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Hydrological research is often focused at the catchment scale; but

there are significant benefits of taking a broader spatial perspective

(i.e., comparative hydrology) to advance the understanding of hydrologi-

cal processes, especially in the context of global change. Indeed, many of

the recently described “unsolved problems in hydrology” (Blöschl et al.,

2019) refer to either global-scale processes (e.g., climate change), the

hydrology of major physiographic zones (e.g., semi-arid or snowmelt

regions) or require extensive comparisons across catchments. Moving

beyond the catchment-scale frequently provides more holistic insights

into the varying spatio-temporal response of hydrological systems to cli-

mate variability and change, as well as to the myriad of other anthropo-

genic influences on water. This knowledge is key for both mitigation of,

and adaption to, hazards under an increasingly changed water cycle

(Abbott et al., 2019). Moreover, a large-scale viewpoint is essential to

inform appropriate water management towards socio-economic devel-

opment, water-food-energy security and ecosystem health (e.g., WWAP,

2019). Here we contest that taking a large-scale perspective can bring

significant benefits to our understanding of hydrological processes under

change. After making the case for large-scale hydrology in general, we

then explain the benefit of a large-scale hydrology approach in investi-

gating global change, its causes, as well as water management in the pre-

sent day and in the future. We conclude by identifying challenges and

opportunities to advance research in large-scale hydrology and hydrolog-

ical process understanding beyond the individual catchment.

1 | FRAMING HYDROLOGICAL PROCESSES
IN A LARGER-SCALE CONTEXT

For surface water, a river catchment provides a relatively clear and

defensible boundary within which water is stored and fluxes can be

investigated and quantified (although we note that groundwater res-

ervoirs and subsurface flows may not correspond to surface topogra-

phy). However, catchments do not exist in isolation from the outsideSubmission to HPToday as an Invited Commentary
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world. Meteorological inputs and outputs of water are the primary

drivers of catchment hydrological variation, albeit modified by catch-

ment properties (Bower, Hannah, & McGregor, 2004; Figure 1). Scales

of meteorological variation are often larger than the catchment itself,

with the water frequently originating from outside the catchment

(i.e., the wider “air-shed”), even for continental-scale rivers

(e.g., Brubaker, Dirmeyer, Sudradjat, Levy, & Bernal, 2001; Keune &

Miralles, 2019). Thus, larger-scale atmospheric processes also influ-

ence the catchment water balance. These could be the hourly or daily

variation characteristic of the regional meteorological setting, or the

result of more organised climate system variation linked to large-scale

ocean–atmosphere variability and teleconnections. For example, the

El Niño Southern Oscillation (ENSO) is a leading mode of climate vari-

ability, impacting climate at temporal scales of 2–8 years across large

swathes of the tropics and some mid-latitude regions (e.g., Capotondi

et al., 2015; Deser, Alexander, Xie, & Phillips, 2010).

Bearing in mind these regional-to-continental, hemispheric and

global scale controls on weather and climate, it is clear that a large-scale

climate perspective is required to hypothesise and develop understand-

ing of the first-order drivers of river flow (and hydrological variation in

general) at any given location. This approach has been pursued success-

fully in Western Europe with definition of the role of the North Atlantic

Oscillation (NAO) for regional climate variation and subsequently for

river flow (Kingston, Lawler, & McGregor, 2006; Wanner et al., 2001).

Such reduction of large-scale climate-hydrology connections to a statis-

tical relationship between a hydrological time series and a large-scale

climate index is potentially very powerful, and can form the basis for

much improved understanding of hydroclimatic dynamics, and even

hydrological predictability (e.g., Ionita, Lohmann, Rimbu, & Chelcea,

2012). However, this approach can also result in the oversimplification

of the cascade of processes driving climate and river flow at a given

location (Hannah, Fleig, Kingston, Stagge, & Wilson, 2014; Kingston,

Lawler, & McGregor, 2006). In many locations, commonly invoked cli-

mate indices (including the NAO or ENSO) may also be poor hydrologi-

cal predictors (e.g., Giuntoli, Renard, Vidal, & Bard, 2013). For these

reasons, it is often advisable to begin large-scale hydrological studies

with an “environment-to-climate” approach to investigate climate

drivers—that is, the detection of unknown or hidden climate indices

directly from hydrological data (Renard & Thyer, 2019).

At the same time as requiring a large-scale climatological

approach to river catchment response, a large-scale hydrological per-

spective is critical too. By moving from investigation of the large-scale

climate drivers of hydrological variation at single locations to large

areas, it becomes possible to determine the spatial coherence of

climate-hydrology relationships, and thus the likely large-scale mecha-

nisms. For example, by studying the large-scale pressure fields associ-

ated with gridded precipitation variation across Europe, Lavers,

Prudhomme, and Hannah (2013) were able to detect a continental-

scale signature of strong and weak positive and negative relationships

between precipitation and the NAO.

A large-scale hydrological perspective requires looking down

(at catchment properties), as well as looking up the climate system

and across other catchments (Figure 1). By taking into account charac-

teristics such as the role of groundwater or land-use in determining

the hydrological processes controlling storage and fluxes of water, it

becomes possible to better identify the nature and variability of large-

scale climate-land surface-water relationships. Demonstrating this

possibility, Laizé and Hannah (2010) showed how catchment elevation

and permeability influenced the strength of river flow relationships to

regional climate and atmospheric circulation patterns. Subsurface

catchment properties can act as a particularly strong filter on climate

variability. Large groundwater systems tend to filter out short-term

variation and instead show more pronounced multi-annual to decadal-

scale variation (e.g., Cuthbert et al., 2019; Hanson, Dettinger, &

Newhouse, 2006; Sidibe et al., 2019), which may also be transferred

to or received from areas beyond the catchment boundary (Bouaziz

et al., 2018; Fan, 2019). In contrast, short-term (up to interannual) var-

iations tend to be dominant in steep catchments with shallow ground-

water systems (Sidibe et al., 2019) or in catchments with strong

subsurface heterogeneity (Hartmann, 2016). In other locations, snow

storage and melt from winter into summer may result in strong sea-

sonal differences in the connection from large-scale climate to land

surface hydrology (Harpold et al., 2017; Milner et al., 2017).

In addition to spatial variation in subsurface or vegetation charac-

teristics, large-scale land-use change may alter regional-scale climate-

hydrology relationships over time. In some cases, land-use change may

supplant climate change as the primary long-term driver of hydrological

change (Vicente-Serrano et al., 2019; Wine & Davison, 2019). For

example, extensive deforestation in humid tropical locations such as

the Amazon basin fundamentally alters land-atmosphere recycling of

water and consequently surface water availability (Spracklen, Arnold, &

Taylor, 2012). Streams can also substantially be altered by groundwa-

ter pumping (de Graaf, Gleeson, van Rens, Sutanudjaja, & Bierkens,

2019; Zipper et al., 2019). Elsewhere, direct and indirect use of water

may lead to large-scale modification of climate-driven patterns of

hydrological variation, as increasingly recognised in terms of the diffi-

culty in differentiating between natural and human-influenced drought

events (Van Loon et al., 2016a, 2016b).

F IGURE 1 A conceptual model of the links between large-scale
ocean–atmosphere variation and terrestrial hydrological variability,
including the filtering effect of land surface conditions (adapted from
Hannah, Fleig, Kingston, Stagge, & Wilson, 2014)
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2 | SCALE MATTERS: INTERACTIONS
ACROSS SPACE AND TIME

Catchment-scale hydrological outputs are determined by a range

of large-scale inter-dependent interactions across the ocean–atmo-

sphere-land surface system (Figure 1). However, while these links typ-

ically occur at spatial scales beyond that of the catchment, there is

still some scale dependency. For example, although anthropogenic cli-

mate change is a global-scale phenomenon (albeit with different

regional implications), modification of climate inputs/outputs by land

surface conditions occurs primarily at the regional scale. These differ-

ent large-scale hydrological drivers vary over different timescales

(Figure 2), and may even vary through time in different ways

(i.e., monotically, abruptly, randomly or cyclically). Patterns of climate

variation range from the typical weekly-to-monthly variation of annu-

lar modes (Thompson & Wallace, 2000), the seasonal to interannual

variability of ENSO (Capotondi et al., 2015), to decadal-scale patterns

such as the Interdecadal Pacific Oscillation (Salinger, Renwick, &

Mullan, 2001). In contrast, anthropogenic forcing of the climate sys-

tem from greenhouse gas emission occurs more monotically on

decadal to centennial scales (against a background of higher frequency

oscillations that may be impacted by humans too), whereas large-scale

changes in farming practice or infrastructure development (e.g., reser-

voir construction) may result in more abrupt changes. As such, a long-

term and multi-scale temporal perspective is essential to fully charac-

terise and contextualise the large-scale drivers of hydrological varia-

tion. In such terms, not only is stationarity no longer a useful

construct for water resource management (Milly et al., 2008), but was

never likely to have been a satisfactory approach (Taylor, 2009).

Together, Figures 1 and 2 indicate that different components of

the ocean–atmosphere-land surface system interact—and as these

interactions occur at different spatial and temporal scales, amplifica-

tion or attenuation of some part of the initial climate drivers of hydro-

logical variation may occur. So, catchment properties may modify the

climate sensitivity of hydrological variables at timescales from sea-

sonal to decadal, and long-term climate oscillations may modulate

anthropogenically-driven variability and trends (e.g., Vernon-Kidd &

Kiem, 2010). Meanwhile, continued climate (or land-use) change

may fundamentally alter climate-hydrology relationships, as the

Earth's major climate zones expand or contract under increased tem-

peratures, leading to change in large-scale bio-climatic and physio-

graphic regimes.

As well as requiring a system-wide approach to studying the cas-

cade of processes linking large-scale variation to catchment outputs, a

temporally-holistic perspective is necessary. By investigating large-

scale atmospheric processes dynamics according to time-scale

(e.g., Lovejoy, 2015), it becomes more possible to clarify the relative

importance of different contributions to large-scale hydrological varia-

tion and apparent trends (e.g., Haustein et al., 2019). Similarly,

characterising long-term hydrological persistence can also be insight-

ful for understanding extreme events and observed hydrological varia-

tions under climate change (Markonis & Koutsoyiannis, 2016). For a

comprehensive characterisation of climate and hydrology oscillatory

relationships, multi-resolution statistical techniques (e.g., wavelet-

based methods) are particularly well suited: these enable investigation

of climate-hydrology relationships across a full range of the time-

series spectra (Anctil & Coulibaly, 2004; Labat, Godderis, Probst, &

Guyot, 2004). Investigating time-series relationships in this way can

reveal the temporal variability in the strength of large-scale relation-

ships (Dieppois, Durand, Fournier, & Massei, 2013) or their time-scale

dependence (Massei et al., 2017), whereas linear correlation omits

such specificity (Kingston, Webster, & Sirguey, 2016).

3 | CHALLENGES AND OPPORTUNITIES IN
LARGE-SCALE HYDROLOGY

Key challenges and opportunities for advancing large-scale hydrologi-

cal research relate to the use (and availability) of data and models to

unravel processes across nested space–time domains. Notably, data

availability (and the ability to validate model outputs) are often most

limited in areas where the need is greatest, such as remote and topo-

graphically complex montane “water towers” (Immerzeel et al., 2020;

Kaser, Grosshauser, & Marzeion, 2010). It is self-evident (but cannot

be overstated) that for a large-scale perspective to hydrology, large-

scale data are needed for climate, land and hydrology variables, at a

satisfactory resolution and extent and with comprehensive metadata.

However, challenges remain in terms of the maintenance of hydrolog-

ical data networks (Beven et al., 2020; Hannah et al., 2011; Ruhi, Mes-

sager, & Olden, 2018). A particular problem for hydrological variables

is the “spatial footprint” of the area represented by an individual river

gauge (in comparison to a point temperature or precipitation measure-

ment) in determining time series homogeneity. This is reflected by the

aforementioned difficulty of separating human influence from natural

drivers of hydrological drought (Van Loon et al., 2016a, 2016b). For

such reasons, endeavours such as large-scale hydrological data rescue

(e.g., Le Gros et al., 2015), reconstructing long-term and large-scale
F IGURE 2 Spatio-temporal scales and associated dynamics
characterising hydrological system variability
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high-resolution climate datasets (Devers, Vidal, Lauvernet, Graff, &

Vannier, 2020) and corresponding near-natural hydrological datasets

(e.g., Hanel et al., 2018; Moravec, Markonis, Rakovec, Kumar, & Hanel,

2019) are central in understanding the large temporal and spatial vari-

ations of hydrology. Compatibility between, or merging of, national-

scale datasets (e.g., Caillouet, Vidal, Sauquet, Graff, & Soubeyroux,

2019; Keller et al., 2015) would be a further advance, as would

improved quality assessment of large repositories such as the Global

Runoff Data Centre under the auspices of the World Meteorological

Organisation.

Compared to hydrological data, climate observations are more

widely available, or more easily and robustly simulated as in the case

of reanalysis data. In part because of this disparity, climate data are

sometimes substituted for hydrological data. A common example is

the increasing use of meteorological indices such as the SPEI as prox-

ies for hydrological drought (e.g., Stagge, Kingston, Tallaksen, &

Hannah, 2017; Vicente-Serrano, Beguería, & López-Moreno, 2010).

Whilst undoubtedly an opportunity to advance understanding of

large-scale drought dynamics, it can also be a challenge to obtain

hydrologically meaningful information from such indices—that is,

standardised index values versus discharge thresholds for irrigation

abstractions, transport or electricity generation (Van Lanen et al.,

2016). Most significantly, such meteorological indices are unable to

take direct account of the impact of stores and fluxes within the ter-

restrial/sub-surface hydrological system.

With the continuing limitations to observational networks,

remote sensing and model data are increasingly used instead of

(or to complement) observations of the hydrological cycle. Data

obtained from the GRACE earth observation system for terrestrial

water has led to one of the biggest step-changes in hydrological data

availability in recent years. Notwithstanding its relatively coarse res-

olution, GRACE has led to substantial advances in understanding the

nature and drivers of global changes in freshwater availability

(e.g., Rodell et al., 2018).

Model data for the terrestrial hydrological cycle can be used to

advance understanding of continental and global scale patterns. Here,

discrete catchment-scale model output may be analysed for similar or

disparate catchments using the same (Caillouet, Vidal, Sauquet,

Devers, & Graff, 2017) or different models (Todd et al., 2011). Increas-

ingly, large-scale (multi-catchment) modelling exercises are used to

characterise large-scale hydrological variation. These range from

mesoscale models applied across continental-scale landmasses

(e.g., Hanel et al., 2018) to fully global-scale hydrological models that

are in many cases linked to the land surface schemes of atmosphere–

ocean and earth system models (e.g., Schewe et al., 2014). Ongoing

multi-institution comparison and validation efforts have enabled

increased understanding of the strengths and weaknesses of these

modelling systems (e.g., WaterMIP, Haddeland et al., 2011;

Prudhomme et al., 2014). However, models are still fundamentally lim-

ited in their representation of many key hydrological processes, such

as lateral re-distribution by hillslope processes (Chifflard et al., 2019)

or by the absence of many important landscape heterogeneities

(Hartmann, Gleeson, Wada, & Wagener, 2017). Critically, hydrological

models generally do not consider anthropogenic (i.e., land-use)

impacts on the hydrological cycle. Furthermore, such models (and data

products from remote sensing) are still ultimately underpinned by

station-based observations of land surface conditions—making provi-

sion of widespread, accessible and high quality data both a key chal-

lenge and opportunity for advancing [large-scale] hydrological

research.

Alongside opportunities and challenges associated with hydrologi-

cal modelling, representation of the climate system in models is a fur-

ther frontier for advancing hydrological understanding at large spatial

scales. Whilst the ever-increasing resolution of numerical weather pre-

diction and general circulation models enables more detailed simulation

of weather and climate, key questions remain in relation to how skilfully

large-scale relationships (at different temporal resolutions) are captured

by these models. For example, there is evidence that models typically

underestimate decadal variability in the Pacific Ocean (Henley et al.,

2017), but provide overestimations in the north Atlantic (Menary et al.,

2015). As well as problems with model physics (Deser, Phillips,

Bourdette, & Teng, 2012; Hawkins & Sutton, 2009), there are also chal-

lenges in terms of how to interpret model output—that is, whether

model performance in simulating hydroclimatic variables results from

realistic large-scale climate processes, or from other compensating

biases (e.g., Dieppois et al., 2019). Such information should precede the

development of seamless prediction systems or bias-corrected climate

change scenarios for water resources. Similarly, in some cases more

skilful forecasts for a particular variable may result from use of different

model variables—for example, improved forecasts of extreme precipita-

tion events by using forecast vapour flux rather than precipitation itself

(Lavers, Zsoter, Richardson, & Pappenberger, 2017).

4 | MOVING BEYOND THE CATCHMENT
TO CONNECT PROCESSES ACROSS SCALES

Herein, we have argued that a large-scale perspective to studying

hydrology is critical for understanding hydrological processes in the

connected terrestrial and atmospheric compartments of the water

cycle and to connect the drivers of change across scales. Large-scale

variation in weather and climate at multiple timescales is the ulti-

mate control on hydrological variation, albeit modified by catchment

properties. Indeed, divergence of hydrological variation from large-

scale climate patterns gives important information about the impor-

tance of local-scale atmospheric conditions and role of catchment

properties. Catchment properties are often seen as static; but they

change over time as a result of anthropogenic land-use change,

and/or the accumulated pressures from climate variation or

change—leading to further changes in climate-hydrology relation-

ships that are best understood from a large-scale viewpoint. A more

holistic large-to-small spatial and temporal perspective is essential

for improving our models and understanding of where water comes

from and where it goes, and the role of the catchment as a filter of

climate drivers across scales. In the context of global change and the

increasingly modified Anthropocene water cycle, this research

4 KINGSTON ET AL.



approach is more critical than ever for sustainable water resources

management.
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