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Abstract 27 

In Enterobacteriales, the AcrAB-TolC efflux pump exports substrates including antimicrobials from 28 

the cell. Over-expression of AcrAB-TolC can occur after exposure to fluoroquinolones leading to 29 

multidrug-resistance. Expression of AcrAB-TolC in Salmonella is primarily regulated by the 30 

transcriptional activator RamA. However, other transcriptional activators such as MarA, SoxRS and 31 

Rob can influence AcrAB-TolC expression. This study determined whether over-production or 32 

absence of RamA influences mutation rate or the phenotype of mutants selected in Salmonella 33 

Typhimurium SL1344 after ciprofloxacin exposure. Absence of RamA (SL1344 ramA::aph) resulted in 34 

mutation frequencies/rates similar to those in wild-type Salmonella Typhimurium SL1344. However, 35 

over-production of RamA (SL1344 ramR::aph), and consequently AcrB, resulted in a significantly 36 

higher mutation frequency and rate relative to wild-type Salmonella Typhimurium SL1344. Whole 37 

genome sequencing revealed that in addition to selecting gyrA mutants resistant to quinolones, 38 

SL1344 and SL1344 ramA::aph also produced MDR mutants, associated with mutations in soxR. 39 

Conversely, mutations in SL1344 ramR::aph occurred in gyrA only. Although transcriptional 40 

regulators such as SoxRS are believed to play a minor role in AcrAB-TolC regulation when under 41 

antibiotic selective pressure, we show that soxR mutants can be selected post-exposure to 42 

ciprofloxacin, including when RamA is absent. This demonstrates that under selective pressure 43 

Salmonella can respond to increased efflux pump expression by mutating other AcrAB-TolC 44 

regulatory genes allowing for the evolution of MDR. Understanding how Salmonella respond to 45 

antibiotic pressure in the absence/over-production of RamA is important if targeting transcriptional 46 

regulators to alter efflux is to be considered an avenue for future drug discovery.  47 

  48 

 49 

 50 
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Introduction  51 

Antimicrobial resistance is one of the great global challenges facing modern medicine (1). Bacteria 52 

can be intrinsically resistant to certain antibiotics but can evolve via chromosomal mutation and can 53 

also aquire resistance by horizontal transfer of resistance genes. Mutations that result in 54 

antimicrobial resistance typically alter antibiotic activity by one of the following mechanisms: 55 

modification of the drug target, reduced membrane permeability and increased efflux. Those 56 

mutations that reduce the intracellular accumulation of antibiotics by increasing efflux confer 57 

reduced susceptibility to a range of different antimicrobial classes and can cause multidrug 58 

resistance (MDR). Therefore, extensive research surrounding the development of compounds 59 

capable of neutralising this resistance mechanism has been undertaken. 60 

Listed by the World Health Organisation (WHO) as a high priority pathogen for which new 61 

treatments are urgently needed, fluoroquinolone-resistant Salmonella enterica cause a significant 62 

health burden worldwide (2). Resistance upon exposure to the fluoroquinolone ciprofloxacin 63 

frequently results from mutations in the topoisomerase encoding genes gyrA, gyrB, parC and parE. 64 

However, MDR resulting from ciprofloxacin exposure can occur in Gram-negative bacteria as a result 65 

of over-production of efflux pumps (3, 4). In Salmonella enterica, increased active efflux is mainly 66 

attributed to overexpression of the AcrAB-TolC efflux pump (5). Although subject to multiple levels 67 

of regulation, in Salmonella, AcrAB-TolC is primarily regulated by RamA, an AraC/XylS transcriptional 68 

activator (6). When ramA is highly expressed there is a concomitant over-expression of acrAB and 69 

tolC which results in increased translation of the AcrAB-TolC pump proteins, leading to MDR (Figure 70 

1) (7). In the absence of RamA it is difficult to select MDR mutants (8).  71 

In addition to RamA, in Enterobacteriales, the transcriptional activators MarA, SoxRS and Rob are 72 

also capable of regulating expression of AcrAB-TolC (Figure 1) (5). Although mutations increasing 73 

ramA expression are often reported in clinical and veterinary isolates of Salmonella and E. coli, MDR 74 

due to mutations within transcriptional regulators such as soxR have been observed (9-12). The 75 

soxRS regulatory locus is responsible for the response of Enterobacteriales to oxidative stress. In the 76 
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absence of stressor the [2-FE-2S] iron clusters of SoxR are reduced and the protein is inactive. Upon 77 

oxidative stress, the iron clusters are oxidised and SoxR is able to stimulate transcription of soxS (13). 78 

SoxS, like RamA, is part of the AraC family of transcriptional activators (5, 14, 15). When activated 79 

SoxS is able to cause an increase in transcription all of the genes within its regulon, this includes 80 

acrAB-TolC (13). In the absence of AcrB, soxS expression increases, probably as a response to 81 

increased oxidative stress caused by the lack of this major efflux pump (14). This suggests that there 82 

are feedback mechanisms by which Enterobacteriales use different transcriptional regulators to 83 

maintain efflux.  84 

Capable of increasing bacterial susceptibility to currently available antimicrobials, inhibition of efflux 85 

pumps is an important potential avenue to tackle MDR (16). Targeting transcriptional regulators, 86 

such as RamA in Salmonella, may reduce the ability of the organism to develop MDR via over-87 

expression of AcrAB-TolC. Understanding how Salmonella respond to selective pressure in the 88 

absence or over-production of RamA. Furthermore, knowing if in the presence of an AcrAB-TolC 89 

substrate, the bacterium is capable of acquiring mutations allowing it to circumnavigate inhibition 90 

via the RamA-regulated pathways, is important when considering the use of transcriptional 91 

regulators as drug targets and to improve our understanding of the regulation of multidrug efflux. 92 

Antibiotic selective pressure can trigger a plethora of cellular events which can determine the 93 

phenotype of any resultant mutant that evolve during drug exposure; whether this occurs early or 94 

late within the growth of a population may affect mutation rate. Given that bacteria with higher 95 

acrAB expression have lower expression of the DNA mismatch repair gene mutS, lower growth rates 96 

and higher mutation frequencies, selective pressure that leads to increased expression of the AcrAB-97 

TolC system may contribute to increased mutation rates (17). 98 

In this study, we set out to determine whether different levels of ramA expression results in 99 

differences in mutation rate and the mechanism by which resistance to the fluoroquinolone 100 

ciprofloxacin evolves.  101 

 102 
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Materials and methods 104 

Bacterial strains and Mutant selection 105 

S. enterica serovar Typhimurium strain SL1344 and its mutants with deletions in RamA (SL1344 106 

ramA::aph) or RamR (SL1344 ramR::aph) were used throughout. SL1344 ramA::aph and ramR::aph 107 

were constructed by Ricci et al., (3, 8). RT-PCR experiments performed previously determined that 108 

the expression levels of ramA were undetectable for SL1344 ramA::aph and for SL1344 ramR::aph 109 

were increased 25-fold relative to wild type SL1344 (18). Bacteria were routinely cultured in Lennox 110 

broth unless otherwise indicated.  111 

Spontaneous mutants with decreased susceptibility to fluoroquinolones were selected using a 112 

fluctuation assay (19). Thirty independent cultures for each parental strain were grown aerobically 113 

at 37°C for 16-20 h in antibiotic-free Lennox broth, concentrated by centrifugation, and re-114 

suspended in sterile Lennox broth to give an approximate cell density of 109 CFU/mL. Using a spiral 115 

plater (Don Whitely Scientific, UK), 50 µl of each suspension was used to inoculate a Lennox broth 116 

agar plate containing the MIC of ciprofloxacin for each strain and incubated aerobically at 37ᵒC for 117 

up to 3 days (Table 1). To calculate viable counts each overnight culture was diluted to 104 CFU/mL 118 

and 105 CFU/mL; 50 µl of each dilution was sufficient to enable single colony identification; enabling 119 

viable counts to be calculated. Each mutant selection experiment was repeated on three separate 120 

occasions.  121 

Calculating mutation frequency and rate of mutations 122 

Mutation frequency was calculated as the average total number of ciprofloxacin-resistant colonies 123 

divided by the viable count. The phenotypic mutation rate, (µ), was calculated using the Lea Coulson 124 

method of the median (19, 20). The following equations were used: (r/m – ln(m)-1.24)=0 and 125 

µ=m/2Nt, where r= average number of colonies obtained, m= the number of mutants per culture 126 

obtained,  and Nt= final number of cells in a culture (20). A one-way ANOVA was used to determine 127 

statistical differences in mutation frequency and rate between the wild type S. Typhimurium SL1344 128 

and SL1344 ramR::aph/SL1344 ramA::aph. 129 
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Susceptibility to antibiotics 130 

Ten colonies from each fluctuation assay were randomly selected to determine the phenotypes of 131 

putative mutants. All antibiotics and dyes were obtained from Sigma (Poole, UK). The susceptibility 132 

of putative mutants to six AcrAB-TolC substrates (ciprofloxacin, nalidixic acid, chloramphenicol, 133 

tetracycline, ampicillin and ethidium bromide) was determined (21). The minimum inhibitory 134 

concentration (MIC) of each agent was determined by the standardised agar doubling-dilution 135 

method as described by British Society of Antimicrobial Chemotherapy (BSAC) (22). For ciprofloxacin, 136 

a cut-off value of 0.25 mg/L was used to define resistance (8, 23, 24). Mutants were classed as MDR 137 

if there was two-fold decreased susceptibility to at least three classes of antimicrobials when 138 

compared to the parent strain (8).    139 

Whole genome sequencing and PCR 140 

One mutant of each phenotype (as determined by susceptibility testing) was whole genome 141 

sequenced (WGS). Genomic DNA was extracted using a bacterial genomic DNA isolation kit (Norgen 142 

Biotek Corporation) according to manufacturer instructions. Paired end sequencing was carried out 143 

by Beijing Genomics Institute (BGI; Hong Kong) using the Illumina HiSeq 4000 platform. Raw 144 

sequences were assessed for quality with FASTQC. Sequencing depth was 60X. Comparisons were 145 

made with the genome of the SL1344 strain from the ensembl database (ASM21085v2) using SNIPPY 146 

to determine any single-nucleotide polymorphisms (SNPs). Alignment was performed using bowtie2. 147 

BAM files were created and compared using Artemis (Sanger Institute, UK) to confirm any SNPs 148 

detected using SNIPPY. Minimum coverage to call a SNP was 10 with a confidence cut off value of 149 

0.9. Where any SNPs were identified, the amino acid sequence was compared using Clustal Omega 150 

to identify whether the SNP correlated with a missense mutation and corresponding protein change. 151 

PCR and DNA sequencing was performed to confirm single nucleotide polymorphisms (SNPs) within 152 

genes of interest. Primers used are described in Table 2. DNA sequencing of PCR amplimers was 153 

carried out at the Functional Genomics Laboratory (University of Birmingham, UK).  154 
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Results  155 

 156 

The rate and frequency of mutation upon exposure to ciprofloxacin was dependent on the level of 157 

expression of the transcriptional activator RamA  158 

When SL1344 was exposed to ciprofloxacin at the MIC, the average frequency of mutation 159 

(proportion of mutant cells in a population) was 3.82x10-8 mutations per cell/per generation; the 160 

average rate of mutation (rate at which mutation events arise) was 4.08x10-9 mutations per cell/ per 161 

generation (Table 1, Figure 2 and Figure 3). At the MIC of ciprofloxacin for SL1344 ramA::aph, the 162 

frequency of mutation was similar to that for the wild-type; mutation frequency and rate was 163 

7.15x10-8 and 5.11x10-9 mutations per cell/per generation, respectively. Interestingly, SL1344 164 

ramR::aph, which overexpresses ramA and leads to concomitant overexpression of acrAB, had a 165 

significantly higher mutation frequency and rate when compared to wild-type SL1344; 2.54x10-7 and 166 

3.03x10-8 mutations per cell/per generation, respectively.  167 

Unless RamA is already over-expressed, ciprofloxacin selects for MDR mutants  168 

When SL1344 was exposed to ciprofloxacin, MDR mutants with decreased susceptibility to 169 

ciprofloxacin, nalidixic acid, chloramphenicol and ampicillin were obtained (Table 3). WGS of one 170 

representative, L1881, revealed a single SNP conferring a missense mutation (D137N) in the 171 

transcriptional repressor soxR in which aspartic acid was substituted for asparagine. In contrast to 172 

the wild-type strain, mutants selected from SL1344 ramR::aph were not MDR but had reduced 173 

susceptibility to both ciprofloxacin and nalidixic acid; a result of a substitution of aspartic acid for 174 

glycine within the quinolone resistance determining region (QRDR) of GyrA. Prior to by WGS, all 175 

mutants were passaged on antibiotic-free media; the mutations identified were confirmed by PCR 176 

and subsequent DNA sequencing of the amplimers. 177 

When RamA is absent, ciprofloxacin can still select MDR mutants  178 

In the absence of RamA (SL1344 ramA::aph), exposure to ciprofloxacin gave rise to two 179 

phenotypically different mutants: those that were MDR and those that were only resistant to 180 

quinolones. One mutant, L1880, had decreased susceptibility to ciprofloxacin, nalidixic acid, 181 
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chloramphenicol and ampicillin. WGS revealed a single SNP conferring a missense mutation in soxR 182 

with a substitution of asparagine for threonine at position. Mutants resistant only to quinolones 183 

possessed gyrA mutations conferring Ser83Phe or Asp87Gly substitutions (mutants L1886 and 184 

L1882).  185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

  195 
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Discussion  196 

  197 

As described by ourselves and others, when ciprofloxacin was used as a selecting agent, both 198 

(fluoro)quinolone-resistant and MDR mutants were obtained from wild-type Salmonella (3, 25, 26). 199 

Antibiotic treatment fluctuation assays were performed at the MIC as mutation selection 200 

experiments at sub-MIC concentrations are likely to alter mutation rate and phenotype of mutants 201 

selected (27).  202 

The estimated frequency of mutation for S. Typhimurium after exposure to ciprofloxacin at the MIC 203 

is reported to be ~ 10-9, which is in the range reported in this study (8, 28). Mutation frequency will 204 

measure all the mutants present in a population at a given time, irrespective of whether the 205 

mutation event occurred early or later during the growth of that population. Calculating mutation 206 

rates can be very complex, but aims to calculate a more accurate frequency of mutational events in 207 

a population in the presence of an antibiotic, and is important in predicting the emergence of 208 

antibiotic-resistant bacteria under a particular selective pressure. The rate of mutation shown here 209 

was also in keeping with previous studies (29).  210 

It has been well documented that gyrA mutations at codon 83 and 87 confer ciprofloxacin resistance 211 

(30). Selecting bacteria with mutations that interfere with binding to the target site of quinolones is 212 

not an unexpected mechanism by which Salmonella strains can develop resistance to ciprofloxacin. 213 

Mutations that confer MDR typically give rise to “low-level” resistance to a broad spectrum of 214 

antibiotics and target site mutations are also necessary to provide high-level resistance (31). 215 

Therefore, when ciprofloxacin is present and able to interact with its intracellular target, even at 216 

very low concentrations (as is the case when RamA is overexpressed) a selective pressure is exerted 217 

that drives for the evolution of target site mutations in gyrA. Therefore, gyrA mutants are likely to 218 

occur in both the absence and over-expression of efflux pumps.  219 

Given that in S. Typhimurium RamA is the primary regulator of acrAB-TolC transcription, it was 220 

interesting to find that that MDR seen for the SL1344 mutant (L1881) did not result from a mutation 221 

in ramA, rather a mutation in soxR was observed. soxR is typically upregulated in response to 222 
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oxidative stress, leading to increased expression of soxS (5, 14). This mutational event is very 223 

uncommon but has been described in clinical isolates of Salmonella and E. coli; these soxR mutations 224 

were associated with resistance to fluoroquinolones and chloramphenicol (9-12). In the MDR mutant 225 

(L1880) selected from SL1344 (ramA::aph), a soxR mutation was also found. Zheng et al. 226 

demonstrated that ramA inactivation caused altered transcription of genes regulated by soxS, 227 

suggesting co-regulation between ramA and soxS (32). When acrB is deleted, soxS expression 228 

increases; it is hypothesised that this is a response to increased oxidative stress caused by the lack of 229 

activity of this major efflux pump (14). It is likely, therefore, that in the absence of RamA, mutations 230 

enabling increased production of SoxS are selected in order to maintain functional efflux and allow 231 

for bacterial survival.  232 

The crystal structure of SoxR from E. coli revealed that each monomer consists of an N-terminal 233 

DNA-binding domain, a dimerization helix domain and a C-terminal domain with a [2Fe-2S] cluster 234 

(33-35). The [2Fe-2S] cluster is vital for SoxR to function, and it is stabilised by α3’-and α5’ helices 235 

(33, 34). These areas are highly conserved between all Enterobacteriaceae including Salmonella (36). 236 

The mutations at locations 134 and 137, in the two mutants (L1880 and L1881) lie very close to the 237 

α5’ helix and the conserved cysteines for [2Fe-2S] cluster binding (37). Mutations in Salmonella and 238 

E. coli within neighbouring regions have been shown to alter redox potential and consequently 239 

create conformational changes that interfere with the DNA-binding domain of SoxR (9, 34, 36). We 240 

hypothesise that the missense mutations described in the two mutants will have similar effects in 241 

Salmonella, enabling the mutant to over-express SoxS and result in MDR.  242 

In response to ciprofloxacin exposure, MDR mutants have been shown to occur as a result of RamA 243 

overproduction (3). However, in mutant selection experiments using SL1344 (ramR::aph) that over-244 

expressed RamA, none of the mutants contained mutations that confer additional increased 245 

transcription of efflux pumps or caused MDR. These results suggest that further mutations in efflux 246 

regulatory genes would not create an additional fitness advantage. This hypothesis is supported by 247 

evidence from clinical isolates demonstrating that fitness costs of a mutation impacts upon the 248 
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nature of subsequent second-step mutations, in preference to mutation rate alone (37). It is 249 

hypothesised that second step mutations conferring additional increased transcription of an efflux 250 

pump would confer a high fitness cost (37). This may also explain why the majority of mutants from 251 

SL1344 (ramA::aph) had mutations in gyrA as opposed to mutations altering efflux pump gene 252 

regulation.  253 

We have shown that natural over-expression of acrAB via lack of RamR repression of RamA in 254 

Salmonella enterica affects mutation rate and frequency. This in keeping with results obtained when 255 

artificial levels of acrAB are produced. El Meouche and Dunlop noted that plasmid-mediated 256 

overexpression of acrAB resulted in a higher mutation frequency relative to wild-type E. coli and S. 257 

Typhimurium LT2 (17). Here, we show chromosomal mediated overexpression of AcrAB, via deletion 258 

of the transcriptional repressor RamR (ramR::aph), resulted in a higher rate of mutation and 259 

frequency of mutation compared to cells with wild type AcrAB levels; deletion of ramR as a means to 260 

overexpress acrAB was chosen as the experimental strategy as the levels of AcrB produced are more 261 

likely to reflect those observed in a clinical isolate. Overexpression of acrAB in E. coli results in a 262 

mutator phenotype because of lower expression of the DNA mismatch repair gene mutS (17). This 263 

deficiency in mutS expression results in an inability to repair mis-incorporation of bases that occur 264 

during replication (38). Overexpression of stress response mechanisms, including efflux pumps, can 265 

incur a fitness cost by increasing cellular energy requirements and by the removal of metabolites 266 

that are essential for bacterial growth (39). We hypothesise that the mutator phenotype occurs in 267 

order to compensate for fitness costs that may result from over-expression of acrAB.  268 

After exposure to ciprofloxacin, mutations in soxR can confer MDR resistance in S. enterica serovar 269 

Typhimurium in both the presence and absence of RamA. When ramA is already over-expressed, 270 

further mutations in the genes encoding transcriptional regulators of the AcrAB-TolC pump did not 271 

occur. SoxRS is traditionally believed to play a minor role in regulation of AcrAB-TolC in Salmonella, 272 

however, in response to antimicrobial selective pressure, mutations in the transcriptional regulator 273 

soxR can confer a survival advantage and confer MDR in the presence of normal and impaired 274 
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regulation of the AcrAB-TolC efflux pump. Inhibition of regulatory genes of AcrAB-TolC, including 275 

ramA and marA, is postulated as a method to reduce antibiotic resistance by keeping efflux levels 276 

low and thereby increasing the intracellular concentration of antibiotics, and increasing their 277 

activity. However, we show that in the absence of RamA compensatory mutations appear within 278 

soxR that result in MDR. This is important when considering the usefulness of compounds that 279 

behave as efflux inhibitors. Future studies evaluating novel approaches to tackling antibiotic 280 

resistance by targeting efflux in Enterobacteriales including Salmonella, such as inhibition of 281 

transcription factors, will need to consider all adaptive response when designing future experiments.  282 
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Figure 1. Schematic representation of the known regulatory pathways for expression of AcrAB-418 

TolC efflux pump in Salmonella. The genes are represented as arrows and their translated proteins 419 

are represented as ovals (transcriptional repressors) and hexagons (transcriptional activators) The 420 

AcrAB-TolC pump extrudes drugs across the cytoplasmic and outer membranes. Excessive 421 

production of AcrA and AcrB is prevented by the local repressor AcrR. Activation of acrA, acrB and 422 

tolC transcription occurs primarily due to the global regulatory protein RamA by binding to the 423 

rambox upstream of these genes. As demonstrated the regulatory proteins SoxS and Rob can also 424 

activate acrABtolC transcription. RamA expression is controlled by RamR which represses activation 425 

of ramA. Likewise, SoxR controls expression of both soxR and soxS.  426 

Figure 2. Mutation frequencies of strains exposed to ciprofloxacin. Mutation frequency was 427 

calculated as the average total number of ciprofloxacin-resistant colonies divided by the viable 428 

count. * P < 0.05 calculated using a one-way ANOVA and is relative to the wild type SL1344. n= 30 429 

independent replicates.  430 

Figure 3. Mutation rate of strains exposed to ciprofloxacin. The phenotypic mutation rate, (µ), was 431 

calculated using the Lea Coulson method of the median. * P < 0.05 calculated using a one-way 432 

ANOVA and is relative to the wild type SL1344. n= 30 independent replicates. 433 
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Figure 3 447 

 448 

  449 



25 
 

Table 1. Average frequency and rate of mutation (per cell/per generation) of S. Typhimurium SL1344 450 

wildype, SL1344 ramR::aph and SL1344 ramA::aph mutants selection upon exposure to MIC 451 

concentrations of ciprofloxacin.  452 

Strain Genotype    Ciprofloxacin 

 

 

MIC µg/ml Frequency +/- SD 

Mutation rate per cell/ 

per generation  +/- SD 

SL1344 wild-type 0.03 3.82x10-8 +/- 9.75x10-9 4.08x10-9 +/- 1.15x10-9 

L1322 ramA::aph 0.03 7.15x10-8 +/- 2.47x10-8 5.11x10-9 +/- 9.75x10-10 

L1007 ramR::aph 0.12 2.54x10-7 +/- 9.52x10-8 3.03x10-8 +/- 9.21x10-9 

 453 

The MIC of each parental strain is shown.  454 
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Table 2. Primers used in this study to confirm SNPs identified by WGS.  455 

Gene Forward primer (5’ – 3’) Reverse primer (5’ – 3’) 

gyrA CGTTGGTGACGTAATCGGTA CCGTACCGTCATAGTTATCC 

soxR CAATGTTTAGCGGTTGGTCG AATCATCTTCAAGCAGCCGG 

 456 
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Table 3. MIC phenotype of the mutants obtained after exposure to ciprofloxacin. The genotype, determined by WGS of each mutant, is shown.  457 

 458 

CIP, ciprofloxacin; NAL, nalidixic acid; CHL, chloramphenicol; TET, tetracycline; EtBr, ethidium bromide; AMP, ampicillin.  459 

Italic values indicate a ≥4-fold increase in MIC in comparison to the parental strain. Bold values indicated SoxR mutants.  460 

 461 

 462 

 463 

 464 

 465 

Strain Genotype MIC (µg/ml) 

   CIP NAL CHL TET Et Br AMP 

S. Typhimurium (SL1344) WT 0.03 8 4 1 1024 1 

L1881 SoxR Asp137Asn 0.12 16 16 2 >2048 8 

S. Typhimurium (SL1344) ramA::aph 0.03 8 4 1 1024 1 

L1886 GyrA Ser83Phe 0.5 >64 4 1 2048 2 

L1882 GyrA Asp87Gly 0.12 >64 4 1 1024 2 

L1880 SoxR Asn134Thr 0.12 16 16 2 2048 8 

S. Typhimurium (SL1344) ramR::aph 0.12 16 16 4 2048 8 

L1877 GyrA Asp87Gly 0.5 >64 16 4 2048 8 





0

1×10 -7

2×10 -7

3×10 -7

4×10 -7

M
u
ta
ti
o
n
fr
e
q
u
e
n
c
y
(C
F
U
/m
l)

SL1344

SL1344 ramR::aph

SL1344 ramA::aph

*



0

5×10 -9

1×10 -8

1.5×10 -8

2×10 -8
2×10 -8

2.5×10 -8
3×10 -8

3.5×10 -8
4×10 -8

M
u
ta
ti
o
n
ra
te
(C
F
U
/m
l) SL1344

SL1344 ramA::aph

SL1344 ramR::aph

*


	Manuscript Text File
	Figure 1
	Figure 2
	Figure 3

