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Abstract

Riparian tree planting is increasingly being used as a strategy to shade river corridors and

offset the impact of climate change on river temperature. Because the circumstances

under which tree planting generates the greatest impact are still largely unknown,

researchers are increasingly using process-based models to simulate the impacts of tree

planting (or felling) on river temperature. However, the high-resolution data on existing

riparian tree cover needed to parameterise these models can be difficult to obtain, espe-

cially in data-sparse areas. In this paper, we compare the performance of a river tempera-

ture model parameterised with a range of different tree cover datasets, to assess

whether tree cover data extracted from readily available GIS databases or coarser

(i.e., 2–5 m) digital elevation products are able to generate river temperature simulations

approaching the accuracy of higher resolution structure from motion (SfM) or LiDAR.

Our results show that model performance for simulations incorporating these data is

generally degraded in relation to LiDAR/SfM inputs and that tree cover data from “alter-

native” sources can lead to unexpected temperature model outcomes. We subsequently

use our model to simulate the addition/removal of riparian tree cover from alongside the

river channel. Simulations indicate that the vast majority of the “shading effect” is gener-

ated by tree cover within the 5-m zone immediately adjacent to the river channel, a key

finding with regards to developing efficient riparian tree planting strategies. These

results further emphasise the importance of incorporating the highest possible resolution

tree cover data when running tree planting/clearcutting scenario simulations.

K E YWORD S

climate change, forest cover, geospatial data, process-based model, riparian shade, river

temperature

1 | INTRODUCTION

There is increasing concern that climate change could alter the suitabil-

ity of rivers for socio-economically important fish species, in particular

salmonids which are adapted to cold water environments (Ficke,

Myrick, & Hansen, 2007; Isaak, Wollrab, Horan, & Chandler, 2012;

Jonsson & Jonsson, 2009). It is increasingly accepted that riparian

woodland reduces the sensitivity of rivers to climate forcing and is a

potentially valuable climate mitigation measure (Battin et al., 2007;

Bowler, Mant, Orr, Hannah, & Pullin, 2012; Hannah, Malcolm, Soulsby, &

Youngson, 2008; Seixas, Beechie, Fogel, & Kiffney, 2018). However,

the circumstances and geographical context under which riparian wood-

land has the greatest impact on stream temperature are less well under-

stood. One of the ways in which researchers are currently addressing

this lack of knowledge is through the use of process-based models that

simulate river temperature as a function of input meteorologicalThis article is published with the permission of the Controller of HMSO and the Queen's

Printer for Scotland.
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(e.g., air temperature, humidity, and solar radiation) and hydromorphic

(e.g., discharge, basin topography, and channel morphology) data.

Although the majority of these input variables are relatively straightfor-

ward to measure in the field or can be derived from meteorological

databases or GIS repositories, some of the information required to run

river temperature models can be more difficult to obtain. This is particu-

larly the case for data characterising riparian tree cover. To provide

accurate stream temperature predictions in tree-covered reaches, many

stream temperature models contain routines capable of simulating this

effect, given appropriate data on riparian tree cover and height (see

Dugdale, Hannah, & Malcolm, 2017). However, the availability, quality

and source of these input data can vary substantially (e.g., Garner, Mal-

colm, Sadler, & Hannah, 2014; Loicq, Moatar, Jullian, Dugdale, &

Hannah, 2018; Trimmel et al., 2018). Consequently, tree cover data are

often a considerable source of uncertainty when modelling river tem-

perature in forested reaches (Dugdale, Malcolm, & Hannah, 2019; Loicq

et al., 2018). Given that scientists and practitioners are

currently involved in both the planting (e.g., Davies-Colley, Meleason,

Hall, & Rutherford, 2009; Guillozet, 2015; Holzapfel, Weihs, & Rauch,

2013) and removal (e.g., CASS, 2010; Kiffney, Richardson, & Bull, 2003)

of riparian vegetation with a view to managing stream temperature

and/or water quality, a better understanding of this uncertainty is

important for accurately simulating the thermal response of rivers to

management.

The majority of studies incorporating riparian shading in river tem-

perature models have used GIS polygons to denote the 2D extent of

tree cover (e.g., Chen, Carsel, McCutcheon, & Nutter, 1998; Cox &

Bolte, 2007; Fabris, Malcolm, Buddendorf, & Soulsby, 2018; Sridhar,

Sansone, LaMarche, Dubin, & Lettenmaier, 2004), with heights subse-

quently informed either by attributing sparse field measurements

(e.g., Rutherford, Blackett, Blackett, Saito, & Davies-Colley, 1997;

Theurer, Voos, & Miller, 1984) to the polygons or through look-up

tables (e.g., Bond, Stubblefield, & Van Kirk, 2015; Trimmel et al., 2018)

that relate tree height to species and/or stand age. Although such

methods have been demonstrated to produce reasonable model perfor-

mance metrics, the use of coarse GIS data can sometimes result in an

imprecise representation of true riparian shading (Loicq et al., 2018),

contributing to model uncertainty. To address these shortcomings,

recent research has demonstrated the efficacy of remotely-sensed digi-

tal elevation products from LiDAR (e.g., Justice, White, McCullough,

Graves, & Blanchard, 2017; Loicq et al., 2018; Wawrzyniak, Allemand,

Bailly, Lejot, & Piégay, 2017) or structure from motion (SfM) photo-

grammetry (Dugdale et al., 2019) for parameterising the shading rou-

tines of process-based temperature models. These methods provide

accurate and finely resolved (0.1–1 m) data on the extent and height of

riparian tree cover and largely address the shortcomings of polygon-

based approaches. However, such data can be either (a) costly to obtain

(LiDAR) or (b) require specialist software and hardware to assemble

(SfM). There also exists a third potential source of riparian tree cover

data that occupies an intermediate ground between the GIS polygons

and the finer LiDAR/SfM products, namely medium resolution (1–10 m)

digital elevation products derived from conventional photogrammetric

(Landmap & GetMapping, 2014) or interferometric synthetic

aperture radar (IFSAR) approaches (Intermap Technologies, 2007).

Given that such data are often freely available from national map-

ping agencies for entire countries and are generally of a reasonable

horizontal and vertical accuracy, it is possible that such data may

also be reasonably well-suited for parametrising the riparian shading

routines of river temperature models. However, the ability of these

data to generate reasonable predictions of tree height is largely

unknown, and the authors are not aware of any current temperature

modelling studies incorporating such data. Furthermore, despite the

large potential differences between these different sources of ripar-

ian tree extent and height data, no one has yet conducted a system-

atic intercomparison of their utility for parameterising stream

temperature models. Consequently, there is a concerning lack of

information on the relative accuracy of temperature simulations

resulting from these different approaches.

This paper presents the results of a study to assess the relative

performance of river temperature models parameterised with ripar-

ian tree cover data from a variety of different sources. We

implemented the Heat Source process-based temperature model

(Boyd & Kasper, 2003) on a salmon stream in Scotland and systemat-

ically parameterised the model with tree cover from different

sources, each time comparing simulated and observed water temper-

ature from a series of loggers installed within the stream. Our spe-

cific objectives were

1. To parameterise a river temperature model using tree height data

derived from a range of different geospatial datasets;

2. To compare how model performance varies between these differ-

ent input tree height data and to what extent estimates of the

“riparian woodland effect” vary as a function of input tree height

data; and

3. To understand whether the choice of input tree height data influ-

ences the simulated addition or removal of tree cover and its

impact on stream temperature (with a view to determining

whether the choice of tree cover data affects management

advice).

The findings of this study provide useful guidance on the advan-

tages and limitations of different riparian woodland datasets for

characterising shading in river temperature models.

2 | METHODS

2.1 | Study site

We conducted our study in the lower 2.2 km of the Girnock Burn, a

tributary of the Aberdeenshire River Dee, Scotland (57.0515�N,

3.1048�W; Figure 1). Topography in the catchment ranges from

230 to 862 m above sea level, and geology consists of impermeable

bedrock overlain with glaciofluvial sediments (Malcolm, Soulsby,

Youngson, & Hannah, 2005). Prevailing meteorology is typical of the

Cairngorm mountains, with mean daily air temperatures ranging
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between 0.5–4.0�C in winter and 11.0–13.5�C in summer and a mean

annual precipitation of ~1,100 mm (Hannah, Malcolm, Soulsby, &

Youngson, 2004; Langan et al., 2001; Tetzlaff et al. 2005). Mean dis-

charge within the Girnock Burn is 0.52 m3 s−1 (Scottish Environmental

Protection Agency gauging station gauge ID 12004). The study reach

contains a transition from open heather moorland to seminatural

deciduous woodland with small areas of commercial conifer planta-

tion, typically set back from the riparian zone. Tree cover in the lower

reach creates extensive shading that is known to have a significant

moderating effects on stream temperature during the summer months

(Garner et al., 2014; Hannah et al., 2008; Malcolm, Hannah, Donaghy,

Soulsby, & Youngson, 2004). Further details of the study area can be

found in Langan et al. (2001), Malcolm et al. (2005), Moir, Soulsby,

and Youngson (2002) and Tetzlaff et al. (2005). Details of the riparian

woodland characteristics can be found in Imholt, Soulsby, Malcolm,

and Gibbins (2013).

2.2 | Temperature model

Heat Source Version 9.0.0b19 was used to simulate stream tempera-

tures within the 2.2-km stretch of Girnock Burn. Heat Source is a

process-based model that simulates river temperature as a function of

input meteorological and hydromorphic data. It computes the gain

(loss) of energy at each model node using the equation:

Htotal =Hsw +Hlw +He +Hs +Hb +Ha, ð1Þ

where Htotal is total energy gain (loss) by the river channel, Hsw is net

shortwave radiation flux, Hlw is net longwave radiation flux, He is

latent heat flux, Hs is sensible heat flux, Hb is heat conducted to or

from the river bed, and Ha is advective flux from tributaries or ground-

water/hyporheic exchange (all in watts per square metre). The contri-

bution of these energy gains (losses) to stream temperature is

F IGURE 1 Girnock Burn study reach showing
location of temperature loggers, automated
weather stations and Marine Scotland gauging
station
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calculated as a function of Htotal and the volume, density, velocity, and

specific heat capacity of water passing each model node at each

timestep. In our implementation of Heat Source, Hsw, Hb, and the trib-

utary inflow components of Ha were directly input into the model

from field observations, whereas the remaining energy fluxes were

simulated from input meteorological/hydromorphic data using rou-

tines contained within the model. For further details about Heat

Source and the equations used to estimate the various heat fluxes, we

refer the reader to Boyd and Kasper (2003) and Trimmel et al. (2018).

More information on the specific implementation of Heat Source on

the Girnock Burn can be found in Dugdale et al. (2019).

2.3 | Input data

2.3.1 | Field data

Heat Source was driven using hydrometeorological and geomorphologi-

cal data relating to the 2.2-km study stretch of Girnock Burn. These data

are outlined in detail in Garner et al. (2014) and Dugdale et al. (2019)

and are available for download from Garner et al. (2018). In brief, mete-

orological data needed to run the model (i.e., air temperature (�C), rela-

tive humidity [percentage], wind speed [metre per second], incoming

shortwave radiation, and bed heat flux [both Wm−2]) were recorded at

four automated weather stations located alongside the Burn (Figure 1).

Geomorphic data (i.e., channel width, azimuth, and gradient) were mea-

sured from an orthophoto and digital elevation model of the site,

whereas discharge was derived from a Marine Scotland Science stage

logger installed at ~0.65 km upstream from the Burn's mouth (velocity-

area rating curve R2 = .97). Discharges were subsequently scaled by

basin areas to drive both an upstream discharge boundary condition and

an inflow for the Bruntland Burn, a small tributary that joins the Girnock

Burn at 1.3 km upstream from its mouth. Velocities needed to calibrate

Heat Source's hydraulic model predictions were derived from a

discharge-mean-velocity function (Tetzlaff, Soulsby, Gibbins, Bacon, &

Youngson, 2005) applied to the discharge data. The remaining model

parameters needed to run Heat Source (e.g., streambed thermal conduc-

tivity, % hyporheic exchange, and Manning's coefficient) were tuned

during model calibration (see Section 2.4).

2.3.2 | Tree cover data

Heat Source simulates the effect of riparian canopy shading on stream

temperature by computing the attenuation of incoming solar radiation by

vegetation (Boyd & Kasper, 2003). This is accomplished by supplying

Heat Source with observations of vegetation height along a series of

transects radiating out from each model node at 45� intervals (Figure 2);

we used the TTools GIS package that accompanies Heat Source to sample

vegetation using an along-transect spacing of 5 m (i.e., one sample of

vegetation height/cover every 5 m from 5 to 45 m from the stream

node). Heat Source then uses these data to calculate (for each timestep)

the position of the sun along its arc relative to tree cover and, hence,

whether solar radiation will reach the stream or be blocked (direct Hsw) or

attenuated (diffuse Hsw) by the canopy. Heat Source also computes the

impact of tree cover on wind speed using the Prandtl–von Karman

universal-velocity distribution law (Dingman, 2002) that approximates the

frictional reduction in wind speed as a function of land cover height.

Given that wind speed is a key determinant of turbulent heat fluxes, Heat

Source thus simulates the effect of tree cover on latent (Qe) and sensible

(Qs) heat gains (losses). In order to compare the performance of stream

temperature simulations produced using different tree cover data, we

successively parameterised Heat Source with data from six different

geospatial datasets (as well as a “no trees” scenario to illustrate the

impact of excluding tree height data from the model):

Structure from motion photogrammetry (SfM; 10 cm resolution;

Figure 3a)

We used a small unoccupied aerial system (also known as a drone) to

acquire ~3 cm aerial photography of the ~4 km by ~250 m area

bounding the study reach. Agisoft PhotoScan Professional (Agisoft,

2017) was subsequently used to generate a 10 cm digital surface

model (DSM) of the reach from the imagery. DSM accuracy was

assessed as 0.11, 0.17, and 0.10 m (x-, y-, and z-coordinates, respec-

tively) by calculating the root mean square error (RMSE) against

61 ground control points surveyed using a Leica Viva GS15 dGPS. We

also used a Leica Viva TS12 total station (reflectorless mode) posi-

tioned overlooking the reach to measure the elevation of 64 tree

crowns; comparison of these data against canopy elevations

reconstructed from the SfM DSM showed a very good degree of cor-

respondence (R2 = .91). A SfM tree height map was subsequently

F IGURE 2 Schematic of tree cover input to Heat Source showing
tree height sampling points superimposed on LiDAR tree height map
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calculated by subtracting a “bare earth” digital terrain model (DTM)

from the DSM. The DTM was generated by using PhotoScan's point

cloud classifier to identify ground points in the SfM dataset. For fur-

ther details on the development of the SfM tree height map (including

details on accuracy assessment of the bare earth DTM), we refer the

reader to Dugdale et al. (2019).

LiDAR (1 m resolution; Figure 3b)

We obtained LiDAR data for the lower 1.7 km of Glen Girnock from

the LiDAR for Scotland Phase I dataset (Scottish Government, 2012).

The LiDAR data was separated into tree canopy points (LiDAR first

returns) and ground points (last returns) and a DSM and DTM created

from these datasets. Finally, a LiDAR tree height map was generated

by subtracting the LiDAR DTM from the DSM. Because LiDAR data

was only available for the lower ~1.7 km of Girnock Burn (rather than

the full 2.2 km reach), we used elevations derived from the SfM

dataset for the remaining ~0.5 km upstream section. Land use in this

upper ~0.5 km section is predominantly open heather moorland, and

the absence of LiDAR-derived tree height measurements for this loca-

tion is therefore unlikely to have impacted results.

GetMapping photogrammetry (2 m DSM, 5 m DTM; Figure 3c)

Digital surface and terrain models derived using a “conventional” stereo

photogrammetry approach (based on aerial photography) were obtained

from the GetMapping 2 m DSM and 5 m DTM products downloaded

from the Natural Environment Research Council Earth Observation

Data Centre (Landmap & GetMapping, 2014). Although information

regarding the bare earth DTM generation process is limited, details

available at http://www.getmapping.com/support/height-lidar-data/

how-digital-terrain-mode-dtm-height-data-produced (accessed June

19, 2018) indicate that the process involves the semiautomated classifi-

cation of photogrammetric points into ground and nonground catego-

ries prior to raster DTM generation (stated vertical accuracy <60 cm

RMSE). A tree height map (hereafter referred to as the GetMapping tree

height map) was subsequently created by subtracting the the 5 m DTM

(resampled to 2 m resolution) from the 2 DSM.

NEXTMap Interferometric Synthetic Aperture Radar (IfSAR;

5 m resolution; Figure 3d)

IfSAR-derived DSM and DTM rasters of the study area commissioned

as part of the NEXTMap Britain programme (Intermap Technologies

2007) were used to create a 5 m tree height map (hereafter referred

to as the NEXTMap tree height map) by subtracting the DTM from

the DSM (after Scholefield et al., 2016). The NEXTMap DTM is

derived using a proprietary algorithm (TerrainFit) that fits a bare earth

surface to a multiresolution image “pyramid” of the original IfSAR

DSM (Coleman & Mercer, 2002; Wang, Mercer, Tao, Sharma, &

Crawford, 2001). Although this method produces a stated vertical

F IGURE 3 (a) SfM (b) LiDAR, (c) GetMapping, (d) NEXTMap, (e) NFI and (f) MasterMap tree height maps. Girnock Burn centreline denoted by
blue line. Note north offset of −30�
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accuracy (RMSE) of 60 cm in relatively flat/urban areas, reported

accuracy in forested areas is lower (1.33–3.16 m; Wang et al., 2001),

meaning that this error will likely propagate into the NEXTMap tree

height map.

National Forest Inventory (NFI; GIS polygon; Figure 3e)

GIS polygons created as part of the UK Forestry Commission's

National Forest Inventory (NFI) programme (Forestry Commission,

2017) delineate the spatial extent of riparian tree cover in the lower

Girnock Burn. The NFI polygons are derived from manual interpreta-

tion of colour orthophotos taken within the preceding 3-year period

and as such should be reasonably representative of current tree cover

in Girnock Burn; the dataset covers all areas of contiguous woodland

>0.5 ha. We selected all polygons in the following categories:

broadleaved, conifer, mixed (predominantly broadleaved), mixed (predomi-

nantly conifer), and subsequently converted them to a 1 m raster. Ras-

ter pixels corresponding to the locations of the woodland polygons

were assigned a uniform height of 10 m as this value closely approxi-

mated the mean nonzero tree height computed from the LiDAR and

SfM tree height maps (9.95 and 9.79 m respectively). This dataset is

hereafter referred to as the NFI tree height map.

Ordnance Survey MasterMap (GIS polygon; Figure 3f)

GIS polygons from the UK Ordnance Survey's MasterMap Topogra-

phy Layer product (Ordnance Survey, 2018) were used to define the

spatial extent of riparian tree cover. MasterMap tree cover is derived

through manual orthophoto interpretation in a similar manner to the

NFI data above; tree cover in our study section of Glen Girnock was

last updated in 2014 and was therefore deemed representative of cur-

rent tree cover in the Burn. We selected all polygons containing the

terms coniferous trees or nonconiferous trees and converted them to a

1 m raster. Raster pixels corresponding to tree cover were again

assigned a uniform height of 10 m (hereafter referred to as the Mas-

terMap tree height map).

Prior to inputting these data to Heat Source, we also compared

tree heights from the various datasets with a view to understanding

the cause of potential variability between temperature model simula-

tions. This was achieved through sampling the various tree height

maps using a grid of points spaced at 10 m intervals within a 100 m

buffer of the channel and then comparing them with the SfM dataset

(determined to be the closest representation of true riparian tree

height in Girnock Burn; see Dugdale et al., 2019). Only points that

occurred under tree canopy (defined as >0.5 m in the SfM dataset)

were sampled, to avoid the selection of bare ground elevations that

would otherwise bias the comparison. We subsequently calculated

the R2 and RMSE between the SfM dataset and the other tree

height maps.

2.4 | Model implementation and calibration

We implemented Heat Source on a 7-day period in July 2013 (July

1–7) characterised by relatively high air temperatures (15.6 ± 5.2�C)

and low flows (0.12 m3 s−1). The model was used to simulate hourly

water temperature at a streamwise resolution of 50 m. Wind speed,

air temperature, and bed heat flux were assigned to each model node

from the closest automated weather station whereas solar radiation

was derived from only the upstream-most automated weather station

(values unaffected by tree cover). Heat Source's shading routines sub-

sequently enabled the generation of shade-corrected solar radiation

fluxes and turbulent fluxes for each model node as a function of the

various input tree cover data sources.

For the purposes of model calibration, Heat Source was

parameterised using the SfM tree height map as this shading data

was deemed to be the most accurate available. Calibration was

achieved during a two-stage process. First, model calibration

parameters (e.g., bed sediment conductivity, percentage hyporheic

exchange, and wind function; see Boyd and Kasper (2003) for full

list) were manually adjusted to minimise RMSE between simulated

stream temperatures and temperatures observed at 14 water tem-

perature observation sites located within the burn (12 TinyTag

Aquatic 2 data loggers cross-calibrated to give accuracy of ±0.2�C

and 2× Campbell Scientific 107 thermistor probes with accuracy

of ±0.2�C); this manual phase allowed us to explore the parameter

combinations that allowed the model parameters to stay within

“real world” values. Model optimisation was achieved by iteratively

searching 5,000 randomly-generated (via Latin hypercube sampling)

parameter combinations falling within these real world values to

find the combination that produced the optimum stream tempera-

ture simulation (i.e., the smallest RMSE value). Results of the cali-

bration/optimisation process demonstrated that the Heat Source

model (parameterised with the SfM tree height map) is able to

reproduce stream temperature in the lower 2.2 km of the Girnock

Burn with a very high degree of accuracy (RMSE ≈ 0.18–0.69�C;

see Dugdale et al. (2019) for further details on model optimisa-

tion/calibration).

2.5 | Evaluation of model performance and
sensitivity testing

2.5.1 | Comparing temperature model
performance under varying tree cover data

Following calibration, the model was sequentially reparameterised

with tree cover data from each of the sources detailed in

Section 2.3.2. All other parameters optimised during model calibration

were held constant to ensure that any variations in simulated temper-

ature were solely the result of differences in the input tree cover data

and not due to uncertainty in other model parameters. For each dif-

ferent tree height map, Heat Source was rerun for the simulation

period detailed in Section 2.4. Model RMSE was again calculated at

each of the 14 temperature observation sites; these data were subse-

quently tabulated to aid understanding of how differences in quality

and resolution of input tree cover data impact the resulting stream

temperature simulations.
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2.5.2 | Simulating the addition and removal of
riparian vegetation under varying tree cover data

In addition to characterising differences in model performance associ-

ated with the various tree height maps, we also conducted sensitivity

testing to determine the suitability of the different geospatial datasets

for simulating the effect of planting (addition of trees to a bare land-

scape) or clearcutting (removal of trees from an afforested landscape)

on river temperature simulations. Specifically, we were interested in

understanding the proximity to the river at which the addition or

removal of riparian vegetation influences stream temperature, and

whether the choice of tree height map affects these simulations. We

accomplished this by successively adding (removing) tree height data to

(from) the model at 5 m intervals (between 5 and 45 m) starting from

the stream centreline and working outwards (Figure 2); the channel was

sufficiently narrow to ensure that the innermost “ring” of tree cover

(i.e., 5 m) was always located on the banks. Our decision to use an inter-

val of 5-m stems from the fact that the crown diameter of mature

deciduous and coniferous forest similar to that of the

Girnock Burn usually exceeds 5 m (see Evans et al., 2015; Gill, Biging, &

Murphy, 2000; Hemery, Savill, & Pryor, 2005; Pretzsch et al. 2015 for

allometric data). Furthermore, 5 m corresponds to the horizontal spatial

resolution of the coarsest dataset used in this study (NEXTMap tree

height map) and was therefore chosen to ensure comparability between

datasets. We subsequently calculated the reach-averaged RMSE and

temperature for each tree height map at each 5-m step, aiding under-

standing of (a) proximity at which the addition (removal) of riparian veg-

etation has the largest impact on stream temperature and (b) to what

extent the choice of input tree height data influences these simulations.

3 | RESULTS

3.1 | Accuracy of tree heights calculated from
varying geospatial data

The tree height maps computed in Section 2.3.2 exhibit strong variabil-

ity in calculated height (Figure 4). When compared with the SfM tree

heights, the LiDAR-derived tree height map is most similar (R2 = .61;

RMSE = 3.25 m), with a coefficient of determination broadly similar to

other studies comparing SfM and LiDAR-derived tree heights

(e.g., Dandois & Ellis, 2010; Iglhaut et al., 2019; Wallace, Lucieer,

Malenovský, Turner, & Vopěnka, 2016). Scatter in this relationship is

presumably a function of the passage of time and seasonal differences

between acquisition of the two datasets (see Dugdale et al., 2019).

Visual inspection of the GetMapping tree height map (figure 3) indi-

cates a reasonable degree of similarity with the SfM data (R2 = .42;

RMSE = 4.40 m). Closer analysis indicates that the increased error asso-

ciated with this dataset (discussed further in Section 4.2) is likely due to

the large number of “zero” tree heights in the GetMapping dataset.

Contrary to these promising results, the NEXTMap dataset bears very

little resemblance to the SfM data, with an extremely low coefficient of

determination and greatly increased error (R2 = .05). Unsurprisingly, the

two polygon-based datasets (NFI and MasterMap tree height maps)

also correlate poorly with the SfM data (R2 = .10 and .04 respectively),

given that tree heights within the “forest” polygons of these datasets

were assigned a uniform value of 10 m. However, the RMSE associated

with these tree height maps (6.54 and 5.35 m respectively) is nonethe-

less better than the NEXTMap dataset (8.80 m).

3.2 | Model performance under varying tree
cover data

Results of the stream temperature simulations indicate that the

Heat Source model of Girnock Burn performs best when

parameterised using either the SfM or LiDAR-derived tree height

maps (Table 1). This result is unsurprising given (a) the relative

similarity of these datasets and (b) that the model was initially cali-

brated using the SfM dataset. The next-best-performing stream

temperature model is that parameterised with the (GIS polygon-

based) NFI tree height map, yielding only a small decrease in

RMSE (8%) compared with the SfM/LiDAR-based models

(RMSE = 0.51 vs. 0.47�C). However, despite this initially promising

outcome for the “alternative” tree height maps, the remaining

datasets performed markedly worse with a ~44–47% decline in

RMSE to the next-best models (GetMapping and MasterMap).

These models were characterised by similarly poor reach-averaged

RMSE values of 0.68 and 0.69�C, respectively (Table 1), despite

marked differences in provenance (i.e., photogrammetry-based tree

heights vs. GIS polygons). The temperature model parameterised

using the NEXTMap tree height map performed worst, with an

RMSE in excess of 62% poorer than the best (SfM-derived) model.

Nonetheless, even this result still compares favourably to the ‘no

trees model (RMSE = 0.86).

Although these reach-averaged RMSE values provide a broad

indication of the performance of models parametrised from different

tree cover data sources, closer inspection of the RMSE computed at

each logger site reveals spatial patterns in model performance

(Figure 5). As expected, the source of tree cover data makes little dif-

ference to model performance or mean temperature in the upper

reach (2.2–1.9 km upstream from the confluence with the Dee)

because tree cover in these upper reaches is almost entirely absent.

However, in the lower reach (< 1.9 km from the Dee), the models start

to diverge, coincident with an increase in forest cover. This diver-

gence is apparent from increasingly different RMSE values between

the various models (Figure 5a) but is most clearly evident in the time-

averaged temperature series (Figure 5b). Indeed, although the models

parameterised with the SfM, LiDAR, and NFI tree height maps yield

similar stream temperature values even at the downstream end of the

modelled reach, the MasterMap- and GetMapping-parameterised

models display positive bias (overly warm values, although still cooler

than the no trees model), whereas the NEXTMap model is negatively

biased (excessive temperature loss). Taken together, this result sug-

gests that although the models parameterised with the SfM, LiDAR,

and NFI datasets are capable of adequately representing true stream

temperature in the Girnock Burn, the other models are not adequate

for this purpose.
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3.3 | Addition and removal of riparian vegetation

When tree cover data was systematically added to the riparian zone,

model performance (as indicated by RMSE) improved most rapidly

within 5 m of the channel, although smaller effects were still observed

at distances of 10 m (Figure 6a). These results indicate that almost all of

the effect of shading on stream temperature is generated by a relatively

narrow strip of trees in close (≤10 m) proximity to the stream cen-

treline. This finding is supported by the reach/time-averaged tempera-

ture data (Figure 6b) that also indicates that the overwhelming majority

of stream temperature reductions occur where tree cover is added to

the 5 and 10 m zones (with the addition of tree cover in subsequent

zones not generating a substantial thermal response). Closer inspection

of the individual models reveals that although the SfM, LiDAR, and

NFI-parameterised models generated very similar trends in RMSE and

stream temperature, the other models do not. Indeed, the NEXTMap

model shows a substantial decrease in temperature with the addition of

the tree cover within the 5 m zone, whereas results of the GetMapping

and MasterMap-parameterised models suggest that the 10 m zone of

tree cover generates a greater reduction in stream temperature (and

hence, reduction in RMSE) than that the addition of tree cover at 5 m

(which actually appears to generate a slight warming response). Taken

together, these results indicate that models parameterised with these

data perform poorly when used to simulate real data (see section 3.2)

and that they are poorly suited to simulating “hypothetical” riparian tree

planting scenarios.

(a) (b)

(c)

(d)

(d)

F IGURE 4 Comparison of heights
from (a) LiDAR, (b) GetMapping,
(c) NEXTMap, (d) NFI, and (e) MasterMap
tree heights map against SfM dataset,
considered to be the most accurate/up-
to-date map of riparian tree heights in
Girnock Burn. Tree heights for NFI and
MasterMap datasets are either 0 m or
10 m based on values assigned to

polygons. Linear regression shown as solid
black line, grey dashed line gives 1:1
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Unsurprisingly, results of the tree removal (clearcutting) scenarios

largely mirrored those of the tree addition (Figure 7(a)). However,

unlike the simulated addition of vegetation, the removal of vegetation

from more distant zones (>10 m) continues to have a notable impact

on stream temperature. Although the simulated removal of vegetation

within the initial 5 m zone causes the largest deterioration in RMSE

for the SfM, LiDAR, and NFI-parameterised models, the other models

were characterised by little change or only marginal improvement in

RMSE. Beyond 5 m, all models showed a similar deterioration in

RMSE as vegetation was removed up to a distance of 15–20 m where

RMSE values stabilised. In terms of the reach/time-averaged tempera-

ture data (Figure 7b), the SfM, LiDAR, and NFI-parameterised models

show a steady increase in temperature associated with the removal of

vegetation from each successive 5-m zone. However, the other

models bely these results, with the removal of vegetation in the 5 m

buffer strip actually causing a slight decrease in temperature for the

MasterMap and GetMapping-parameterised models but a substantial

increase for the NEXTMap model (essentially, an inversion of the

results for the simulated addition of tree cover). This disparity again

suggests that the NEXTMap, MasterMap, and GetMapping-

(a)

(b)

F IGURE 5 Variability in (a) streamwise RMSE computed against temperature loggers and (b) time-averaged stream temperature long profile
generated by Heat Source model parameterised using various sources of tree cover data

TABLE 1 Average RMSE computed between 14 temperature
observation sites and stream temperature model parameterised with
given tree height map

Tree height

map
(resolution)

Reach-

averaged
RMSE (�C)

Standard

deviation of
RMSE (�C)

% decline in

RMSE vs. best
model

SfM (10 cm) 0.47 0.13 -

LiDAR (1 m) 0.47 0.13 0.01

NFI (GIS

polygons)

0.51 0.25 8.0

Getmapping

(2 m)

0.68 0.34 43.9

MasterMap

(GIS

polygons)

0.69 0.15 46.7

NEXTMap

(5 m)

0.76 0.25 62.2

No trees 0.86 0.13 83.0
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(a) (b)

F IGURE 7 Clearcutting simulation showing variation in (a) reach-averaged RMSE and (b) reach/time-averaged stream temperature produced
by the removal of tree cover from successive 5 m zones for each Heat Source model

(a) (b)

F IGURE 6 Tree planting simulation showing variation in (a) reach-averaged RMSE and (b) reach/time-averaged stream temperature produced
by the addition of tree cover within successive 5 m zones for each Heat Source model

(a) (b)

F IGURE 8 Reach-averaged shortwave, longwave, latent and sensible heat fluxes associated with (a) simulated tree cover addition and
(b) simulated tree cover removal for best-performing Heat Source model (parameterised with structure from motion tree cover data)
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parameterised models are less well-suited to simulating the hypotheti-

cal removal of riparian vegetation.

Patterns in the simulated radiative and turbulent heat fluxes asso-

ciated with the best model (SfM) match patterns in the RMSE and

temperature results for the tree planting and removal scenarios. In

terms of tree planting, Figure 8a indicates that the bulk of the reduc-

tion of shortwave fluxes occurs within the 5 m riparian buffer strip

closest to the channel, with subsequent “rows” of tree cover contrib-

uting relatively little to shortwave attenuation. In terms of tree

removal (Figure 8b), shortwave radiation received at the stream sur-

face steadily increases as a function of the removal of successive

“strips” of vegetation up to distances of ~25–30 m either side of the

channel. Longwave and turbulent heat fluxes show similar, but nega-

tive, trends. Interestingly, these results also show the impacts of tree

cover addition on turbulent exchanges, with a reduction (increase) in

latent and sensible heat fluxes associated with the addition (removal)

of riparian shading. This likely reflects the fact that the cooler water

temperatures engendered by shading will drive lower turbulent

exchanges but is also partially due to routines within Heat Source that

simulate the reduction in wind speed (and hence latent and sensible

heat fluxes; see Section 2.3.2) under tree cover.

4 | DISCUSSION

4.1 | Influence of tree cover data source on model
performance

Our investigation reveals that the type of tree cover data used to par-

ameterise a stream temperature model can have a substantial impact

on the quality of stream temperature simulations. Although this result

is not unexpected, it is nonetheless illuminating that the use of

“poorer” (in terms of both spatial resolution and height accuracy)

riparian vegetation data (e.g., GetMappping, MasterMap, and

NEXTMap) can generate an RMSE increase on the order of 40–60%

as compared with the best-performing models. Although the good

performance of the SfM and LiDAR models is not unexpected, the

positive results generated by the NFI-derived model were somewhat

surprising, given that this polygon-based tree height map is incapable

of representing true spatial variability in riparian tree cover/height

(see Figures 3e and 4d). Indeed, RMSE and stream temperature com-

puted using the NFI-parameterised model were very similar to the

LiDAR model, despite the complete absence of spatial variability in

tree heights within the polygon dataset. Closer inspection of the NFI

polygons reveals that this positive result is largely coincidental, and

results from georeferencing inaccuracies that act to directly “overlay”

the polygons on top of the Heat Source model nodes at key locations

along the river (e.g., 1.5–2 km upstream). This “overlaying” causes pos-

itive tree heights to be assigned to the 5 m tree cover zone, which

results in the NFI model simulating notably cool temperatures

between 1.5 and 2 km. The net outcome of this is the generation of a

very similar stream temperature signal to the SfM and LiDAR models.

However, given that this positive result occurs almost entirely by

chance due to “beneficial” georeferencing errors, it is unlikely that the

NFI dataset would produce similarly-good results in other locations.

Indeed, given the relatively poor results of the other polygon-based

dataset (MasterMap) that did not incorporate similarly fortuitous spa-

tial referencing errors, these findings indicate that GIS polygons

should not be relied upon to generate detailed estimates of riparian

shading (and the subsequent stream temperature response).

Unsurprisingly, even the poorest models (i.e., GetMapping, Mas-

terMap, and NEXTMap) produced models with improved RMSE over

the no trees scenario. Although this may suggest that using alternative

tree cover data (of low resolution or height accuracy) is preferable to

ignoring the presence of trees, we would urge caution. For example,

although the GetMapping and MasterMap datasets show a plausible

reduction in stream temperature (and associated improvement in

RMSE) compared with the no trees model, the NEXTMap-derived

model generates a substantially greater downstream cooling than is

actually present in reality (see Section 4.2 for explanation). As a result,

we do not advocate the use of these alternative data sources for para-

meterising the shading routines of stream temperature models, unless

the simulated temperature response can be conclusively demon-

strated to provide a good analogue of true river temperature.

4.2 | Performance of alternative tree cover
datasets

In addition to the unexpectedly good performance of the NFI-derived

model, the stream temperature models parameterised with alternative

tree height data generated other unforeseen results. Of primary inter-

est is the relatively poor performance of the GetMapping-derived

model. Visual inspection of the tree height maps (Figure 3) indicates

that the GetMapping-derived tree heights are relatively similar to

those of the SfM and LiDAR datasets, a fact also supported by the

reasonable correlation and RMSE (Figure 4). We were therefore sur-

prised that this model generated considerably poorer stream tempera-

ture predictions. However, close inspection of the initial GetMapping

raster shows that the river channel has been clipped from the input

DSM/DTM using a buffer of ~5 m. This means that tree cover in the

5 m “zone” is generally absent within the resulting stream temperature

model (apart from at a few sporadic locations where sampling nodes

fall outside of this buffer). Given our finding that the majority of the

tree shading effect on stream temperature occurs due to vegetation

within this initial 5-m zone, it is therefore unsurprising that the perfor-

mance of this model was suboptimal. The absence of vegetation in

the 5 m zone also explains why the GetMapping-derived model

showed the bulk of temperature reduction occurring with the addition

of trees in the 10 m zone. Unfortunately, attempts to obtain an

“unclipped” DSM/DTM product were unsuccessful, and it was there-

fore not possible to ascertain the performance of an unmodified

GetMapping tree height map.

This general absence of trees in the 5-m zone also explains the

similar performance of the MasterMap-derived model (compared with

the NFI dataset) and accounts for the minor (but unexpected)
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warming noted as a result of the simulated addition of vegetation

within the 5 m zone for the MasterMap and GetMapping models

(Figures 6 and 7). Inspection of energy fluxes associated with tree

planting (clearcutting) simulations (Figure 8) show that the addition of

sporadic vegetation in this 5 m zone is accompanied by reduced

windspeeds due to Heat Source's implementation of the Prandtl–von

Karman universal-velocity distribution law that drive a decrease

(increase) in turbulent losses. This, in combination with decreased

longwave losses owing to the presence of bankside vegetation, off-

sets the shading-driven reduction in shortwave inputs thus causing

the observed warming.

Turbulent fluxes also partially account for the anomalously high

cooling observed in the NEXTMap-derived model. Average tree height

computed from the NEXTMap data is considerably lower than from the

other databases. Although this would normally mean that the shading

effect is reduced in comparison with these other sources, the reduced

tree height also drives an increase in turbulent losses that offsets a pro-

portion of the reduction in shading-driven shortwave fluxes. However,

these increased turbulent losses are not able to account for all of the

observed cooling. Instead, the anomalously cool temperature is also a

function of inaccuracies in the NEXTMap dataset that mean that the

model is parameterised with falsely low height values for “emergent

vegetation” (i.e., vegetation growing from within the channel or on point

bars, etc.; see Boyd & Kasper, 2003). The presence of this artificially

low emergent vegetation essentially acts as a “parasol” over the river

channel, blocking a moderate amount of direct solar radiation at all

hours of the day, rather than a larger amount of radiation over only

2–3 hours (as is generally the case with taller vegetation), thus

explaining the excessive reduction in stream temperature.

Taken together, these findings demonstrate that process-based

stream temperature models may behave in an unexpected manner

when parameterised with unsuitable or inaccurate riparian vegetation

data and may even generate results that, due to the way in which the

model is programmed, do not have any real physical basis. As a result,

we urge caution when working with coarser or less accurate tree

height products and again stress that when their use is unavoidable,

particular attention is paid to ensuring that simulated temperatures

are reasonable and physically plausible.

4.3 | Implications of findings for river management

Our findings emphasise the importance of using high quality riparian

vegetation data (in terms of spatial resolution and height accuracy) to

parameterise process-based models of stream temperature. This is of

particular importance when devising thermal management strategies

for climate change to ensure that proposed management activities do

not generate unwanted consequences. Indeed, the results of our tree

planting/clearcutting simulations highlight that even when modelling

“conceptual” land cover scenarios (as opposed to real world situa-

tions), the injection of realistic tree height data is essential in order to

minimise unexpected model results or scenario outcomes (see

Section 4.2; Figures 6 and 7).

The results of our tree planting/clearcutting scenario simulations

using SfM or LiDAR data provide useful information for river man-

agers wishing to implement river temperature management strategies.

In terms of tree planting, our results indicate that the bulk of the tree

shading effect on stream temperature occurs with the addition of

trees in the initial 5 m zone alongside the river channel, confirming

the results of Garner, Malcolm, Sadler, and Hannah (2017) and

Malcolm et al. (2008) that indicate that the addition of a narrow “strip”

of riparian vegetation only one to two trees in width can constitute an

effective method for moderating temperature extremes. The knowl-

edge that relatively narrow strips of riparian planting are able to pro-

duce reasonable stream temperature outcomes is also useful with

regards to achieving a compromise between the competing demands

of river managers (who are tasked with maintaining water tempera-

ture within optimal limits) and landowners/farmers (who want to mini-

mise the loss of useable agricultural land to buffer strips), while

simultaneously accomplishing maximum tree planting effectiveness

within limited financial constraints. However, given that in the UK

(and possibly other jurisdictions), it is often easier to obtain financing

for the planting of woodland “blocks” rather than buffer strips (due in

part to the higher fencing costs and lower woodland production asso-

ciated with strips; Scottish Government, 2018), our findings regarding

a single narrow strip of riparian planting may nonetheless require

compromises to be made alongside other logistical concerns when

conducting tree planting.

In terms of clearcutting, our results are of lesser relevance to

agroforestery activities (e.g., Moore, Spittlehouse, & Story, 2005) that

are generally compelled by legislation to leave a riparian buffer strip in

excess of the 5 m limit discussed above (e.g., Davies, Biggs, Williams, &

Thompson, 2009; González et al., 2017; Lee, Smyth, & Boutin, 2004).

However, our findings have significant implications for jurisdictions

where riparian buffers are actively managed (i.e., felling of riparian

woodland) to increase mean temperature with a view to improving pro-

ductivity or taxonomic richness (e.g., CASS, 2010). Results of our tree

removal scenarios actually indicate that removal of just a single strip of

vegetation located nearest to the river channel may only drive a rela-

tively moderate increase in temperature. Indeed, to maximise the

impact of clearcutting on stream temperature, it may therefore be nec-

essary to fell trees as distant as 15–20 m from the channel centreline,

presumably because even when located further from the channel, tall

trees are able to generate substantial amounts of shading. Taken

together, these results provide further information regarding riparian

buffer management strategies for moderating stream temperature and

add to the growing body of literature looking to better understand the

nested drivers of stream temperature heterogeneity.

5 | CONCLUSIONS

River scientists and managers are increasingly using riparian tree

planting to moderate high summer river temperatures with a view to

mitigating some of the expected impacts of climate change. However,

understanding the exact impacts of these activities requires simulation
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experiments within process-based stream temperature models. The

results of our study show that, unless parameterised with high quality

riparian tree cover data, such models are unable to adequately repre-

sent the effects of riparian shading on stream temperature. Indeed,

when parameterised with suboptimal tree cover data, models not only

generate less accurate temperature simulations, but may also act

unexpectedly, producing unforeseen temperature outcomes. In our

study, SfM and LiDAR tree cover data produced the best-performing

stream temperature simulations, with alternative tree height sources

generating suboptimal temperature simulations. This reduction in sim-

ulation quality results predominantly from inadequacies in their geo-

referencing and tree height data rather than as a function of their

reduced spatial resolution. Were these georeferencing and height

errors to be negated, it is plausible that these coarser data would pro-

duce stream temperature simulations approaching a similar (but lower)

accuracy to those of the SfM and LiDAR tree cover. However, river

scientists or managers should nevertheless look to use the tree cover

data of the highest possible resolution and accuracy, with a view to

producing optimal climate change adaptation strategies.
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