCM, season and validation index when evaluating precipitation 

104 intensity, frequency, mean and extremes. 

105 Biases in RCM simulations are due to parameterisation of sub-grid processes, limited representation 

106 of local features, incorrect boundary conditions and differences between spatial resolutions of the 

107 simulations and observations (Ehret et al., 2012; Benestad, 2010). Therefore, RCMs require post-

108 processing for many applications (Christensen et al., 2008). Statistical bias-correction techniques reduce 

109 biases in the mean, variance or the complete distribution of simulated climate variables (reviews in Maraun 

110 et al., 2010; Teutschbein and Seibert, 2012; Maraun and Widmann, 2018; Lafon et al., 2013). Quantile 

111 mapping (QM) is one of the standard techniques used (Piani et al., 2010; Teutschbein and Seibert, 2012; 

112 Maurer et al., 2014). Whilst effective, bias correction has important limitations that are further discussed in 

113 the conclusions. 

114 To date, a detailed comparison of the simulation skill of bias-corrected high- and low-resolution model 

115 outputs for aspects that are important for hydrological studies (e.g. means, extremes, daily sequence) has 

116 not been undertaken. The second aim of this study addresses this research gap by conducting a detailed 

117 evaluation of aspects that are relevant for the hydrological regime such as seasonal precipitation, 
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118 occurrence of extreme events, and monthly and daily pairwise indices (assess the skill to reproduce the 

119 observed time-series). The evaluation of these aspects allows identifying the capabilities and weaknesses 

120 of the impact assessments. Here, the simulations are evaluated against gauged data, working as a mean 

121 to assess the plausibility of the simulation outputs using uncorrected and bias-corrected RCMs. This work 

122 builds on studies that have assessed climate variables. For instance, the bias-corrected Euro-CORDEX 

123 simulations, at both resolutions, have a similar skill at capturing the wet-day intensity and precipitation 

124 frequency (Casanueva et al., 2016). 

125 Here, we therefore address the two above-mentioned research aims by evaluating the simulation skill 

126 of five uncorrected and bias-corrected Euro-CORDEX RCMs at 0.11° and 0.44° using a range of 

127 temperature, precipitation and river flow indices, evaluating the mean along with high and low extremes, 

128 frequency of occurrence and daily and monthly simulation sequence. By using a multi-model ensemble, 

129 this analysis provides a robust understanding of the added value of high-resolution simulations and post-

130 processing approaches for hydrological impact studies. We analyse four diverse catchments across Great 

131 Britain, representative of different climate and physical characteristics, focusing on the following questions: 

132 1) Based on a range of selected indices, is the performance of the 0.11° Euro-CORDEX RCMs better 

133 than their 0.44° version to simulate (a) climate and (b) river flow? 

134 2) Is the current skill of the Euro-CORDEX RCMs sufficient to generate plausible inputs for the 

135 analysis of climate change impacts on hydrology and how does this compare to the inputs from 

136 bias-corrected simulations? 

137 3) Is there any improvement in the simulation skill of precipitation and river flow when using a Double 

138 Gamma Quantile Mapping (DGQM) bias correction compared to the usual Gamma Quantile 

139 Mapping (GQM) approach?

140 Given the associated computational cost (Bucchignani et al., 2016) and the potential for improving the 

141 skill of climate simulations, especially for impact assessments (Ehret et al., 2012), there is a clear need for 

142 rigorous evaluation of the added value of increasing RCM resolution. Previous hydrological impact studies 

143 have analysed this issue using one or two RCMs (e.g. Mendoza et al., 2016; Kay et al., 2015). However, 

144 their results might not be transferable to other RCMs, as each has its own parameterisations. 
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145 GQM inflates the precipitation extremes, producing unreliable flood simulations. Whilst this is a known 

146 issue (Cloke et al., 2013; Huang et al., 2014), no study has exhaustively compared the results between 

147 using the GQM and the DGQM approaches using extreme indices. This study provides a comprehensive 

148 analysis of such gaps.

149 2. Data and method

150 2.1. Observation databases and study catchments

151 The observations are used to calibrate the hydrological model (Section 2.2), develop the bias 

152 correction method (Section 2.3) and to compare the outputs of the RCMs to evaluate their simulation skill 

153 (Section 2.5). We employ gridded observations based on weather stations, as these are better comparable 

154 to the  outputs of the climate models which produce an areal average for each gridbox (following Osborn 

155 and Hulme, 1997). We use the Centre for Ecology and Hydrology (CEH) Gridded Estimates of Areal Rainfall 

156 (CEH-GEAR) dataset (Tanguy et al. 2014) as 1km x 1km gridded daily precipitation observations (Keller et 

157 al., 2015). Records from the Natural Environment Research Council (NERC) Hydrology and Ecology 

158 Research Support System (CHESS) (Robinson et al., 2017a, 2017b) are used as 1 km x 1 km gridded daily 

159 temperature observations. The 1 km x 1 km gridded CHESS-PET dataset is employed as potential 

160 evapotranspiration (PET) observational reference. CHESS-PET uses the Penman-Monteith equation 

161 (Monteith, 1965) to calculate daily PET using climate variables from the Met Office Rainfall and Evaporation 

162 Calculation System (MORECS) (Hough and Jones, 1997) as input. All these datasets cover the period 1961 

163 to 2010. A detailed description of the methodology and weather stations used to develop the gridded 

164 datasets can be found in Robinson et al. (2017a, 2017b) and Tanguy et al. (2014). We use river flow 

165 observations from the CEH’s National River Flow Archive (NRFA). The available river flow observations for 

166 the 1961-2010 period varies in each catchment, with a minimum of 30 years of continuous records. 

167 We analyse four catchments within the UK. The catchments have long river flow records and cover 

168 regions that are representative of the different climate and catchment types that can be found within the 

169 UK. These are the Upper Thames, Glaslyn, Calder and Coquet catchments (Fig. 1). This set of catchments 

170 with different characteristics (Table 1) can aid identifying key features that impact on the simulation skill of 

171 the RCMs.  The smallest catchment is the Glaslyn, which has the most complex topography and highest 
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172 rainfall.  The largest catchment is the Upper Thames (1616 km2), which also has the least complex 

173 topography.  The Calder and Coquet are intermediate in terms of area, elevation and precipitation. These 

174 catchments have been studied before using bias-corrected climate projections (QM, normal distribution for 

175 temperature and Gamma distribution for precipitation) from the HadRM3-PPE RCM (Prudhomme et al., 

176 2013).

177 2.2. RCMs

178 We evaluate two spatial resolutions (0.11° equivalent to 12.5 km x 12.5 km and 0.44° equivalent to 

179 50 km x 50 km) of five Euro-CORDEX RCMs (Jacob et al., 2014) driven by the ERA-Interim reanalysis (Dee 

180 et al., 2011), the so-called ‘evaluation simulations’. The evaluation simulations are used as these are driven 

181 by observations and consequently simulate the internal variability in synchronicity with reality, in contrast 

182 to the historical simulations. The assessed RCMs are shown in Table 2 (refer to Table 1 in Kotlarski et al. 

183 (2014) and Table 1 in Prein et al. (2015) for a detailed RCM description). These models are selected as 

184 they have the best performance to reproduce observations in the British Isles according to Kotlarski et al. 

185 (2014). When more than one RCM cell is needed to fully cover the catchment we use the mean of the cells 

186 to represent the catchment’s climate simulations (see Fig. 1). 

187 2.3. Bias correction

188 QM is used based on parametric representations of the simulated and observed distributions (Piani 

189 et al., 2010). For each month of the year, the Gamma distribution is fitted to the observed and simulated 

190 gridded daily precipitation and the normal distribution to the observed and simulated gridded daily 

191 temperature. RCMs generally simulate too many days with very low precipitation and not enough dry days. 

192 Therefore, in an initial step the QM method adjusts the number of simulated dry days in the RCM evaluation 

193 simulations such that they match with the number of observed dry days by including a wet day threshold 

194 and replacing all values below it with zero. After the wet-day adjustment, the distributions of the simulations 

195 and observations are matched using their cumulative distribution functions (CDF). The method is 

196 represented by the following equations:

197  (1)𝑃𝑐(𝑡) = 𝐹 ―1
𝑔 (𝐹𝑔(𝑃𝑅(𝑡),𝛼𝑅,𝛽𝑅),𝛼𝑂,𝛽𝑂)
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198 (2)𝑇𝑐(𝑡) = 𝐹 ―1
𝑛 (𝐹𝑛(𝑇𝑅(𝑡),𝜇𝑅,𝜎2

𝑅),𝜇𝑂,𝜎2
𝑂)

199

200 Where  and  represent the bias-corrected and raw RCM daily precipitation, respectively. 𝑃𝑐(𝑡) 𝑃𝑅(𝑡)

201 Likewise,  and  stand for the bias-corrected and raw RCM daily temperature. The raw RCM CDF 𝑇𝑐(𝑡) 𝑇𝑅(𝑡)

202 is symbolized with F, and  stands for the observations inverse CDF. The ‘g’ and ‘n’ subscripts represent 𝐹 ―1

203 the Gamma and normal distributions, respectively. The precipitation shape and scale parameters are 

204 symbolised by α and β and the temperature mean and standard deviation by µ and σ, respectively. Finally, 

205 the ‘R’ and ‘O’ subscripts are used to symbolize the distribution parameters from the raw RCM and 

206 observations, respectively. 

207 GQM focuses on the most frequent values (e.g. means) (Teng et al., 2015; Yang et al., 2010). 

208 Consequently, the corrected precipitation extremes tend to be inflated compared to the observations 

209 (Cannon et al., 2015). Therefore, we also bias-correct precipitation using the DGQM. The methodology is 

210 mainly the same as the GQM with the difference that the simulated precipitation distribution is divided in 

211 two segments. Each is corrected separately, generating correction parameters for each section. In our 

212 study, the distribution is divided at the 90th percentile because at this percentile the biases inflate (see 

213 section 3.2.2.1). 

214 For the 0.11° RCMs, the spatial scale of the simulations and the observations are approximately the 

215 same and the method can be viewed as a pure bias correction. In contrast, the output of the 0.44° is given 

216 on a larger scale than the observations and thus the QM also includes a downscaling aspect to account for 

217 the difference in distributions on different spatial scales. We note that due to the existence of sub-grid 

218 variability QM is in principle problematic as the corrected values for all sub-grid locations would have 

219 unrealistic high correlations (Maraun, 2013). However, this limitation is not of high relevance for our study 

220 as we bias-correct the distributions for the entire catchments.

221 2.4. Hydrological simulation

222 The Hydrological Modeling System from the US Army Hydrologic Engineering Center (HEC-HMS) 

223 (Scharffenberg, 2013) is used to simulate the catchments’ daily river flow. HEC-HMS has been successfully 

224 used before to analyse climate change impacts on water resources in other regions (e.g. Babel et al., 2014; 
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225 Azmat et al., 2015). An advantage of the model is the available guidance for the estimation of parameters. 

226 Here, the model is run using its continuous, lumped arrangement. Observed precipitation and PET time 

227 series are used as input for the calibration and validation of the model. Afterwards, the raw and bias-

228 corrected RCM simulations drive the model to generate the river flow simulations. 

229 Evapotranspiration controls the moisture returning from the Earth’s surface to the atmosphere and 

230 therefore impacts on the river flow. PET estimates the amount of water returning to the atmosphere when 

231 enough water is present in the surface of the catchment. Climate models do not simulate PET directly, thus 

232 it is estimated indirectly with formulas using variables from the climate models as input. There is no 

233 consensus on whether temperature–based or physically-based formulas provide better results in a climate 

234 change context (Kay et al., 2013) as the data required by the physically-based formulas is uncertain in the 

235 climate model simulations compared to the input from one variable formulas (Kingston et al., 2009). This 

236 has been discussed and explored elsewhere (please refer to: Seiller and Anctil, 2016; Kingston et al., 2009; 

237 Kay and Davies, 2008; Kay et al., 2013). We estimate PET using the Oudin formula (Oudin et al., 2005) as 

238 it has given accurate results before (e.g. Oudin et al., 2005; Kay and Davies, 2008).

239 (5){ 𝑃𝐸𝑇 (𝑚𝑚 𝑑𝑎𝑦 ―1) =  
𝑅𝑒

𝜆𝜌(𝑇 + 5
100 )                  𝑖𝑓 𝑇 + 5 > 0

𝑃𝐸𝑇 (𝑚𝑚 𝑑𝑎𝑦 ―1) =  0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

240 The extraterrestrial solar radiation (Re) is the solar radiation received at the top of the Earth’s 

241 atmosphere which can be estimated by the latitude and day of the year. The density of water is symbolized 

242 by ρ, the latent heat flux by λ (2.45 MJ/kg) (Allen et al., 1998) and T is the daily mean temperature (°C). 

243 When driven by observed temperature, the Oudin formula gave results similar to the CHESS-PET dataset 

244 for 1973 to 2010 (Pasten-Zapata, 2017). 

245 2.5. Hydrological model calibration

246 The hydrological model is calibrated and validated against the observations using a split sample 

247 test. Considering the available uninterrupted daily river flow records, for each catchment two same-length 

248 non-overlapping time periods are used: one for calibration and the other for validation. The period with 

249 available river flow observations varies for each catchment. The period with observations for each 

250 catchment is selected and divided into two equal-length, non-overlapping periods. Calibration is done for 
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251 the more recent period and validation for the other portion of the sample. Three indices are assessed: the 

252 low flows simulation is evaluated using the Q95 (flow equalled or exceeded 95% of the time), the high flows 

253 by the Q10 (flow equalled or exceeded 10% of the time) and the Nash-Sutcliffe Efficiency Index (NSE) 

254 which evaluates the fit of the simulated and observed river flow. The NSE ranges from 1 (perfect fit) to 

255 negative (unreliable model) (Nash and Sutcliffe, 1970). In the NSE formula, Qt
obs and Qt

sim stand for the 

256 observed and simulated river flow at time step t, respectively. Qmean is the average of the observed river 

257 flows during the complete period.

258 (6)𝑁𝑆𝐸 = 1 ― [ ∑𝑛
𝑡 = 1(𝑄𝑜𝑏𝑠

𝑡 ― 𝑄𝑠𝑖𝑚
𝑡 )2

∑𝑛
𝑡 = 1(𝑄𝑜𝑏𝑠

𝑡 ― 𝑄𝑚𝑒𝑎𝑛)2]
259 2.6. RCM validation approach and indices

260 Validation is important to assess the RCM simulation skill before and after bias correction (Eden et 

261 al., 2014). Here, a five-fold cross-validation approach is used: 1) the study period is divided into five same-

262 length, non-overlapping blocks, and 2) the QM methods are trained using four blocks and the remaining 

263 block is corrected using the parameters from the training period (Maraun et al., 2015). The corrected blocks 

264 are concatenated to time series for the entire period from which the performance measures for the bias-

265 corrected precipitation and temperature are derived. 

266 A range of distribution-based and time series-based indices evaluate the skill of the raw and bias-

267 corrected RCM outputs to simulate the observerd precipitation, temperature and river flow. The indices 

268 assess biases in the means, low and high extremes, inter- and intra-annual variability and correlations for 

269 each variable (see Table 3). RCMs are then ranked based on their skill to simulate all indices relative to the 

270 skill of the other RCMs at both resolutions. As we are evaluating the outputs of 10 RCMs (5 high-resolution 

271 and 5 low-resolution), each RCM is given a value between 1 (best) and 10 (worst) based on their simulation 

272 skill.  Thus, simulation skill refers to the biases present in the models compared to the available 

273 observations considering all the metrics used in this study. We use the complete time series (dry days 

274 included) to estimate the precipitation indices. Even when driven by “perfect boundary conditions”, a close 

275 similarity between the RCM simulations and observations is not expected (Kay et al., 2015) due to subgrid 

276 variability or internal variability because the boundary conditions do not fully determine the weather states 
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277 within the RCM. Nevertheless, we include daily and monthly pairwise indices as these are important for the 

278 river flow simulation. We left out the hydrological model uncertainty source intentionally to solely evaluate 

279 the effects of increasing RCM resolution. Thus, we compare the river flow simulations driven by RCM 

280 outputs against the river flow simulations driven by the observed temperature and precipitation. 

281 3. Results 

282 This section begins by showing hydrological model simulation skill followed by the evaluation of the 

283 simulation skill of the uncorrected RCMs for temperature, precipitation and river flow. Finally, we compare 

284 the biases that remain after bias-correcting precipitation using the GQM and DGQM and their impacts on 

285 the river flow simulation.

286 3.1. Calibration and validation of the hydrological model

287 Firstly we evaluate the hydrological model simulation skill using climate observations as input. 

288 Depending on the catchment, the length of the overall evaluation period ranges from 34 to 49 years. The 

289 daily NSE varies between 0.62 (Calder) and 0.78 (Glaslyn) for calibration and between 0.52 (Coquet) to 

290 0.78 (Glaslyn) for validation (Table 4). These results indicate a moderate to good simulation skill overall 

291 compared to the NSE values from similar studies which vary from 0.45 to 0.9 (e.g. Arnell, 2011; Walsh et 

292 al., 2015; Cloke et al., 2013). The Q10 bias ranges between -6% and 11% for the calibration and between 

293 –5% and 7% for the validation. Similarly, the Q95 bias ranges between -27% and -11% for the calibration 

294 and between -44% and 6% for the validation. Overall, the simulation of high flows is very good and moderate 

295 to very good for the low flows. More detail on the calibration and validation results can be found in the work 

296 from Pasten-Zapata (2017).

297 3.2. Evaluation of the RCM simulation skill 

298 We now assess the skill of the RCMs at simulating climate and river flow, firstly for the raw 

299 simulations and then for the bias-corrected outputs. We only show robust results for the analysis of the 

300 indices (e.g. if all RCMs from a particular resolution underestimate or overestimate an index). We also 

301 evaluate the multi-model percentile bias for each variable and use a skill rank to enable comparison of the 

302 different RCMs over the different performance indices. The ranking is only estimated for the uncorrected 
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303 simulations as the biases after the correction are small and similar among the RCMs. Thus, ranking the 

304 bias-corrected simulations would give meaningless results. 

305 3.2.1.Uncorrected RCM simulations

306 3.2.1.1. Temperature

307 We begin with assessing the ability of the RCMs to simulate temperature. The 0.11° RCMs 

308 underestimate the annual mean temperature for the upper Thames (Fig. 2a, ii), Calder (Fig. 2c, ii) and the 

309 Coquet (Fig. 2d, ii) catchments, whereas the 0.44° RCMs overestimate the annual mean temperature for 

310 the Glaslyn (Fig. 2b, ii) and Coquet (Fig. 2d, ii) catchments. The monthly mean temperature bias for the 

311 0.11° RCMs is larger for the Calder (between and 0.5 °C and 1.1 °C) (Fig. 2c, ii) and smaller for the Glaslyn 

312 catchment (between 0.4 °C and 0.7 °C) (Fig. 2b, ii). In contrast, the monthly mean temperature bias of the 

313 0.44° RCMs is larger for the Glaslyn (between 0.4 °C and 1.2 °C) (Fig. 2b, ii) and smaller for the Calder 

314 catchment (between 0.8 °C and 1.0 °C) (Fig. 2c, ii). 

315 We use the simulation spread to evaluate the simulation skill of each resolution. The spread 

316 represents the range between the highest and lowest simulated value considering all RCMs at each 

317 resolution and all gridcells within a catchment. The temperature percentile bias spread for the upper 

318 Thames is similar for both resolutions except between the 40th and 60th percentile where the 0.44° 

319 simulation include larger positive biases (Fig. 3a). For the Glaslyn catchment, the 0.44° simulations 

320 overestimate temperature for almost all percentiles, while the biases of the 0.11° simulations are smaller 

321 (Fig. 3b). For the Calder catchment, the 0.44° RCM spread includes the no bias threshold for all percentiles, 

322 whereas the 0.11° RCMs underestimate temperature between the 40th and 90th percentile (Fig. 3c). Finally, 

323 in the Coquet catchment the 0.44° simulations overestimate temperature below the 70th percentile and the 

324 0.11° simulations underestimate it between the 40th and 80th percentiles (Fig. 3d). The Pearson correlation 

325 coefficients of the daily time series vary between 0.91 and 0.97 in all catchments for both resolutions (Figs. 

326 2, iii). 

327 Integrating the RCM simulation skill of all the indices into a ranking shows that, in the upper Thames, 

328 two out of five high-resolution uncorrected simulations outperform their 0.44° version (last column of Table 

329 5). Similarly, for the Calder catchment, one 0.11° simulation outperforms its 0.44° version and all five high-
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330 resolution simulations outperform their low-resolution version for the Glaslyn and Coquet catchments. This 

331 indicates that topography has an influence in the simulation of temperature and RCM resolution has an 

332 effect in the simulation skill for catchments with larger elevation variability where, for observations at high 

333 elevation, the 0.44° RCMs would be expected to have positive biases as the grid elevation is lower that the 

334 observations.

335 Based on the rank, the overall best performing simulation for the upper Thames and Calder 

336 catchments is 0.44° RACMO, whereas for the Glaslyn and Coquet catchments, the 0.11° RACMO and 

337 HIRHAM simulations, respectively, outperform the rest. This implies that biases from the high-resolution 

338 simulations are smaller for the catchments with complex topography, which is better represented by the 

339 0.11° simulations. The biases are a consequence of systematic model biases in the elevation and a lack of 

340 representation of the elevation variability. Nevertheless, for larger and flatter catchments the simulation skill 

341 from both resolutions is similar. 

342 3.2.1.2. Precipitation

343 Now we assess the skill of the uncorrected RCMs to simulate precipitation. Overall, RCMs have 

344 biases when simulating extremes. For instance, the SDII ratio is underestimated in all catchments by the 

345 0.44° simulations (Figs. 4a, S1a and S2a), except for the Coquet (Fig. S3a). In all catchments the RX1day 

346 is overestimated by both resolutions between 24% and 93%.  The R10 and R20 are underestimated at the 

347 Glaslyn catchment between -23 and -77 days and between -16 and -45 days, respectively (Fig. S1d). 

348 Similarly, in the Calder catchment R10 and R20 are underestimated by the 0.44° simulations between -5 

349 and -10 days and between -3 and -4 days, respectively (Fig. S2d). These results indicate that the 

350 uncorrected models can provide unrealistic simulations of extreme precipitation. 

351 It is expected that the models simulate the precipitation mean better than the extremes. Even 

352 though the spread of the models includes the observed mean precipitation for most catchments, there are 

353 cases when this does not happen. The annual mean precipitation is underestimated by both resolutions in 

354 the Glaslyn catchment between -22% and -67% (Fig. S1c). This may be because the analysed RCMs do 

355 not correctly simulate convective precipitation. In the Calder catchment the 0.44° simulations underestimate 

356 the annual mean precipitation between -7% and -16% (Fig. S2c). This can be due to local precipitation not 
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357 being correctly simulated by the coarse models. The absolute monthly mean precipitation bias for both 

358 resolutions varies between 7% and 67% in all study cases (Figs. 4c, S1c, S2c and S3c). 

359 The simulated precipitation bias spread increases in all catchments as the percentile increases. 

360 The spread of the 0.11° simulations is larger than for the 0.44° simulations (Fig. 5, first row). In the upper 

361 Thames catchment, the 0.11° simulations reach their largest spread, -1 to 4 mm/day, above the 95th 

362 percentile whereas the largest spread of the 0.44° RCMs ranges from -1 to 1 mm/day (Fig. 5a). In the 

363 Glaslyn catchment, the bias spread deviates from the observations at the 50th percentile for the 0.44° 

364 simulations and at the 60th percentile for the 0.11° simulations (Fig. 5d). In the Calder catchment, the 0.11° 

365 simulations spread includes the no bias threshold for the whole distribution whereas the 0.44° simulations 

366 spread deviates from that threshold at the 70th percentile (Fig. 5g). In the Coquet catchment, the spread 

367 from both resolutions includes the zero bias threshold for almost all percentiles (Fig. 5j). 

368 The dry and wet spell biases are important for the simulation of river flow as this is influenced by 

369 the daily sequence of the wet/dry conditions. The absolute dry spell bias for both resolutions in all 

370 catchments range between 0.2 to 1.6 days, with a similar simulation skill in all catchments (Figs. 4b, S1b, 

371 S2b, S3b). Likewise, the absolute wet spell bias for both resolutions varies between 0.1 and 1.6 days in all 

372 catchments (Figs. 4b, S1b, S2b, S3b). Biases in the upper Thames for this measure are smaller, 0.2 to 0.6 

373 days (Fig. 4b), compared to the other catchments. These results do not show large simulation biases. 

374 Considering the time-series based indices, correlation coefficients are above 0.4 and below 0.8 in all 

375 catchments, showing differences between the daily observations and simulations (Figs. 4c, S1c, S2c, S3c). 

376 Considering the ranking for all indices, only for the Glaslyn catchment do all the 0.11° simulations 

377 outperform their 0.44° version (Table 6, last column). From the five RCMs, two 0.11° simulations outperform 

378 their low-resolution version for the Upper Thames and three for the Calder and Coquet catchments. The 

379 0.11° CCLM and WRF have better simulation skill than their 0.44° version in all catchments. In contrast, for 

380 HIRHAM and RCA, the improvement is only observed in one catchment. For the latter models, there is no 

381 added value from increasing the resolution as the simulation processes occurring at higher resolutions than 

382 the 0.44° gridbox do not improve the results, possibly due to an inappropriate physical representation.  The 
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383 0.11° CCLM is the best performer in all catchments, except for the Glaslyn where 0.11° HIRHAM has the 

384 highest rank. 

385 All high-resolution simulations outperform their coarse simulations at the Glaslyn catchment due to 

386 the differences between the sizes of the catchment and the different cells. Thus, increasing the RCM 

387 resolution increases their simulation skill for catchments with larger elevation variability because the RCMs 

388 are able to represent the high-resolution features. In general, increasing the RCM resolution reduces the 

389 simulation biases in the upper tail of the distribution, but there are also high-resolution models that 

390 consistently overestimate precipitation (e.g. RCA in Figs. 4, S1, S2, S3). The low-resolution models do not 

391 simulate the small-sized catchment accurately. In contrast, the flat and large catchments are simulated 

392 similarly by both resolutions, showing no added value from increasing RCM resolution.

393 3.2.1.3. River flow

394 Now, we evaluate the RCM skill in providing inputs for simulating the river flow in each catchment. 

395 In the upper Thames, the 0.11° RCMs overestimate the spring discharge by between 16% and 194% (Fig. 

396 6a). Both resolutions underestimate all indices in the Glaslyn catchment (Fig, S4). In the Calder catchment, 

397 the 0.44° RCMs underestimate the annual (-9% to -31%) and autumn (-10% to -50%) flows, whereas the 

398 0.11° RCMs overestimate the discharge during winter (3% to 63%) and spring (22% to 104%) (Fig. S5a). 

399 Also, the Q10 and Q10 annual frequency are underestimated by the 0.44° RCMs (Fig. S5b and c). In the 

400 Coquet catchment, the winter mean discharge is underestimated by the 0.44° RCMs by between -7% and 

401 -42% and during summer it is overestimated by the 0.11° RCMs by between 2% and 218% (Fig. S6a). In 

402 addition, the Q95 is overestimated by the 0.11° simulations. 

403 Except for the Glaslyn catchment, the multi-model simulation spread of the flow duration curve 

404 (FDC) from both resolutions includes the observed FDC entirely (Fig. 7, first row). For the Glaslyn catchment, 

405 both resolutions underestimate the FDC with the 0.11° simulation spread being closer to the observed FDC 

406 (Fig. 7d). The 0.44° simulation spread is larger than the 0.11° spread in the Coquet, but smaller in the upper 

407 Thames. In the remaining catchments, the spreads of both resolutions are similar. 

408 Overall, the maximum monthly NSE values are 0.42 for the Upper Thames (Fig. 6e), 0.22 for the 

409 Glaslyn (Fig. S4e), 0.67 for the Calder (Fig. S5e) 0.26 for the Coquet catchment (Fig. S6e), indicating that 
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410 the best river flow simulation is moderate to poor for all catchments except for the Calder.  In contrast, the 

411 minimum NSE values are negative in all catchments, implying that there are RCM outputs that generate 

412 unreliable river flow simulations even at the monthly times step. Negative NSE values can be a result of 

413 river flow overestimation in all indices, for instance 0.11° RCA and HIRHAM in the Calder and Coquet 

414 catchments. The Spearman correlation coefficients of the daily river flow are higher for the upper Thames 

415 and Calder and smaller for the Glaslyn and Coquet, indicating that the RCMs are able to simulate the daily 

416 river flow sequence better on the large and flat sites compared to the small and topographically-complex 

417 catchments (Fig. 67f, S4f, S5f and S6f).

418 Comparing their skill in simulating all indices by means of their rank, three 0.11° simulations 

419 outperform their 0.44° version in the Upper Thames, five in the Glaslyn, one in the Calder and two in the 

420 Coquet catchment (Table 7, last column). Overall, for both resolutions, biases in particular indices are large 

421 and the skill of the pairwise indices (NSE, MSE, correlation) is low. The 0.11° simulation biases are 

422 consistently smaller than the 0.44° biases only for the Glaslyn catchment due to the difference between the 

423 catchment and the 0.44° RCM cell size. However, for this catchment biases are large even for the high-

424 resolution simulations indicating that subgrid processes that result in precipitation increases are not 

425 represented by the models. Only CCLM gives better simulation skill for its high-resolution in all catchments.

426 3.2.2.Bias-corrected RCM simulations

427 3.2.2.1. Temperature

428 Bias-correction reduces the mean and percentile biases by construction (Figs. 3e,f,g,h). Thus, the 

429 skill of all RCMs becomes similar in all catchments, as expected. Overall, the larger distribution biases are 

430 for the 1st and 99th temperature percentiles, with biases lower than 1°C (Figs. 2, i). Even though these 

431 percentiles have the largest biases after bias correction, as may be expected the biases are smaller than 

432 those of the uncorrected RCMs. QM does not improve the daily sequence simulation. As a consequence, 

433 there is only a slight change in the Pearson correlation coefficient of the daily time series (Figs. 2, iii). 
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434 3.2.2.2. Precipitation

435 3.2.2.2.1. Gamma distribution QM

436 The skill of both RCM resolutions becomes similar after application of GQM. Nevertheless, biases 

437 are not reduced for the 95th percentile, SDII ratio, wet spell length, R95p and R20 in the Upper Thames, for 

438 RX1day in the Calder and for the SDII ratio in the Coquet catchment. These indices evaluate the extremes, 

439 which are inflated by the correction method (Cannon et al., 2015), and the precipitation intensity. 

440 Considering the indices that are not based on the distribution, the Spearman correlation slightly 

441 increases after GQM (Figs. 4c, S1c, S2c and S3c) whereas for the MSE the multi-model ensemble bias is 

442 reduced, but there are cases when the biases of individual RCMs increase (Figs. 4c, S1c, S2c and S3c). 

443 The same happens for the wet and dry spell lengths (Figs. 4b, S1b, S2b and S3b) and RX1day (Figs. 4c, 

444 S1c, S2c and S3c). The multi-model bias spread from both resolutions is similar and smaller than 1 mm/day 

445 up to the 90th percentile in all catchments (Fig. 5, second row). Above the 90th percentile, the spread of both 

446 resolutions increases exponentially. The bias spread in the extremes is larger for the Glaslyn catchment 

447 possibly as a consequence of the bias magnitude of the original uncorrected simulation (Fig. 5e). 

448 3.2.2.2.2. Double Gamma distribution QM

449 After applying the DGQM method, the skill with respect to distribution-based indices from all RCMs 

450 at both resolutions becomes similar. The biases for most distribution-based indices are reduced compared 

451 to both uncorrected and GQM. In all catchments, the biases are lower than 1 mm/day below the 99th 

452 percentile after which biases increase. Thus, DGQM reduces the percentile biases in all catchments 

453 compared to GQM. For the 90th precipitation percentile the DGQM approach increases the biases in all 

454 catchments because at this percentile the method segments the precipitation distribution, generating an 

455 increment in the bias.  Nevertheless, this increase is approximately + 1 mm/ day in all catchments except 

456 the Glaslyn. Additionally, the simulation bias spread of both resolutions is similar for all catchments, as 

457 expected (Fig. 5, last row).

458 For the extreme and precipitation intensity measures, DGQM reduces the biases compared to GQM 

459 except for the RX1day and SDII ratio in the Upper Thames , R20 in the Glaslyn, R10 in the Calder and the 

460 SDII ratio in the Coquet catchment. The simulation skill of the uncorrected models and the GQM and DGQM 
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461 approaches is similar in all catchments for the Spearman daily correlation coefficient. Overall, the DGQM 

462 provides outputs with smaller biases for most of the indices compared to the uncorrected and GQM 

463 simulations.

464 3.2.2.3. River flow

465 3.2.2.3.1. Gamma distribution QM

466 River flow is simulated using the GQM precipitation and temperature as drivers. GQM decreases 

467 the bias of all indices in every catchment, except for the Q10 in the upper Thames catchment (Fig. 6c). The 

468 bias-corrected FDC simulation spread decreases for both resolutions in all catchments (Fig. 7, second row). 

469 The observed FDC is completely included within the spread of both resolutions showing a good simulation 

470 of the entire distribution. 

471 From the pairwise indices, the skill of the multi-model ensemble improves for the monthly NSE (Fig. 

472 6e) and the spread of the daily MSE is reduced in most cases. However, GQM can result in negative NSE 

473 values for some models that had positive values when these were not bias-corrected (e.g. 0.44° RACMO 

474 and HIRHAM in the Upper Thames). The Spearman correlation of daily time series increases slightly in all 

475 cases (Fig. 6f, S4f, S5f and S6i). 

476 3.2.2.3.2. Double Gamma distribution QM

477 The DGQM approach decreases the biases for all the distribution-based indices compared to both 

478 uncorrected and GQM with the exception of Q95 for the Glaslyn catchment. Considering the non-

479 distribution-based indices, the NSE and MSE are not improved for the Coquet catchment. Even though the 

480 biases are reduced, the simulation skill among all RCMs does not become similar for specific cases with 

481 indices involving the extremes and the pairwise simulation (e.g. the Q10 annual frequency, Q10 and NSE 

482 for the Upper Thames, Fig. 6b,c and e). Overall, the daily MSE and monthly NSE simulation skill improves 

483 compared to the GQM approach. Thus implying that the river flow simulation skill is better when using the 

484 DGQM. By construction of the bias correction method, the FDC simulation spread of both resolutions is 

485 similar in shape and amplitude (Fig. 7, bottom row). Compared to GQM, the DGQM simulation spread is 

486 further reduced.
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487 The Spearman correlation coefficient of the daily river flow time series increases slightly with not a 

488 large difference compared to the GQM simulations. Overall, applying the DGQM approach results in smaller 

489 biases compared to the GQM, in specific for the simulations of extremes and the monthly sequence.

490 4. Discussion

491 Regarding our first research question, as to whether the relative performance of the high- resolution 

492 simulations is better than that of the lower-resolution simulations, the results show that the high-resolution 

493 RCMs consistently have a better simulation skill for climate and river flow only in the Glaslyn catchment.  

494 This is mainly because the size of this catchment is smaller than the 0.44° RCM cell, and it has a complex 

495 topography and high precipitation. As a consequence, the skill of the 0.44° simulations in reproducing the 

496 local physical features of this catchment is not good. For the other catchments, all of which are larger in 

497 size and with less complex topography and less precipitation, both resolutions have a similar performance. 

498 Similar results were obtained for the Upper Danube using HIRHAM at resolutions of 50 km x 50 km and 12 

499 km x 12 km (Dankers et al., 2007). Only the skill of CCLM improved when using the high-resolution version. 

500 Kotlarsky et al. (2014) found that CCLM also gave good results when simulating the mean, seasonal and 

501 95th percentile of precipitation over the British Isles. In our study, the remaining RCMs did not improve their 

502 simulation skill, implying that the high-resolution versions of these models do not accurately represent 

503 processes occurring at higher resolutions. 

504 The performance of the two RCM resolutions at simulating temperature was clearly linked to the 

505 topographic characteristics of the study catchments. In the upper Thames and Calder catchments, which 

506 have relatively flat topography, we found that there is no clear added value from the uncorrected high-

507 resolution RCMs; however, in the topographically-complex Glaslyn and Coquet catchments, all 0.11° 

508 simulations outperformed their 0.44° version. These findings are similar to that of Onol et al. (2012) and 

509 Tolika et al. (2016) and it is likely that they can be attributed to the difference in elevation from the grid cells 

510 of the observations and models, and the lack of representation of the spatial variability. Increases in the 

511 simulation skill of local climate when using higher-resolution simulations have been reported before, 

512 particularly for mountainous regions (Evans et al., 2013; Larsen et al., 2013; Tolika et al., 2016). 
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513 The uncorrected 0.11° simulations largely underestimate the precipitation and river flow 

514 observations of the Glaslyn catchment, mainly due to the catchment’s topographic complexity and high 

515 levels of precipitation. Similar results for the Euro-CORDEX RCMs have been obtained for precipitation in 

516 other regions with complex topography (e.g. Casanueva et al., 2016; Prein et al., 2015; Torma et al., 2015). 

517 For the remaining catchments, the multi-model simulation spread of the simulations of both resolutions 

518 includes the observed FDC, indicating that the models are able to provide useful simulations that resemble 

519 the observed river flow. However, the simulation spread can be large; deviations in the annual mean river 

520 flow reach almost 100% for some RCMs. Individual uncorrected RCMs have small biases and satisfactory 

521 simulations of the river flow (e.g. 0.11° CCLM in the Calder and Coquet catchments), but there are also 

522 RCMs that are not able to provide useful simulations. For example, the 0.11° RCA had the largest 

523 precipitation and river flow biases in most indices for all catchments. In contrast, all the bias-corrected RCM 

524 simulations are closer to the observed climate and river flow. Furthermore, the simulation skill from all bias-

525 corrected RCMs at both resolutions becomes similar and as a result, the simulation spread of the multi-

526 model ensemble is reduced compared to the uncorrected simulations, providing a smaller range of possible 

527 scenarios.

528 Our results show that uncorrected RCMs provide river flow simulations that have too much spread 

529 to be able to be used for impact studies (also stated by Kay et al., 2015; Cloke et al., 2013). Both resolutions 

530 have a similar performance when simulating the seasonal mean river flow as there are biases from both 

531 resolutions. However, certain high-resolution models tend to overestimate the seasonal flow largely for 

532 most of the catchments and seasons (e.g. RCA in all catchments and HIRHAM in the Coquet and Calder 

533 catchments). In contrast, the low-resolution CCLM underestimates river flow for all seasons and catchments. 

534 For the medium-sized Calder catchment, individual models have different biases per season but the multi-

535 model ensemble mean shows a consistent underestimation for high-resolution models and underestimation 

536 of river flow for the low-resolution modes. This is not distinguished in the larger Upper Thames nor in the 

537 Coquet catchment. Similar to the annual mean flow, both resolutions underestimate the seasonal flow in 

538 the Glaslyn catchment. In comparison, all the bias-corrected RCMs simulate the river flow much closer to 

539 the observed flows and reduce the simulation spread, thus providing plausible inputs for impact studies. 
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540 Finally, to answer our last research question, we evaluate the simulation skill of DGQM compared 

541 to GQM. Using four catchments with different characteristics, the DGQM provides a better simulation of the 

542 river flow characteristics compared to the QGM approach, with a higher improvement for the simulation of 

543 extremes and the monthly sequence. The GQM systematically reduces the precipitation bias up to the 90th 

544 percentile, but exponentially increases the bias above this percentile. Therefore, to capture the properties 

545 of extremes, we suggest using the DGQM with the 90th percentile as segmentation threshold in contrast to 

546 Yang et al. (2010) who divided the distribution at the 95th percentile. Based on our results, the DGQM 

547 reduces the precipitation and river flow biases of most indices compared to the commonly used GQM. This 

548 is particularly relevant for the analysis of extreme precipitation and high flows as the GQM is usually 

549 employed in flood analysis (e.g. Cloke et al., 2013) and river flow projections (e.g. Prudhomme et al., 2013). 

550 In addition, the DGQM reduces the ensemble spread more than the GQM, without introducing much extra 

551 complexity. However, no bias correction method will remove all biases. Thus, the selection of the method 

552 depends on the requirements of each study (Nguyen et al., 2017) and it should be tested to evaluate 

553 whether the benefits justify their calculation complexities.

554 Ideally, RCMs should not require post-processing techniques to provide simulations which can be 

555 used with confidence (Ehret et al., 2012). However, our results demonstrate large biases for various 

556 diagnostic indices for the reanalysis-driven RCMs. Particular RCMs provide plausible river flow simulations, 

557 for instance, 0.11° CCLM for the Calder catchment when assessing the annual and seasonal means, low 

558 flows, high flow occurrence and pairwise indices. However, the RCM simulation skill is catchment-

559 dependent. Thus, at the moment, bias correction seems to be the best approach to reduce the ensemble 

560 spread and its biases. Nevertheless, bias correction methods should be used carefully for the analysis of 

561 future projections (Cloke et al., 2013) as bias correction cannot correct fundamental problems from the 

562 original climate model (Maraun and Widmann, 2015; Maraun et al., 2017) and the spread of the bias-

563 corrected simulations might not reflect the total real uncertainty. Climate research is focusing on 

564 determining the causes behind the biases (e.g.  Addor et al., 2016) and improving the simulation of the 

565 processes (e.g. Zittis et al., 2017; Meredith et al., 2015). For instance, convection permitting models seek 

566 to improve the simulation of precipitation extremes (Tölle et al., 2017; Gutjahr et al., 2016). However, the 
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567 computational cost of developing such models is large and, as a consequence, the simulation length is 

568 short and the availability of GCM-RCM projections is low.

569 By analysing four catchments with different characteristics, we evaluate the RCM simulation skill in 

570 different contexts. Our results suggest that the small size and the high precipitation (e.g. Glaslyn catchment) 

571 are the main factors related to the better simulation skill from the high-resolution RCMs over the low-

572 resolution models for the simulation of river flow. The importance of topographical complexity and other 

573 characteristics for the simulation outputs is secondary. This is highlighted by the results of the medium-

574 sized Coquet catchment, for which both resolutions have similar simulation skill even with its complex 

575 topography. Although the hydrological model used (HEC-HMS) was chosen as it has been used before in 

576 assessment of climate change impacts (e.g. Babel et al., 2014; Azmat et al., 2015) and acknowledging that 

577 there are a diversity of methods used to simulate the hydrological processes, we note that our results are 

578 unlikely to substantially change when using other hydrological model. We support our statement as we 

579 assess the performance of the different resolutions by evaluating the RCM outputs as well as the 

580 hydrological model outputs, both giving similar results. An assessment of the hydrological model uncertainty 

581 is beyond the scope of this study, but will be the subject of future work.

582 5. Conclusions

583 This study provides information on the added value from increasing RCM resolution and bias 

584 correction techniques for the simulation for river flow. Previous studies have assessed the improvement in 

585 the simulation skill of climate variables due to an increase in the RCM resolution, but this might not 

586 guarantee an improvement in the simulation of the river flow parameters that are relevant for impact studies. 

587 We conducted a comprehensive analysis on how the uncorrected and bias-corrected RCM outputs drive 

588 the simulations of river flow at high and low resolutions. Each RCM used here has the same 

589 parameterisation, domain and driving data at both resolutions, and therefore the comparison only evaluates 

590 the effect of increasing its resolution. We analysed four catchments located at different latitudes within 

591 Great Britain. These catchments vary in climate (e.g. precipitation ranging from 2900 mm yr-1 to 762 mm 

592 yr-1), physical characteristics (flat and complex topographies, areas ranging from 69 km2 to 1616 km2), land 

593 use (varying from urban-dominant to agricultural and natural areas) and hydrological characteristics (e.g. 
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594 annual mean river flow ranging from 15.3 m3 s-1 to 5.8 m3 s-1). We applied a detailed assessment of the 

595 simulation skill of the climate and hydrological models using a set of indices relevant for the analysis of 

596 different impacts.

597 We show that the uncorrected 0.11° RCMs only showed better skill in simulating precipitation and 

598 river flow in the small catchment. This is because the spatial resolution of the 0.44° models is four-times 

599 larger than the catchment size, whereas one cell of the 0.11° model is similar in area to the catchment. 

600 Nevertheless, the high-resolution simulations are not able to accurately represent the complex topography 

601 of this catchment and do not resolve local processes, underestimating the observed precipitation and the 

602 entire FDC. In Australia, Parana Manage et al. (2016) also found that the averaging of topography of gridded 

603 outputs influences on the accurate simulation of rainfall.  

604 Both resolutions capture the temperature and precipitation distribution, as well as the FDC, for the 

605 remaining sites. Thus, in principle, the simulations could be used for climate change assessments. 

606 Nevertheless, for most of the indices, the multi-model variability is large (e.g. the mpe of the annual mean 

607 river flow simulation ranges from 198% to -31% in the Upper Thames, with an average of 49%), making 

608 any interpretation difficult in practice. Only one RCM (CCLM) improves the river flow simulation when using 

609 its high-resolution version in all catchments, implying that the remaining models do not simulate the relevant 

610 high-resolution processes accurately as there is no consistent difference between their high and low 

611 resolution versions. Therefore, there is no added value from using the high-resolution RCMs in those 

612 catchments for the assessment of river flow impacts. 

613 Bias-correction reduces the distribution-based biases for all RCMs and resolutions by construction. 

614 Thus, the bias-corrected high- and low-resolution RCMs have similar simulation skill for the distribution-

615 based indices. There is also less spread from the ensemble simulation of precipitation and river flows (e.g. 

616 the mpe of the annual mean river flow simulations for the Upper Thames ranges from -1% to 16% when 

617 corrected using DGQM, with an average of 7%). Nevertheless, daily pairwise indices, which assess the skill 

618 of the model when simulating the observed time series, are not improved by bias correction. However, the 

619 monthly NSE results indicate that bias correction can improve the pairwise simulation on monthly 

620 timescales. Overall, correcting the RCMs to the local temperature and precipitation provides a reduction of 
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621 the ensemble spread, making the outputs more useful for the analysis of impacts. Nevertheless, it should 

622 be considered that the ensemble spread of uncorrected and corrected models can underestimate the true 

623 simulation uncertainty.

624 In comparison to GQM, DGQM provides a larger reduction in the simulation biases for precipitation 

625 and river flow. The main difference between both methods is the greater correction from DGQM for 

626 precipitation extremes (95th percentile, R10, R20, R95p) and high flows (Q10 and Q10 annual frequency). 

627 The monthly NSE consistently shows an improvement in the simulation skill of RCMs that are corrected 

628 using DGQM. Overall, for most of the RCMs and considering the results from all indices, the DGWM 

629 outperforms GQM.

630 Our study shows that an increase in RCM resolution does not always imply a better simulation of 

631 hydrological impacts, especially for large catchments. In contrast, small catchments with complex 

632 topography are still difficult to be simulated accurately by high-resolution models, concurring with Dankers 

633 et al (2007). The uncorrected RCM ensemble generally provides a large spread which makes it difficult to 

634 use for impact assessment. Similar outcomes have been obtained for other regions, for example Australia 

635 (Lockart et al. 2016), Canada and China (Wang et al. 2019).  Bias-correction provides an alternative to 

636 reduce the biases and multi-model spread, making decision-making easier. From the methods evaluated 

637 here, DGQM reduces most of the RCM biases without much more complexity added to the bias-correction 

638 method employed when using GQM. However, and agreeing with Cloke et al. (2013), Huang et al. (2014) 

639 and Lockart et al. (2016), the bias-corrected outputs should be used carefully when evaluating changes in 

640 very extreme flows as the correction inflates the simulated extremes. Compared to previous studies, we 

641 can state that our results are robust as we included a larger number of RCMs with different 

642 parameterisations for our analysis. 

643 Whilst effective, bias correction adds extra uncertainty to the analysis chain (Cloke et al., 2013; 

644 Rummukainen, 2016). Therefore, it must be used with consideration of its limitations: dependence on the 

645 training period (Lafon et al., 2013), assumption of temporal stability of the correction function (Chen et al., 

646 2015), issues of sub-grid variability and inflation of variance (Maraun, 2013), inter-variable consistency 

647 (Wilcke et al., 2013), spatial representation over complex terrain (Maraun and Widmann, 2015) and biases 
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648 from the driving data (Maraun et al., 2017). The extent to which the climate change signal is altered must 

649 also be considered (Maraun, 2013; Velázquez et al., 2015) along with the possibility that bias correction 

650 can produce larger biases for extremes than for the mean (Huang et al., 2014). Additionally, we 

651 acknowledge that using different data to drive the RCMs used in this study, for instance a GCM, could give 

652 different results, as could the use of a different hydrological model.

653 Our results can provide an insight on whether RCMs of high(er) resolution improve the simulation skill. 

654 These can be useful for regions of similar characteristics where high(er)-resolution RCMs have not been 

655 developed yet and would require considerable time and effort to be produced. If used, bias-correction 

656 methods should be tested for the specific analysis that will be performed. This study provided different 

657 methods to perform this testing for the different RCMs and bias-correction methods for climatology and 

658 hydrology.
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667
668
669 Tables
670 Table 1. Characteristics of the study sites

Upper 
Thames Glaslyn Calder Coquet

Area (km2) 1616 69 316 346
Maximum elevation (masl1) 330 1080 556 775
Minimum elevation (masl1) 52 30 40 71
Mean annual precipitation 
(mm/year) 762 2957 1251 968
Mean annual temperature (°C) 9.7 8.1 8.4 7.4
Mean annual PET (mm/yr) 522 477 486 473
Mean annual river flow (m3/s) 15.3 5.8 8.8 6.1
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Precipitation 90th percentile 
(mm/day) 6.7 24.4 10.3 7.7
Precipitation 95th percentile 
(mm/day) 10.2 34.2 14.8 11.9
2Q10 (m3/s) 34.8 13.5 19.9 12.4
3Q95 (m3/s) 1.90 0.55 1.99 0.84

671 1 Meters above the sea level 
672 2 River flow that is exceeded for 10% of the daily river flow time series
673 3 River flow that is exceeded for 95% of the daily river flow time series
674
675
676 Table 2. RCMs used in this study

RCM Institute Period Reference
CCLM-

CLMCOM
Brandenburg University of 

Technology (BTU)
1989-2008 Böhm et al., 2006; Rockel et al., 

2008
HIRHAM 5 Danish Meteorological Institute (DMI) 1989-2008 Christensen et al., 1998

RACMO22E Royal Netherlands Meteorological 
Institute (KNMI)

1979-2008 Van Meijgaard et al., 2012

RCA4 Swedish Meteorological and 
Hydrological Institute (SMHI)

1984-2008 Samuelsson et al., 2011

WRF 3.3.1 Institute Pierre Simon Laplace (IPSL) 
and Institute National de 

l’Environment Industriel et des 
Risques (INERIS)

1989-2008 Skamarock et al., 2008

677
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678 Table 3. Description of the precipitation, temperature and river flow indices used in this study
Index Description Performance measure
Precipitation
95th percentile A measure of very extreme events: 95th percentile of daily precipitation Bias (mm/day)
90th percentile A measure of extreme events: 90th percentile of daily precipitation Bias (mm/day)
50th percentile 50th percentile of daily precipitation Bias (mm/day)
25th percentile 25th percentile of daily precipitation Bias (mm/day)
a Wet spell length Mean wet spell length for a given month of the year Bias (days)
a Dry spell length Mean dry spell length for a given month of the year Bias (days)
a Annual mean precipitation Annual accumulated precipitation Mean percentage error
a Monthly mean precipitation Accumulated precipitation for a given month of the year Mean percentage error
b Relative daily MSE Mean daily square error, shown as ratio to the largest MSE result (considering both corrected 

and uncorrected RCMS) 
MSE (ratio)

b Spearman correlation coefficient Spearman correlation coefficients between the daily simulated and observed time series Index
a Maximum  one day precipitation 
(RX1day)

Maximum one-day precipitation for a given month of the year Mean percentage error

a Simple Daily Intensity Index (SDII) Ratio of the annual total precipitation to the number of wet days (>1 mm) in all years Index
a Number of heavy precipitation days (R10) Mean number of days with precipitation > 10mm within a year Bias (days)
a Number of very heavy precipitation days 
(R20)

Mean number of days with precipitation > 20mm within a year Bias (days)

a Very wet days (R95p) Mean annual accumulated precipitation from days > 95th percentile in all years Mean percentage error
Temperature
a Annual mean temperature Annual mean temperature over the validation period Mean percentage error
a Monthly mean temperature Monthly mean temperature Mean percentage error
99th percentile of daily mean temperature 99th percentile of the daily mean temperature Bias (°C/day)
1st percentile of daily mean temperature 1st percentile of the daily mean temperature Bias (°C/day)
b Pearson correlation coefficient Pearson correlation coefficient between the daily RCM and observation time series Index
River Flow
Q10 A measure of high flows: river flow that is exceeded for 10% of the daily river flow time series Bias (m3/s)
Q95 A measure of low flows: river flow that is exceeded for 95% of the daily river flow time series Bias (m3/s)
a Annual Q10 frequency Mean number of days for which the observed Q10 is exceeded within a year Bias (days)
a Annual mean river flow Annual mean daily river flow over the validation period Mean percentage error
a Winter (DJF) mean river flow Winter mean daily river flow over the validation period Mean percentage error
a Spring (MAM) mean river flow Spring mean daily river flow over the validation period Mean percentage error
a Summer (JJA) mean river flow Summer mean daily river flow over the validation period Mean percentage error
a Autumn (SON) mean river flow Autumn mean daily river flow over the validation period Mean percentage error
b Monthly NSE Monthly Nash Sutcliffe Efficiency index Index
b Relative daily MSE Mean daily square error, shown as ratio to the largest MSE result (considering both corrected 

and uncorrected RCMS) 
MSE (ratio)

b Spearman correlation coefficient Spearman correlation coefficient between the daily simulated and observed time series Index
a Estimated using the long term mean (one value over the entire series)
b Estimated considering the time series values (one value per time step)
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680 Table 4. Indices from the calibration and validation of the hydrological models
681

    Q10 bias Q95 bias

Catchment Step Period
Daily 
NSE (m3/s) (%) (m3/s) (%)

Calibration 1986-2010 0.70 -2.1 -6 -0.45 -25Upper Thames
Validation 1961-1985 0.57 1.5 5 -0.90 -44
Calibration 1991-2010 0.78 1.0 8 -0.07 -11Glaslyn
Validation 1971-1990 0.78 0.7 5 -0.03 -6
Calibration 1994-2010 0.62 1.5 8 -0.31 -16Calder
Validation 1976-1993 0.60 1.3 7 -0.24 -12
Calibration 1992-2010 0.63 1.3 11 -0.24 -27Coquet
Validation 1973-1991 0.52 -0.6 -5 -0.25 -31

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
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708 Table 5. RCM rank for the temperature indices for each catchment: 1 = best, 10 = worst. The asterisks (*) 
709 indicate the resolution with the best simulation skill of each RCM in each catchment

  
99th 

percentile
1st 

percentile
Annual 
mean

Monthly 
mean Correlation 

Average 
score Ranking  

0.11°CCLM 10 7 2 9 1 5.8 6 *
0.11°HIRHAM 3 9 3 5 6 5.2 5  
0.11°RACMO 2 8 9 7 4 6.0 7  
0.11°RCA 7 5 10 10 5 7.4 10  
0.11°WRF 4 1 5 4 8 4.4 2 *
0.44°CCLM 9 10 1 8 2 6.0 7  
0.44°HIRHAM 1 6 4 3 9 4.6 3 *
0.44°RACMO 5 4 7 2 3 4.2 1 *
0.44°RCA 8 2 6 1 7 4.8 4 *

Upper 
Thames

0.44°WRF 6 3 8 6 10 6.6 9  
0.11°CCLM 9 2 4 3 1 3.8 3 *
0.11°HIRHAM 7 6 2 4 7 5.2 5 *
0.11°RACMO 3 7 1 1 4 3.2 1 *
0.11°RCA 2 4 3 2 6 3.4 2 *
0.11°WRF 4 8 5 6 10 6.6 7 *
0.44°CCLM 10 1 6 5 2 4.8 4  
0.44°HIRHAM 8 3 8 7 9 7.0 8  
0.44°RACMO 5 5 7 8 3 5.6 6  
0.44°RCA 6 9 9 9 5 7.6 9  

Glaslyn

0.44°WRF 1 10 10 10 8 7.8 10  
0.11°CCLM 9 7 8 8 1 6.6 7  
0.11°HIRHAM 5 9 7 7 5 6.6 7  
0.11°RACMO 8 10 10 10 4 8.4 9  
0.11°RCA 10 8 9 9 6 8.4 9  
0.11°WRF 7 3 1 4 8 4.6 4 *
0.44°CCLM 6 6 6 5 2 5 5 *
0.44°HIRHAM 4 2 2 1 9 3.6 2 *
0.44°RACMO 2 4 5 2 3 3.2 1 *
0.44°RCA 3 1 4 3 7 3.6 2 *

Calder

0.44°WRF 1 5 3 6 10 5 5  
0.11°CCLM 9 2 2 3 2 3.6 3 *
0.11°HIRHAM 1 3 3 2 5 2.8 1 *
0.11°RACMO 3 7 9 7 4 6.0 5 *
0.11°RCA 7 6 8 4 6 6.2 6 *
0.11°WRF 5 1 1 1 8 3.2 2 *
0.44°CCLM 4 4 7 5 1 4.2 4  
0.44°HIRHAM 10 8 5 6 9 7.6 9  
0.44°RACMO 6 9 6 9 3 6.6 8  
0.44°RCA 2 5 10 8 7 6.4 7  

Coquet

0.44°WRF 8 10 4 10 10 8.4 10  
710
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711 Table 6. RCM rank for precipitation: 1-best, 10-worst. The asterisks (*) indicate the resolution with the best simulation skill of each RCM in each catchment

  
Pr 

95th
Pr 

90th
Pr 

50th
Pr 

25th
Annual 
Mean

Monthly 
MSE

Dry 
Spell

Wet 
Spell 

Monthly 
Mean Correl. SDII R10 R20 R95p RX1day

Average 
score Ranking  

0.11°CCLM 8 5 1 2 5 2 1 4 5 1 6 8 4 8 2 4.1 1 *
0.11°HIRHAM 7 4 4 3 3 5 6 6 1 3 5 7 6 3 7 4.7 4  
0.11°RACMO 3 2 9 8 7 3 4 5 4 10 9 3 5 5 9 5.7 8  
0.11°RCA 10 10 10 10 10 10 10 10 10 6 2 10 10 10 8 9.1 10  
0.11°WRF 1 1 6 7 6 8 7 3 8 5 7 1 3 1 3 4.5 2 *
0.44°CCLM 9 9 2 1 8 4 3 8 7 2 4 9 8 9 1 5.6 7  
0.44°HIRHAM 5 6 3 5 2 7 5 9 3 7 3 4 1 4 5 4.6 3 *
0.44°RACMO 4 3 5 6 4 1 2 2 2 9 8 5 7 6 6 4.7 4 *
0.44°RCA 2 8 8 4 9 9 9 1 9 4 1 2 1 2 4 4.9 6 *

U
pp

er
 T

ha
m

es

0.44°WRF 6 7 7 9 1 6 8 7 6 8 10 6 9 7 10 7.1 9  
0.11°CCLM 5 5 8 2 5 5 6 5 5 1 5 5 5 5 5 4.8 5 *
0.11°HIRHAM 1 1 6 5 1 3 5 3 2 3 1 3 1 1 1 2.5 1 *
0.11°RACMO 3 3 3 9 3 1 3 8 3 2 3 2 3 2 4 3.5 3 *
0.11°RCA 2 2 2 10 2 2 8 6 1 6 2 1 2 3 2 3.4 2 *
0.11°WRF 4 4 1 6 4 4 4 4 4 7 4 4 4 4 3 4.1 4 *
0.44°CCLM 10 9 10 3 9 9 9 9 9 5 9 9 9 8 7 8.3 9  
0.44°HIRHAM 9 10 9 1 10 10 10 10 10 9 7 10 10 9 9 8.9 10  
0.44°RACMO 7 7 4 7 7 7 2 1 7 4 10 7 7 7 8 6.1 7  
0.44°RCA 8 8 7 4 8 8 7 7 8 8 8 8 8 10 10 7.8 8  

G
la

sl
yn

0.44°WRF 6 6 5 8 6 6 1 2 6 10 6 6 6 6 6 5.7 6  
0.11°CCLM 1 2 2 1 1 1 2 3 1 1 1 2 2 2 9 2.1 1 *
0.11°HIRHAM 10 10 8 5 9 9 7 8 9 5 7 9 10 10 10 8.4 9  
0.11°RACMO 2 1 9 9 3 5 5 9 4 4 4 1 1 1 3 4.1 2 *
0.11°RCA 9 9 10 10 10 10 10 10 10 6 3 10 9 9 1 8.4 9  
0.11°WRF 3 3 6 4 6 8 6 5 7 8 2 4 3 3 8 5.1 5 *
0.44°CCLM 6 7 4 2 8 3 4 4 8 2 5 7 4 6 2 4.8 3  
0.44°HIRHAM 4 4 1 3 7 4 9 6 6 7 6 3 5 4 5 4.9 4 *
0.44°RACMO 8 8 7 7 5 2 3 1 3 3 10 8 8 8 6 5.8 7  
0.44°RCA 7 6 3 6 4 7 8 2 5 9 8 6 7 7 7 6.1 8 *

C
al

de
r

0.44°WRF 5 5 5 8 2 6 1 7 2 10 9 5 6 5 4 5.3 6  
0.11°CCLM 4 5 1 1 2 1 1 3 1 1 3 4 2 1 2 2.1 1 *
0.11°HIRHAM 6 9 9 7 9 9 9 7 9 5 1 7 5 6 4 6.8 8  
0.11°RACMO 5 3 6 8 1 3 7 5 2 4 9 5 4 5 5 4.8 4 *
0.11°RCA 10 10 10 10 10 10 10 10 10 9 7 10 9 10 1 9.1 10  
0.11°WRF 2 1 5 3 3 6 5 6 3 7 5 2 1 2 3 3.6 2 *
0.44°CCLM 7 6 4 2 8 4 3 8 7 2 3 6 7 7 6 5.3 6  
0.44°HIRHAM 3 2 8 9 4 5 8 2 4 8 1 1 3 4 8 4.7 3 *
0.44°RACMO 8 7 3 4 6 2 2 4 6 3 9 8 10 9 10 6.1 7  
0.44°RCA 1 4 7 5 5 8 6 1 5 6 7 3 6 3 7 4.9 5 *

Coquet

0.44°WRF 9 8 2 6 7 7 4 9 8 10 5 9 8 8 9 7.3 9  
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712 Table 7. RCM rank for river flow: 1-best, 10-worst. The asterisks (*) indicate the resolution with the best simulation skill of each RCM in each catchment

  
Annual 
mean

Winter 
mean

Spring 
mean

Summer 
mean

Autumn 
mean

Monthly 
NSE

Daily 
MSE Correl. Q10

Q10 
frequency Q95

Average 
score Rank  

0.11° CCLM 1 2 2 3 3 1 1 4 1 1 1 1.8 1 *
0.11° HIRHAM 3 4 4 2 1 3 3 1 3 3 4 2.8 2 *
0.11° RACMO 8 9 8 6 9 9 8 7 8 8 9 8.1 9  
0.11° RCA 10 10 10 10 10 10 10 10 10 10 10 10.0 10  
0.11° WRF 7 1 6 9 5 6 6 8 5 6 8 6.1 6 *
0.44° CCLM 4 7 1 4 7 2 2 3 6 4 3 3.9 4  
0.44° HIRHAM 2 5 3 1 2 4 5 5 2 2 2 3.0 3  
0.44° RACMO 5 6 5 5 6 5 4 2 4 5 7 4.9 5 *
0.44° RCA 9 8 9 7 8 8 9 6 9 9 6 8.0 8 *

Upper 
Thames

0.44° WRF 6 3 7 8 4 7 7 9 7 7 5 6.4 7  
0.11° CCLM 5 5 5 6 6 5 5 4 5 5 8 5.36 5 *
0.11° HIRHAM 1 1 1 4 1 1 3 2 1 1 4 1.82 1 *
0.11° RACMO 2 2 2 3 3 2 1 1 2 2 2 2 2 *
0.11° RCA 3 3 3 1 2 3 2 6 3 3 1 2.73 3 *
0.11° WRF 4 4 4 2 4 4 4 5 4 4 3 3.82 4 *
0.44° CCLM 9 9 10 10 10 9 9 8 10 8 9 9.18 9  
0.44° HIRHAM 10 10 9 9 9 10 10 9 9 8 10 9.36 10  
0.44° RACMO 7 6 7 8 7 7 7 3 7 7 6 6.55 7  
0.44° RCA 8 8 8 7 8 8 8 10 8 10 7 8.18 8  

Glaslyn

0.44° WRF 6 7 6 5 5 6 6 7 6 6 5 5.91 6  
0.11° CCLM 2 2 6 4 5 2 1 2 1 1 1 2.45 2 *
0.11° HIRHAM 9 10 9 8 9 9 9 4 9 9 9 8.55 9  
0.11° RACMO 6 6 7 6 6 5 6 3 6 8 8 6.09 6  
0.11° RCA 10 9 10 10 10 10 10 9 10 10 10 9.82 10  
0.11° WRF 7 8 8 9 2 8 8 6 7 7 7 7 8  
0.44° CCLM 8 5 5 7 8 6 3 5 8 6 6 6.09 6  
0.44° HIRHAM 5 4 3 5 7 4 5 10 5 5 4 5.18 5 *
0.44° RACMO 3 3 2 1 1 1 2 1 3 2 2 1.91 1 *
0.44° RCA 4 7 4 3 3 7 7 8 4 4 5 5.09 4 *

Calder

0.44° WRF 1 1 1 2 4 3 4 7 2 3 3 2.82 3 *
0.11° CCLM 1 5 1 1 6 4 5 1 4 1 1 2.73 1 *
0.11° HIRHAM 9 6 9 9 8 9 9 5 8 9 9 8.18 9  
0.11° RACMO 7 1 7 7 5 6 3 6 2 2 8 4.91 5  
0.11° RCA 10 10 10 10 10 10 10 10 10 10 10 10 10  
0.11° WRF 2 2 2 5 2 2 6 4 1 3 5 3.09 2 *
0.44° CCLM 8 9 8 4 9 7 2 2 9 8 2 6.18 7  
0.44° HIRHAM 6 3 4 8 7 8 8 9 5 7 7 6.55 8 *
0.44° RACMO 3 7 3 2 3 1 1 3 6 6 4 3.55 3 *
0.44° RCA 5 4 6 6 4 5 7 7 3 4 6 5.18 6 *

Coquet

0.44° WRF 4 8 5 3 1 3 4 8 7 5 3 4.64 4  
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956 Figure 1. Location of the study catchments (outlet marked with a triangle) and the RCM grid boxes used for their 
957 simulation. The 0.11° and 0.44° grid boxes are shown with solid and dashed lines, respectively
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959 Figure 2. Results of the temperature performance measures, described on Table 3, for the a) upper Thames, b) Glaslyn, c) 
960 Calder and d) Coquet catchments. Filled symbols represent the 0.11° RCMs and empty symbols represent the 0.44° RCMs. 
961 Please note the differences in the y-axis (BC = Bias corrected)
962
963 Figure 3. Temperature percentile biases for the uncorrected and bias-corrected RCMs. The solid fill represents the spread 
964 form the 0.44° RCMs and the dotted fill is the spread from the 0.11° RCMs
965
966 Figure 4. Results of the precipitation performance measures for the upper Thames catchment. Filled symbols represent 
967 the 0.11° RCMs and empty symbols represent the 0.44° RCMs. Please note the differences in the y-axis. For definitions of 
968 the performance measures refer to Table 3 (BC-1G = Bias corrected using the Gamma distribution QM approach, BC-2G = 
969 Bias corrected using the Double Gamma distribution approach)

970 Figure 5. Precipitation percentile biases for the uncorrected and bias-corrected RCMs using the Gamma distribution 
971 (GQM) and Double Gamma distribution (DGQM) QM. The solid fill represents the spread of the 0.44° RCMs and the dotted 
972 fill the spread of the 0.11° RCMs. The 90th precipitation percentile is represented by a vertical dotted line
973
974 Figure 6. Results of the river flow performance measures for the upper Thames catchment. Filled symbols represent the 
975 0.11° RCMs and empty symbols represent the 0.44° RCMs. Please note the differences in the y-axis. For definitions of the 
976 performance measures refer to Table 3 (GQM = Gamma distribution Quantile Mapping and DGQM = double Gamma 
977 distribution Quantile Mapping)
978
979 Figure 7. Flow duration curve biases from using the uncorrected and bias-corrected temperature and precipitation 
980 simulations. The 0.44° RCMs spread is shown with a solid fill, the 0.11° RCMs spread with a dotted fill and the reference 
981 FDC with a solid line. (GQM = Gamma distribution Quantile Mapping and DGQM = double Gamma distribution Quantile 
982 Mapping)
983
984 Figure S1. Similar to Figure 5 but for the Glaslyn catchment
985
986 Figure S2. Similar to Figure 5 but for the Calder catchment 
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988 Figure S3. Similar to Figure 5 but for the Coquet catchment
989
990 Figure S4. Similar to Figure 7 but for the Glaslyn catchment
991
992 Figure S5. Similar to Figure 7 but for the Calder catchment
993
994 Figure S6. Similar to Figure 7 but for the Coquet catchment
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996

997

998

999  0.11° and 0.44° RCMs are compared in four catchments using climate and flow indices

1000  The 0.11° simulations had superior skill in one catchment with complex topography

1001  The RCM flow simulation range is large for all catchments at both resolutions

1002  Bias correction improves the monthly but not the daily temporal variability 

1003  Double Gamma quantile mapping outperforms the single Gamma quantile mapping
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