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Abstract: Sport-related traumatic brain injury (TBI) elicits a multifaceted inflammatory response
leading to brain injury and morbidity. This response could be a predictive tool for the progression
of TBI and to stratify the injury of which mild TBI is most prevalent. Therefore, we examined the
differential expression of serum inflammatory markers overtime and identified novel markers in
repetitively concussed athletes. Neuropsychological assessment by Wechsler Adult Intelligence Scale
(WAIS) and Immediate Post Concussion Assessment and Cognitive Test (ImPACT) was performed
on rugby players and serum was taken from healthy, concussed and repetitively concussed athletes.
Serum was also obtained <1 week and >1 week after trauma and analyzed for 92 inflammatory protein
markers. Fibroblast growth factor 21 (FGF21) and interleukin-7 (IL-7) differentiated repetitively
concussed athletes. Macrophage chemotactic protein-1 (MCP-1), tumor necrosis factor superfamily
member 14 (TNFSF14) were significantly reduced >1 week and chemokine (C-X3-C motif) ligand 1
(CX3CL1) upregulated <1 week after injury. FGF21 and MCP-1 negatively correlated with symptoms
and their severity. We have identified dynamic changes in the inflammatory response overtime and
in different classes of concussion correlating with disease progression. This data supports the use of
inflammatory biomarkers as predictors of symptom development due to secondary complications of
sport-related mTBI.

Keywords: mild traumatic brain injury; concussion; neuroinflammation; FGF21; MCP-1

1. Introduction

Traumatic brain injury (TBI) causes damaging neurological impairments leading to disability and
morbidity. TBI affects young and old, with young victims creating a substantial negative impact to
families and wider society with years of lost productivity and an increasing burden on healthcare
systems [1,2]. Such is its prevalence that its economic cost to the US is $56 billion a year [3]. This
large socio-economic burden can lead to poor post trauma follow up exacerbating a patient’s injuries.
Therefore, there is a need to not only identify therapies, but to also have accurate diagnostic and
prognostic monitoring capabilities.

Mild TBI (mTBI) is the most prevalent form of TBI with up to 80% of patients suffering with adverse
symptoms such as sleep disturbances, headaches, nausea, impaired memory, or loss of function [4].
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mTBI can be defined as head trauma resulting in either memory loss or altered neurological function up
to a day following the traumatic ictus or loss of consciousness for under 30 min [5]. A large proportion
of mTBI consists of sport-related concussive (SRC) injury with up to 3.8 million cases reported in
the United States annually [6]. There is also a greater risk of these athletes experiencing repetitive
concussions which has been associated with the development of neurodegenerative diseases such
as Parkinson’s, Alzheimer’s, and chronic traumatic encephalopathy (CTE) [6–15]. Neurocognitive
tests have been developed to diagnose concussion. However, these assessments are expensive, subject
to bias due to lack of appropriate baselines and have not yet demonstrated efficacy as prognostic
tools [16–18].

Difficulties in developing tools for the prediction of progressive pathology in TBI are confounded
by the variability in the anatomical location, extent of the mechanical injury to the brain, as well as the
multitude of biological response mechanisms involved. TBI is broadly characterized by 2 phases [19,20].
Immediately after impact, the primary phase is associated with shearing and tearing of neural and
vascular brain structures and enhanced permeability of the blood–brain barrier. Within minutes start
the secondary phase, where danger-associated molecular pattern (DAMPs) molecules are released
from damaged cells which stimulate the Toll-like receptor (TLR) [21]. Cytokines and chemokines are
also released leading to the recruitment of microglia and peripheral monocytes to the site of injury [22].

In addition, cytotoxic and ischemic responses enhance axonal death and ultimately injury to
neurological structures [21]. This is associated with the conversion of monocytes to macrophages and
the T cell production of cytokines. Macrophages are important in removing debris however, they can
have a dual effect of allowing tissue repair or additional damage [22]. The inflammatory changes can
remain for days to months exacerbating injury in systemic and intracranial systems.

Simultaneously, microglia potentiate neuronal recovery through the production of pro- and
anti-inflammatory mediators [23]. This includes the interleukins IL-6 and IL-7 as well as tumor necrosis
factor-α (TNF-α) and chemokines macrophage chemotactic protein-1 (MCP-1). Consequently, they
display both a neuroprotective and neurodegenerative response [24]. This interplay continues to change
and evolve as the secondary response progresses, ultimately leading to increased expression of reactive
oxygen species (ROS) in microglia and further cell injury [25]. Therefore, targeting the inflammatory
system could provide a potential therapeutic strategy for minimizing post-injury evolution and
improving survival [26].

In addition to potential therapies, inflammatory proteins could also be used for the development
of biomarkers useful in the clinical assessment of mTBI. Efforts have been focused on quantifying
inflammatory markers in easily obtained bodily fluids such as serum, saliva, and urine. It has already
been shown that IL-6 was differentially expressed in serum levels of TBI patients within hours after
injury [27] and IL-10 is strongly associated with morbidity [28]. Following extensive protein analysis
Cystatin D, AXIN1, and TRAIL were also identified as biomarkers for the early detection of TBI and
were further able to differentiate between mild and severe TBI [29]. In addition to immediate changes,
inflammatory markers could also be used to track recovery over time in severe traumatic injuries [30].

However, studies investigating the relationship between inflammatory markers and the ability
to track the evolution of both symptoms and physiological responses to sports-related concussion
(SRC) over time, are limited. Moreover, little has been done to assess the differential expression of the
circulating inflammatory response in athletes who have suffered repetitive concussions.

Consequently, in this study we have focused analysis on inflammatory markers in the serum
of semi-professional and professional Rugby players who suffered mTBI and repeated mTBI. These
samples were obtained less than one week after injury (<1 week) to determine the early inflammatory
response and over 1 week (>1 week) following injury to assess longitudinal inflammatory effects. In
addition to investigating the inflammatory network in athletes after a single concussion (C), those who
suffered repeated concussions (RC) were also investigated. This data has been analyzed in conjunction
with and contextualized in relation to cognitive performance and symptom severity, with protein
expression as a predictive tool for the evolving inflammatory response seen in mTBI.
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2. Results

2.1. Identifiers of Concussed and Repetitively Concussed Athletes

The levels of 92 inflammatory markers were measured in the serum from H, C, and RC athletes
whose samples were collected within 2–14 days following their most recent concussion. RC athletes
were those players that had received 2 concussions within a 3-month period. Following this analysis,
the 3 proteins tumor necrosis factor superfamily member 14 (TNFSF14), fibroblast growth factor 21
(FGF21), and interleukin 7 (IL-7) were found to be altered between the groups (Figure 1). TNFSF14
levels were significantly reduced in C patients when compared to H and RC groups (Figure 1A; H =

4.38 ± 0.52, C = 3.44 ± 1.10, RC = 3.61 ± 0.85; H vs. C p = 0.0278). Following the same analysis two
clear markers were identified for RC athletes differentiating them from healthy and single concussion
groups. In these occurrences FGF21 was significantly downregulated in RC serum (Figure 1B; H = 4.65
± 1.25, C = 4.05 ± 1.32, RC = 2.89 ± 0.69; H vs. RC p = 0.037) and IL-7 was significantly increased in RC
athletes (Figure 1C; H = 4.78 ± 0.45, C = 4.83 ± 0.59, RC = 5.47 ± 0.35; H vs. RC p = 0.043, C vs. RC
p = 0.049).
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Figure 1. Differentially expressed proteins in human serum from healthy (H), concussed (C), and
repetitively concussed (RC) patients. TNFSF14 (A) was found to be significantly reduced in concussed
patients when compared to healthy individuals. In contrast FGF21 (B) was significantly downregulated
and IL-7 (C) was significantly upregulated in repetitively concussed patients. Data is presented as the
mean ± SE and was tested for normality followed by a one-way Anova and a tukey post hoc test where
* p < 0.05. H = 12 C = 18 RC = 5.

2.2. Differential Expression of Biomarkers at Early and Late Timepoints Following Concussion

In order to determine if there are any changes in biomarkers indicative of ongoing mTBI pathology
in the extended post-injury time window, we compared the expression of markers in athletes less than
a week following concussion and those over a week (average 60 days following injury). Three markers
were identified at the different time points. Both MCP-1 (Figure 2A; H = 11.46 ± 0.43, <1 week = 11.16
± 0.50, >1 week = 10.90 ± 0.41; H vs. >1 week p = 0.030) and TNFSF14 (Figure 2B; H = 4.38 ± 0.52, <1
week = 3.56 ± 1.02, >1 week = 3.28 ± 1.03; H vs. >1 week p = 0.038) were significantly reduced in the
serum of patients >1 week after the initial injury when compared to controls. The only marker found
to be significantly altered in patients that presented <1 week after injury was the chemokine (C-X3-C
motif) ligand 1 (CX3CL1) which was increased when compared to H participants (Figure 2C; H = 7.07
± 0.29, <1 week = 7.43 ± 0.39, >1 week = 7.32 ± 0.37, p = 0.027).
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Figure 2. Changes in serum protein levels following analysis under (<1 week) and over a week (>1
week) after injury when compared to healthy (H) athletes. MCP-1 (A) and TNFSF14 (B) levels were
significantly reduced in serum taken from patients >1 week after injury. CX3CL1 (C) was significantly
upregulated in serum taken <1 week following injury when compared to H. Data is presented as the
mean ± SE and was tested for normality followed by a one-way Anova and a tukey post hoc test where
* p < 0.05. H = 12, <1 week = 11, >1 week = 7.

2.3. Clinical Assessment of Secondary Symptoms Following mTBI

Concussed patients displayed a range of symptoms with headaches being the most commonly
reported at 63% (Table 1: n = 51 patients). This was followed by fatigue (29%), fogginess (29%),
drowsiness (27%), and having trouble falling asleep (27%). Patients were clinically assessed by the
WAIS symbol search and ImPACT tests. Despite the range of criteria that the WAIS assessment
covered only the number of symbols entered was found to be significantly lower in concussed patients
(Figure 3A; H = 43.17 ± 7.07, C = 3 6.67 ± 6.45, p = 0.0196). The ImPACT test revealed that the amount
of impulse control was significantly reduced in concussed patients (Figure 3B; H = 5.167 ± 2.79, C =

2.533 ± 2.20, p = 0.0110) and their symptom score was higher when compared to controls (Figure 3C; H
= 1.833 ± 3.19, C = 9.733 ± 11.79, p = 0.0336).Int. J. Mol. Sci. 2020, 21, 1216 5 of 14 
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Figure 3. Outcomes of the Wechsler Adult Intelligence Scale (WAIS) symbol search and Impact test
for concussion for the patients within this study. Following comprehensive clinical assessment of the
WAIS symbol search and Impact test on healthy (H) and concussed (C) athletes it was found that the
number of symbols entered (A), the impact on impulse control (B) and the impact symptom score (C)
were significantly altered. Data is represented as the mean and individual data points were data was
analyzed for significance using the unpaired T test where * p < 0.05, ** p < 0.01. WAIS symbol search n:
H = 12, C = 15. Impact test n: H = 12 C = 15.
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Table 1. The table represents the most common symptoms reported by patients following concussion
in the study. Headaches were highly reported followed by fatigue, feeling foggy, drowsiness, and
having trouble falling asleep. In a few cases nausea was also present. Data is presented as a percentage
of total number of patients. Concussed = 51.

Symptoms Concussed (Number of Patients Reporting the Symptom %)

Headache 63
Fatigue 29
Foggy 29

Drowsiness 27
Trouble falling asleep 27

Balance 23
Dizziness 19
Irritability 19

Nausea 10

2.4. FGF21 and MCP-1 Correlate with Symptom Severity and Cognitive Performance

To determine if the expression of inflammatory proteins correlates with clinical symptoms of
secondary TBI all proteins were compared to clinical neuropsychological data using Spearman’s
correlation coefficient. Of these proteins, serum expression of FGF21 (Figure 4) and MCP-1 (Figure 5)
were the most indicative of clinical characteristics. Low levels of circulating FGF21 was associated with
an increase in the number of reported symptoms (Figure 4A; r = −0.484, p = 0.008) as well as greater
severity of the symptoms (Figure 4B; r = −0.433, p = 0.019). Of these symptoms reported headaches
showed a significant negative correlation with protein expression (Figure 4C; r = −0.579, p = 0.0003).
FGF21 expression was also negatively correlated with a larger impact on impulse control (Figure 4D;
r = −0.370, p = 0.048).
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Figure 4. Fibroblast growth factor 21 (FGF21) protein expression correlated to clinical data. Reduced
FGF21 protein expression was associated with increases in the (A) number and (B) severity of the
symptoms such as (C) headaches. There was also a correlation of low levels of FGF21 and the (D)
impact on impulse control. Data was analyzed according to Spearman’s correlation coefficient where
the number of pairs = 29 and p < 0.05.
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Figure 5. Macrophage chemotactic protein-1 (MCP-1) protein expression correlated to clinical data.
Reduced MCP-1 expression was associated with increases in the number of (A) reported symptoms
and their (B) severity. This included feeling (C) foggy and reports of (D) poor balance. There was also
a significant negative correlation between MCP-1 expression and (E) reaction times. Data was analyzed
according to Spearman’s correlation coefficient where the number of pairs = 29 and p < 0.05.

Reduced serum levels of MCP-1 were also related to an increase in the number (Figure 5A;
r = 0.455, p = 0.013) and severity of symptoms (Figure 5B; r = −0.378, p = 0.043) reported. Low levels of
MCP-1 were correlated with greater numbers of patients feeling foggy (Figure 5C; r = −0.350, p = 0.039)
and having poor balance (Figure 5D; r = −0.345, p = 0.042). Additionally, reduced serum MCP-1 levels
were found to be consistent with increases in the time to react (Figure 5E; r = −0.374, p = 0.046).
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3. Discussion

In this study we have provided further evidence of circulating inflammatory biomarkers correlating
with symptoms following mTBI in the serum of athletes who have had multiple concussions. Many
investigations have analyzed the immediate inflammatory response after TBI [19–21]. This data may
aid our understanding of the complex mechanism following mTBI leading to the development of
accurate diagnostic and prognostic tools to better define the period of injury and guide a safe return to
play objective protocol.

The injury burden of mTBI may have potentially caused the participants in our study to
exhibit reduced cognitive performance such as impaired memory and impulse control as well as the
development of symptoms including headaches, fatigue and sleep disturbances. Processing speed and
visual processing was measured by the WAIS IV symbol search which is an assessment of head injury of
all etiologies, we also utilized the computerized ImPACT test which was developed for athletes [18,31]
in this investigation. This allowed us to identify changes in motor speed, reaction time and impulse
control which are key components in the ImPACT assessment. However, whilst we observed some
changes in cognitive performance the validity of the test for clinical use is still unclear and therefore, as
others have found it may not be accurate enough for diagnosis of mTBI alone [18,32–34].

The secondary inflammatory response following concussion is regulated by pro- and
anti-inflammatory cytokines [21,22]. Expression patterns of these cytokines is associated with the
different forms and severity of TBI [29,35]. In our study we were able to assess variances in the
expression of 92 circulating inflammatory proteins in athletes suffering from repetitive concussions
within a three-month period. Of these candidate markers FGF21 and IL-7 were significantly altered.
FGF21 is important in the process of cell proliferation including that of oligodendrocyte precursor
cells (OPC) [36] and is involved in oligodendrocyte development and remyelination [37,38]. In a
murine model of TBI, FGF21 was able to protect the blood–brain barrier by forming a complex with its
receptors [39]. It has also been shown to enhance angiogenesis and the restoration of functional anatomy
in the brain [40]. Consequently, a decrease in circulating FGF21 following repetitive concussion could
lead to deleterious effects in cerebral tissue. This was evidenced by the significant negative correlation
of FGF21 protein expression and the number of symptoms and their severity including headaches
as reported in our study. A central neurological affect is further supported by studies within the
literature that have observed FGF21 crossing the blood–brain barrier [41]. In addition to its potential
as a biomarker for repetitive concussion and its potential cumulative effect on neurological pathology,
FGF21 could be an effective therapeutic strategy for the guidance treatment of repetitive TBI.

We demonstrate that IL-7 was also significantly increased in the RC athletes when compared
to controls. This protein is important for the development and survival of T-lymphocytes and it
can enhance the production of pro-inflammatory cytokines [42]. Interestingly increased IL-7 in
the serum has been found in patients with multiple sclerosis [43], a demyelinating disease of the
central nervous system. This could be due to IL-7s ability to upsurge the accumulation of activated
microglia/macrophages leading to secondary damage and regeneration failure [44]. Therefore, it could
be hypothesized that augmented levels of IL-7 in RC patients could be a poor prognostic indicator in
their recovery, as has been evidenced in another study where increased IL-7 was a positive prognostic
factor in the development of posttraumatic depression following TBI [45].

The protein TNFSF14, was the only marker able to differentiate between concussed and repetitively
concussed patients. In C patient cohort, the decrease in TNFSF14 serum expression was also found to
be attenuated overtime. This protein is known to trigger apoptosis in tumor cells as well as regulating
the proliferation of T cells [46–48]. TNFSF14 has been identified as a risk gene for multiple sclerosis [49]
however, little is known about its affects in TBI and further investigation of this relationship is required.

We also investigated changes in protein expression overtime in athletes that had received a single
concussion. Our data showed significant changes in MCP-1 (also known as CCL2), which is one of
the most well correlated TBI proteins [35,50]. MCP-1 has been shown to be expressed in the CNS
by astrocytes [51,52]. It can attract cells including macrophages and microglia via inflammatory
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stimuli [50]. This recruitment enhances the inflammatory response leading to further degeneration and
as such central inhibition of MCP-1 has been shown to reduce neuronal loss [53]. Many investigations
have shown an increase in MCP-1 expression within 5 days following TBI [50,52,54]. In contrast to
this, we found serum MCP-1 levels attenuated overtime negatively correlating with patients feeling
foggy and having poor balance. The decrease in MCP-1 could be a protective reaction preventing
further neurological injury. However, most of these studies have been carried out in animal models
over shorter periods of time following injury. They were also carried out in a range of different levels
and methods of injury.

Differential expression of the chemokine CX3CL1 (also known as Fractalkine) was also found.
CX3CL1 has been shown to have an important role in the CNS where it is present in many areas
including the cerebral cortex, amygdala, and the hippocampus [55]. In these areas it maintains the
dynamics between neurons and microglia [56]. During neurotoxicity, CX3CL1 has been found to
protect microglia by stimulating anti-apoptotic Bcl in addition to producing a phagocytic response to
inhibit neurotoxic stimuli [57]. Previous studies have shown changes in CX3CL1 in both the CSF and
the serum of patients suffering TBI however, there are conflicting outcomes in whether its expression
increases of decreases [58,59]. In our study the increase observed within a week after injury could
be indicative of CX3CL1 acting to increase microglia activity in response to neurotoxicity. CX3CL1
therefore, is a potential biomarker and target for therapeutic intervention in mTBI. However, the data
presented in this manuscript is within the discovery phase and all the candidate markers would need
to be further investigated within a larger cohort to determine their suitability as biomarkers of mTBI.

We have identified changes in the expression of inflammatory proteins that could be further
developed as diagnostic tools for the resolution of the evolving injury within sports-related mTBI
patients and in those who have suffered repetitive concussion. This included FGF21 and MCP-1
whose expression negatively correlated with symptom severity and cognitive performance. These
proteins all have an emerging role in the pathogenesis of mTBI and could also be utilized for
therapeutic advancement.

4. Materials and Methods

4.1. Study Approval

Study participants were recruited through the Birmingham concussion clinic at the Queen
Elizabeth Hospital Birmingham (QEHB) or at the University of Birmingham (UoB). (UK), as part of the
RECOS (The REpetitive COncussion in Sport) (Ethics Ref. REC 17/EE/0275, 22 September 2017) [60].
Written informed consent was received from participants prior to inclusion in the study.

4.2. Recruitment

Male and female athletes aged 16–34 years, participating in professional and semi-professional
Rugby who have been positively diagnosed as having a concussion along with a normal neurological
objective examination at assessment, were enrolled in this study. In addition to those that had suffered
single concussions, we also recruited athletes that had suffered 2 concussions within a 3-month
period. These athletes had an initial concussive event followed by another one within 3 months.
Following their last concussion, samples were taken when they first came to the clinic, between 2–14
days. Individuals who require hospital admission after initial assessment for their TBI, presenting
intracranial blood, brain tissue injury, or non-TBI related pathologies on initial CT/MR scan, any history
of neurodegenerative pathology or history of chronic alcohol or drug abuse were excluded. In addition,
age matched controls, who have not received any concussion in the previous 3 months, were recruited
as healthy controls (H). Blood samples were taken <1 week after or >1 week after injury. Of these
samples, one athlete had taken paracetamol 24 h before entering the clinic.

Clinical, demographic (Table 2), neuropsychometric and imaging parameters were collected
for each subject on the day that they came to report their concussions to the clinic, including,
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among others, parameters forming part of The Sport Concussion Assessment Tool—5th Edition
(SCAT 5) (e.g., symptoms inventory, injury data, balance errors, and immediate memory and recall
tests) [61], concussion history, the Immediate Post-Concussion Assessment and Cognitive Testing
battery (ImPACT-FDA approved computerized neuropsychometric suite for sport concussion) [31], and
the Wechsler Adult Intelligence Scale version IV symbol search module (WAIS-IV symbol search) [32].

Table 2. Patient demographics. H = healthy controls, C = Single concussion, RC = repetitively
concussed, <1 week = athletes with a single concussion analyzed less than one week from injury, >1
week = athletes with a single concussion analyzed more than one week from injury.

Characteristics H (n = 12) C (n = 18) RC (n = 5) <1 Week (n = 11) >1 Week (n = 7)

Age (years; Mean ± SD) 25.5 ± 5.9 27.2 ± 4.9 24.5 ± 3.2 28.4 ± 4.9 24.4 ± 4.1
Gender (M/F) 10/2 17/1 4/1 11/0 6/1

4.3. Blood Collection and Processing

Samples were collected from non-concussed healthy athletes, athletes who had suffered a
concussion with Peripheral venous blood samples were obtained from patients following admission
between 2–5 days (<1 week) and 15–75 days (>1 week) after the initial trauma and processed within
2 h after venepuncture. Samples were kept at room temperature for 30 min after which they were
centrifuged at 3000 rpm for 10 mins at 4 ◦C. Serum was separated and stored at −80 ◦C until further use.

4.4. Multiplex Protein Assay

Serum expression of 92 inflammatory markers were analyzed using the Proseek Multiplex
Inflammation I assay (Olink Bioscience, Uppsala, Sweden) as described previously (Table 3; 29). Briefly,
according to the manufacturers protocol, 1 µL of serum was incubated at 8 ◦C overnight with antibodies
labelled with DNA nucleotides. This was then combined with and extension mix in a PCR plate. These
plates underwent a 5′ incubation followed by 17 cycles of DNA amplification. Samples were added
to a detection mix and loaded onto a primed 96.96 Dynamic Array IFC (Fluidigm, CA, USA) and
read in the Fluidigm Biomark reader. Data were then analyzed using the Olink Wizard for GenEx
software (Olink) and calculated from Ct values. Protein expression were normalized and presented
as normalized protein expression (NPX). NPX units are inverted to Ct values and as such high NPX
values are indicative of high protein levels.

Table 3. 92 inflammatory markers contained within the Proseek Multiplex inflammation assay (Olink
Bioscience, Uppsala, Sweden).

Adenosine
Deaminase (ADA) Caspase 8 (CASP-8)

Interleukin-12
subunit beta

(IL-12B)

Latency-associated
peptide transforming
growth factor beta 1
(LAP TGF-beta-1)

STAM-binding protein
(STAMPB)

Artemin (ARTN)
CUB

domain-containing
protein 1 (CDCP1)

Interleukin-13
(IL-13)

Leukemia inhibitory
factor (LIF) Stem cell factor (SCF)

Axin-1 (AXIN1) Cystatin D (CST5)
Interleukin-15

receptor subunit
alpha (IL-15RA)

Leukemia inhibitory
factor receptor (LIF-R)

Sulfotransferase 1A1
(ST1A1)

Beta-nerve growth
factor (Beta-NGF)

Delta and
Notch-like

epidermal growth
factor-related

receptor (DNER)

Interleukin-17A
(IL-17A)

Macrophage
colony-stimulating factor

1 (CSF-1)

T cell surface
glycoprotein CD6

isoform (CD6)
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Table 3. Cont.

Brain-derived
neurotrophic factor

(BDNF)
Eotaxin-1 (CCL11) Interleukin-17C

(IL-17C)

Matrix
metalloproteinase-1

(MMP-1)

T-cell surface
glycoprotein CD5

(CD5)

C-C motif
chemokine 19

(CCL19)

Eukaryotic
translation

initiation factor
4E-binding protein

1 (4E-BP1)

Interleukin-18
(IL-18)

Matrix
metalloproteinase-10

(MMP-10)

Thymic stromal
lymphopoietin (TSLP)

C-C motif
chemokine 20

(CCL20)

Fibroblast growth
factor 19 (FGF-19)

Interleukin-18
receptor 1 (IL-18R1)

Monocyte chemotactic
protein 1 (MCP-1) TNF-beta (TNFB)

C-C motif
chemokine 23

(CCL23)

Fibroblast growth
factor 21 (FGF-21) Interleukin-2 (IL-2) Monocyte chemotactic

protein 2 (MCP-2)

TNF-related
activation-induced

cytokine (TRANCE)

C-C motif
chemokine 25

(CCL25)

Fibroblast growth
factor 23 (FGF-23)

Interleukin-2
receptor subunit

beta (IL-2RB)

Monocyte chemotactic
protein 3 (MCP-3)

TNF-related
apoptosis-inducing

ligand (TRAIL)

C-C motif
chemokine 28

(CCL28)

Fibroblast growth
factor 5 (FGF-5)

Interleukin-20
(IL-20)

Monocyte chemotactic
protein 4 (MCP-4)

Transforming growth
factor alpha
(TGF-alpha)

C-C motif
chemokine 3

(CCL3)

Fms-related
tyrosine kinase 3

ligand (Flt3L)

Interleukin-20
receptor subunit
alpha (IL-20RA)

Natural killer cell
receptor 2B4 (CD244)

Tumor necrosis factor
(Ligand) superfamily,
member 12 (TWEAK)

C-C motif
chemokine 4

(CCL4)

Fractalkine
(CX3CL1)

Interleukin-22
receptor subunit

alpha-1 (IL-22 RA1)
Neurotrophin-3 (NT-3) Tumor necrosis factor

(TNF)

C-X-C motif
chemokine 1

(CXCL1)

Glial cell
line-derived

neurotrophic factor
(hGDNF)

Interleukin-24
(IL-24) Neurturin (NRTN)

Tumor necrosis factor
ligand superfamily

member 14 (TNFSF14)

C-X-C motif
chemokine 10

(CXCL10)

Hepatocyte growth
factor (HGF)

Interleukin-33
(IL-33) Oncostatin-M (OSM)

Tumor necrosis factor
receptor superfamily
member 9 (TNFRSF9)

C-X-C motif
chemokine 11

(CXCL11)

Interferon gamma
(IFN-gamma) Interleukin-4 (IL-4) Osteoprotegerin (OPG)

Urokinase-type
plasminogen activator

(uPA)

C-X-C motif
chemokine 5

(CXCL5)

Interleukin-1α
(IL-1α) Interleukin-5 (IL-5) Programmed cell death 1

ligand 1 (PD-L1)

Vascular endothelial
growth factor A

(VEGF-A)

C-X-C motif
chemokine 6

(CXCL6)

Interleukin-10
(IL-10) Interleukin-6 (IL-6) Protein S100-A12

(EN-RAGE)

C-X-C motif
chemokine 9

(CXCL9)

Interleukin-10
receptor subunit
alpha (IL-10RA)

Interleukin-7 (IL-7)
Signaling lymphocytic

activation molecule
(SLAMF1)

CDL40 receptor
(CD40)

Interleukin-10
receptor subunit
beta (IL-10RB)

Interleukin-8 (IL-8) SIR2-like protein 2
(SIRT2)

4.5. Statistical Analysis

All data is presented as the mean± standard deviation. Comparison of protein expression between
the control and concussion groups and the time points was first tested for distribution using the Shapiro
Wilks test after which a one-way ANOVA with Tukey post hoc test was performed, where p < 0.05. To
identify correlations between protein expression and cognitive performance and symptoms detailed in
the WAIS and ImPACT tests, data were analyzed using the Spearman’s correlation coefficient where p
< 0.05. In order to generate correlations with symptoms the presentation of a symptom was scored as 1
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and where the symptom was not apparent it was scored as 0. All data was analyzed using GraphPad
Prism 8 (GraphPad Inc., San Diego, CA, USA).
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