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Abstract—Convolution neural networks (CNN) have achieved 

great success in natural image processing where large amounts of 

training data are available. However, for the polarimetric 

synthetic aperture radar (PolSAR) image classification problem, 

the number of labeled training samples is typically limited. To 

improve the performance of CNN on limited training data, we 

propose a new network, the densely connected and depthwise 

separable convolutional neural network (DSNet). According to 

characteristics of PolSAR data, DSNet uses depthwise separable 

convolution to replace standard convolution, to independently 

extract features over each channel in PolSAR images. DSNet also 

introduces dense connections to directly connect non-adjacent 

layers. With the depthwise separable convolution and dense 

connections, DSNet can avoid extracting redundant features, 

reuse the hierarchical feature maps of PolSAR images and 

reduce the number of training parameters. Compared with 

normal CNN, DSNet is more lightweight and its training 

parameters decrease to less than 1/9. We compare DSNet against 

several popular algorithms on three different data sets, and show 

that DSNet achieves better results while using less training 

samples. 
Index Terms—DSNet, polarimetric SAR image classification, 

convolutional neural networks, depthwise separable convolution, 

dense connection. 

I. INTRODUCTION 

olSAR is a now mature and widely used technology, and has 

become one of the most important tools for earth 

observation. PolSAR is not affected by the weather and can 

work during both daytime and nighttime conditions. PolSAR  

obtains rich characteristics of objects on earth surface by using 

different polarimetric scattering modes. PolSAR is widely 

applied in agriculture, military reconnaissance, water area 
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detection and resource exploration [1-3]. At present, the 

mainstream of PolSAR classification algorithms can be 

broadly divided into three categories.  

The first category are conventional algorithms, which 

mainly consider the characteristics of PolSAR images. Some 

conventional algorithms are based on the scattering 

mechanism of PolSAR data, such as Cameron decomposition 

[4], Freeman decomposition [5], entropy/alpha (H-alpha) 

decomposition [6], Pauli decomposition [7] and so on. These 

algorithms are good at extracting the polarimetric scattering 

information of PolSAR images and have strong physical 

interpretability. Some other conventional algorithms are based 

on statistical distributions, mainly including Wishart 

distribution [8-9], K-distribution [10], G-distribution [11-12]. 

These methods predominantly describe PolSAR images by 

building various prior distributions. 

The second category is machine learning algorithms, such 

as Support Vector Machine (SVM) [13-14], AdaBoost [15], 

Markov Random Field (MRF) [16-17] and so on. These 

algorithms are convenient to use, can be applied to different 

data sets, and have strong generality. However, such 

algorithms are often limited by their feature extraction and 

representation ability. It often fails to obtain some particularly 

satisfactory results when dealing with classification problem 

of complex scene image. 

With the rapid development of deep learning algorithms, 

some deep learning methods have been proposed for PolSAR 

image classification. Hou et al. proposed a method which 

combines multi-layer autoencoders and superpixels to 

efficiently learn the features of PolSAR data [18]. Liu et al. 

used Wishart–Bernoulli restricted boltzmann machines to 

build a Wishart Deep Belief Network (W-DBN), and 

post-processed the classification result maps by local spatial 

information [19]. Combining Wishart distribution with deep 

learning, Jiao et al. proposed the Wishart Deep Stacking 

Network (W-DSN), which is formed by stacking several 

Wishart Networks [20]. Zhou et al. designed a four-layer CNN 

using a 6-D real feature vector as input to classify PolSAR 

images [21]. Zhang et al. designed a Complex-valued 

Convolution Neural Network (CV-CNN), and utilized both 

Dense Connection and Depthwise Separable 

Convolution Based CNN for Polarimetric 

SAR Image Classification 

Ronghua Shang, Member, IEEE, Jianghai He, Jiaming Wang, Kaiming Xu, 
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phase and amplitude information of PolSAR images to achieve 

a very good classification result [22].   

Although the deep learning algorithms have stronger fitting 

ability than conventional algorithms and earlier forms of 

machine learning algorithms, deep learning models may be 

prone to overfitting, especially when using insufficient 

training data. Because of the limitation caused by the PolSAR 

imaging mechanism, the data obtained under different imaging 

conditions tend to be very different. This means that 

researchers often have to generate training and testing data sets 

from the labeled data in only a single PolSAR image. 

Therefore, the number of training samples may be very 

limited, which is not conducive to training a deep CNN. 

In natural image datasets [23], large numbers of labeled 

training samples are often available, enabling a variety of 

CNN models to achieve excellent results [24], e.g. Alexnet 

[25], VggNet [26], GoogleNet [27]. Gao, Peng, et al. use 

learning reinforced attentional representation[28], and siamese 

attentional keypoint network  in visual tracking[29]. Yu, Zeng, 

et al. add cross-layer neurons in convolutional networks for 

image recognition[30]. Later research proposed improved 

models, such as the depthwise separatable convolution to 

replace the standard convolution. The depthwise separable 

convolution is inspired by grouped convolution and inception 

modules. Representative networks include Xception networks 

[31] and MobileNet [32]. These networks cut down redundant 

training parameters and reduce the complexity of the model, 

without significantly reducing performance, and sometimes 

even with improved performance. 

Researchers optimize models by changing the connection of 

networks. ResNet [33] introduced residual connection to 

alleviate the vanishing gradient and obtain a deeper model. 

DenseNet [34] proposed to use dense connection, of which 

each layer in a dense block is connected with all preceding 

layers. Dense connection can strengthen the networks’ 

features and gradients propagation and reuse feature map 

information.  

Inspired by Xception and DenseNet, considering the 

characteristics of PolSAR images, we propose a densely 

connected and depthwise separable convolutional neural 

network, DSNet, to enhance performance on PolSAR image 

classification problems involving limited training data sets. 

DSNet has the following key characteristics: 

(1) All regular convolutions in DSNet are replaced by 

depthwise separable convolutions. The channel dimension of 

natural images is made up of R, G and B. In contrast, in this 

paper we work with PolSAR images, in which the channel 

dimension is made up of the PolSAR coherency matrix. The 

PolSAR coherency matrix contains the phase information and 

amplitude information of the image. Therefore, the spatial 

correlations of data are much larger than cross-channel 

correlations. If we used conventional convolution methods to 

extract features, we would need to extract fairly independent 

channel features, and highly correlated spatial features, 

simultaneously, and the extracted space-cross-channel features 

would be redundant. By using the depthwise separable 

convolution, the spatial correlations and cross-channel 

correlations can be extracted separately, and the extracted 

features are more efficient.  

(2) Dense connection is used in DSNet. Dense connection 

has proven its effectiveness in the use of features on natural 

image datasets. Dense connection is conducive to repeatedly 

using features and improving the data information flow 

between layers. Because the feature maps are repeatedly used, 

the computation and training parameters of the network are 

decreased. In PolSAR data, training samples are very valuable, 

and important information can be greatly preserved by dense 

connections. In contrast to DenseNet [34], in DSNet we have 

extended dense connection to the pooling layer and can 

concatenate feature maps with different sizes. 

(3) Both depthwise separable convolution and dense 

connections can substantially reduce the number of training 

parameters. Under the effects of these two operations, the 

network parameters and the complexity of the model are 

greatly reduced, while its generalization ability is enhanced. 

The parameter number of DSNet is much less than that of a 

standard CNN, which alleviates the risk of overfitting on small 

data sets. 

To concluded, to achieve better performance on PolSAR 

image processing, CNN is considered. However, the number 

of labeled training samples is typically limited. So we use the 

dense connection technique and replace the common 

convolution with the depthwise separable convolution. 

In this paper we compare DSNet and a standard CNN on 

several data sets. Our experimental results show that, under the 

same sampling rate, the performance of DSNet is better than 

that of a standard CNN in all three datasets. 

The remaining parts of this paper are as follows. Section II 

details the specific architecture and method of DSNet. Section 

III presents experiments on several datasets, and analysis of 

the results. Section IV provides a summary and concluding 

remarks. 

II. THE STRUCTURE AND METHOD OF DSNET 

This section presents details of the key technology and 

methods of DSNet, and how it is applied to the PolSAR image 

classification problem. The preparation of raw PolSAR data 

will be explained. The configuration of the DSNet network, 

training methods and parameter settings is given. 

A.  Decomposition of PolSAR data 

Unlike conventional RGB images, each pixel in a full 

PolSAR image can be represented by a 2 × 2 complex 

scattering matrix S, as shown in equation (1): 

hh hv

vh vv

S S
S

S S

 
=  
 

                                (1)  
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where Spq represent backscattering coefficients under different 

polarimetric combinations. p is the polarimetric mode of 

incident wave and q is the polarimetric mode of scattered 

wave. h and v represent the direction of electromagnetic wave; 

h is the horizontal direction, and v is the vertical direction. In 

monostatic radar case, according to the reciprocity theorem, 

Shv=Svh., which means S is a symmetric matrix.  

For obtaining the coherency matrix of PolSAR images, the 

scattering matrix S is vectorized, and the results after 

vectorization can be written as equation (2): 

1 0 1 0 0 11 1 1

0 1 0 1 1 02 2 2
S a b c

     
= + +     

−     
             (2) 

where a, b, c are the values of three different scattering 

components. 

( ) ( )
2 2

,  ,  2
2 2

hh vv hh vv hv
a S S b S S c S= + = − =           (3) 

According to formula (3), the coherency matrix T of PolSAR 

images can be written as formula (4). 

 

2 * *
* *

11 12 13

T 2* * * * * * *

12 22 23

* * 2* *
13 23 33

, , , ,

a ab acT T T

T a b c a b c T T T a b b bc

T T T a c b c c

 
 

 
 

  = = =  
 

 
  
 

  (4)         

It can be seen from formula (4) that matrix T is a Hermitian 

matrix, whose diagonal value is real and whose off-diagonal 

value is complex. And “*” represents conjugate operation. 

Since matrix T is a symmetric matrix, we only need to extract a 

part data of T, * * *

11 12 13 22 23 33
{ , , , , , }T T T T T T ,which contains all 

information of T. * * *

12 13 23
, ,T T T  are complex numbers. We extract 

the imaginary parts of * * *

12 13 23
, ,T T T  and convert them into real 

values. Then we obtain a 9-dimensional real-valued vector Tv: 

* * * * * *

11 22 33 12 13 23 12 13 23
{ , , , ( ), ( ), ( ), ( ), ( ), ( )}

v
T T T re T re T re T im T im T im TT =   (5) 

where re(·) and im(·) represent the real and imaginary parts of  

a complex number. Through the above operations, each pixel  

is transformed from a 2 × 2 matrix S into a 9-dimensional 

real-valued vector. For each training sample pixel px, a Nu × Nu 

neighborhood window centered at px is generated as the input 

feature map. It contains local spatial polarimetric information 

surrounding px.  

To ensure the stability of the network, channel-wise 

normalization is performed on each pixel. The normalization 

equation can be written as (6): 

 
[ ] [ ]

[ ]
[ ]

v v avg

v

v std

T j T j
T j

T j

−

−

−
=                              (6) 

where (0,  1,  ...,  9)j  and it represents 9 channels of Tv. 

[ ]
v avg

T j
−

 and [ ]
v std

T j
−

 are the average and standard deviation of 

jth channel of all training data respectively. 

B. Network structure and dense connection 

Our proposed DSNet consists of one input layer, one output 

layer, three depthwise separable convolutional layers, one max 

pooling layer and one fully connected layer. We introduce 

dense connection into DSNet on the basis of CNN. Dense 

connection can shorten the distance between the input layer 

and the output layer, which makes gradients and feature 

information propagate more fluently. Furthermore, when only 

a small amount of training data is available, dense connection 

also plays the role of a regularizing model, which decreases 

the risk of overfitting. The overall structure of DSNet is shown 

in Fig. 1.   

Fig. 1.  The structure of DSNet. li represents the ith layer in the network. 

As can be seen from Fig. 1, the top L (L=5) layers of the 

network form a dense block. The lth layer in the dense block 

obtains feature maps from all its preceding layers and pass its 

feature maps to all its subsequent L-l layers. Therefore, in the 

entire dense block, there are L×(L-1)/2 connections, instead of 

L connections as using traditional connections.  

Input of one layer is a concatenation of the outputs from all 

previous layers. Assuming that xl represents the input feature 

maps of the lth layer, and yl represents the output feature maps 

of the lth layer, xl  can be calculated by formula (7): 

0 1 1
 ,  ,  ),(

l l
x Concat y y y

−
=                       (7) 

where Concat (·) represents the concatenation of tensors along 

channel axis. In order to quickly reduce the size of the feature 

maps, valid padding is used in the convolutional layer. This 

means that the size of output feature maps in different layers is 

different. However, in DenseNet, each feature map should 
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have the same size because the concatenation is operated on 

the channel dimension. This is viable only when the size of 

feature maps does not change [34]. To solve this problem, we 

use the bilinear interpolation method to scale feature maps to 

the same size. With the resizing operation, DSNet extends 

dense connection to arbitrary-type layers instead of just 

convolutional layers, which can further enhance feature 

propagation and reduce the number of parameters compared 

with DenseNet. 

Fig. 2 explains the concatenation operation between 

different-sized feature maps. Feature map F1 and feature map 

F3 have different size (a1×a1 and a3×a3). To connect F1 and F3, 

F1 is first resized to a3×a3 (see F1
*) and then undergoes a 

channel-wise concatenation with F3. 

 
Fig. 2. Concatenation operation between different-sized feature maps. 

We can obtain new output feature maps 
l

y  after the resizing 

operation, where ( )
l l

y Resize y = . The equation (7) can be 

rewritten as equation (8): 

0 1 1
 , ) , ,  (

l l
x Concat y y y

−
  =                      (8) 

The bilinear interpolation method solves the concatenation 

problem between different size feature maps. Although it also 

loses some information, most information is still preserved. 

Consequently, our dense connection reuses the same feature 

maps multiple times and reduces the number of training 

parameters. 

C. Depthwise separable convolution 

The standard convolution operation extracts features from 

all three dimensions of each image, including two spatial 

dimensions (width and height) and one channel dimension. 

Therefore, a convolutional kernel needs to describe spatial 

correlations and cross-channel correlations simultaneously. 

This is written as: 
, , 

( , ) ( , , ) ( , , )

, ,

Conv( )

M N K

i j m n k i m j n k

m n k

W,x W x
+ +

=               (9) 

where W is the weight matrix of convolutional kernels and is 

trainable. x is the input feature map of the convolutional layer, 

and (i, j) is the coordinate point of output feature maps. m, n 

and k are the 3 dimensions of the convolutional kernel. 

Depthwise separable convolution has been proven to be 

successful in neural image classification, it can avoid 

extracting some redundant features and considerably reduce 

the required paraments. In DSNet, the channel dimension of 

input data comprises the 9-dimensional vector Tv in formula 

(5). The channels have strong independence with each other. 

Depthwise separable convolution is more suitable than the 

common convolution to extract features in PolSAR images. In 

contrast to standard convolution, depthwise separable 

convolution divided the entire feature extraction into two 

simpler steps (a depthwise convolution and a pointwise 

convolution) [32]. The overall process is shown in Fig. 3: 

 
Fig. 3. Depthwise separable convolution. 

The first step of depthwise separable convolution is a 

depthwise convolution. A single filter is applied to each input 

channel so that each channel can output one feature map. After 

depthwise convolution, the number of the channels does not 

change. The depthwise convolution can be written as formula 

(10): 
,

( , ) ( , ) ( , )

,

DConv( )

M N

i j m n i m j n

m n

W,x W x
+ +

=                      (10) 

In the second step, a 1×1 convolution (called a pointwise 

convolution) is applied to combine the outputs of the 

depthwise convolution. Pointwise convolution is used to 

perform the extraction of spatial features. This doesn’t change 

the spatial size of feature maps but can change the channel 

number. Pointwise convolution operation is shown in formula 

(11): 

( , ) ( , )
PConv( )

K

i j k i j

k

W,x W x=                          (11) 

For example, consider the case where we have two 3×3×3 

standard convolutional kernels to do convolution with a 5×5×3 

input map, to output a 3×3×2 feature map. If we use depthwise 

separable convolution, firstly, three 3×3×1 convolutional 

kernels apply convolution to each single channel of the input 

map generating three 3×3 feature maps. Secondly, two 1×1×3 

convolution kernels are used to do convolution with the 3×3×3 

feature map and get a 3×3×2 output map. 

With formulas (10) and (11), the overall process of 

depthwise separable convolution can be written as: 
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( , ) 

( , ) ( , ) 

SConv( , )

                      PConv( ) ( , DConv( ) )

p d i j

p i j p d i j

W ,W x

W ,x W W ,x

=
       (12) 

Compared with the standard convolution, the parameters of 

depthwise separable convolution are greatly reduced. If the 

number of output channel is o, for standard convolutional 

layers, according to the formula (9), the total required 

parameters are m×n×k×o. While for depthwise separable 

convolutional layer, according to the formula (12), the total 

required parameters are m×n×k + k×o. The ratio of these is: 

1 1m n k k o

m n k o o m n

  + 
= +

   
       (13) 

There are three depthwise separable convolutional layers in 

DSNet and the parameter settings are shown in TABLE I. 

TABLE I 

PARAMETER SETTINGS OF DSNET. 
Num. Type / Stride Filter Shape Input Size 

0 Input Input 15×15×9 15×15×9 

1 
DConv / s1 6×6×9 15×15×9 

PConv/s1 1×1×9×27 15×15×9 

2 Max Pool / s2 Pool 2×2 10×10×[9+27] 

3 
DConv / s1 3×3×72 5×5×[9+27+36] 

PConv/s1 1×1×72×144 5×5×72 

4 
DConv / s1 3×3×216 3×3×[9+27+36+144] 

PConv/s1 1×1×216×216 1×1×216 

5 dropout-FC / s1 216×15 1×1×216 

6 Softmax / s1 Classifier 1×1×15 

(*Table I: “[o0+ o1 +... +oi]” in the "Input size" column represents 

concatenating the 0th, 1th, ..., ith layers’ output feature map copies.) 

With depthwise separable convolution and dense connection, 

parameters are used very efficiently. The time complexity of 

the standard convolution is O~(M2*K2*Cin*Cout),  while that of    

the depthwise separable convolution is 

O~(M2*K2*Cin+M2*Cin*Cout). M stands for the size of feature 

map, K means the size of kernel, Cin is the number of input 

channels and Cout is the number of output channels. The total 

number of parameters in DSNet is about 2.0M when using 

32-bit float variables. In contrast, a CNN with similar structure 

has about 18.8M parameters. 

D. Activation function and pooling operation 

The convolutional layer can only achieve linear 

transformations. It is necessary to introduce activation for 

nonlinear transformations. The commonly used activation 

functions include sigmoid function, tanh function, rectified 

linear unit (ReLU) function etc. We choose the sigmoid 

function as the activation function. Sigmoid is a continuous 

and strictly monotonic function, whose output value is 

between (0, 1). The formula can be written as: 

( )
1

 
1

x
Sigmoid x

e
−

=
+

                         (14) 

The sigmoid function is only used after pointwise convolution, 

and there is no activation function after depthwise 

convolution.  

A pooling operation can quickly decrease the dimension of 

feature maps, helping to reduce the number of layers that are 

needed in neural networks, and can introduce some nonlinear 

changes. The commonly used pooling operations include 

average pooling and max pooling. Max pooling is used in this 

paper. It can output the max value in a given local area and its 

pooling size is 2 × 2 with a stride of 1 [35-36]. 

E. Fully connected layer and dropout 

Dropout [37] is a technique which can prevent overfitting 

and improve the generalization ability of neural networks. 

Dropout randomly deactivates some units during the training 

process, however the weight of these units is still retained for 

testing. A fully connected layer with dropout operation can be 

written as: 

( , ) ( , )

Bernoulli( )

FC( ) ( )

r

K

i j k i j

k

r p

W,x W r x B=   +
                       (15) 

where r is an independent Bernoulli variable. Its value is 1 

with probability of pr and 0 with probability of 1-pr. B is the 

trainable bias. The raw input x multiplies with r and the result 

of multiplying is input to fully connected layer. After fully 

connected layer, a softmax classifier is added to the network 

and it outputs the final probability of each class. 

F. The training of DSNet 

With the output of softmax classifier and ground truth 

labels, the cross-entropy loss can be calculated as our objective 

function. The objective function is always nonconvex making 

it hard to find the global optimum. Therefore, we use the 

back-propagation algorithm (BP) [38] to calculate the required 

partial derivative of training parameters, and use Adam [39] 

optimizer to update parameters. The Adam optimizer requires 

less memory and can adaptively change its learning rates. In 

the Adam optimizer, exponential decay rates are 1 0.9 =  and 

2 0.999 = . The initialization values of W and B in depthwise 

separable convolutional layers and fully connected layers are 

important. They can affect the training performance of 

networks. We initialise B as 0. We use uniform initialization to 

randomly assign the values of W, as recommended by Glorot 

et al. [40]. The formula is shown in (16): 

6 6
(- , )

k o k o

W U
n n n n+ +

                          (16) 

where U(·) represents the uniform distribution. nk indicates the 

input number of each layer and no indicates the output number 

of each layer. The training learning rate is set to 0.001, batch 

size value is set to 128 and dropout value is 0.5. 

III. EXPERIMENTAL RESULTS AND DISCUSSION  

In this section, we evaluate the performance of DSNet in 

three different real PolSAR data sets. Data set 1 and data set 2 

were collected by Airborne SAR (AIRSAR). The scene covers 

agricultural area in Flevoland, Netherlands. Data set 3 was 

collected by the Electronically Steered Array Radar (ESAR) 
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covering the Oberpfaffenhofen area in Germanyt. These three 

data sets are often used as benchmark data sets to assess the 

performance of PolSAR classification algorithms. DSNet is 

compared with several machine learning and deep learning 

methods including SVM [14], Wishart-DBN [19], and 

CV-CNN [22]. To demonstrate the effectiveness of the novel 

structure of DSNet, Network A is based on a conventional 

CNN, Network B is based on DenseNet (using dense 

connection), Network C is based on Xception (using 

depthwise separable convolutions) and Network D (uses dense 

connection and depthwise separable convolution but doesn’t 

extend dense connection to pooling layers) are all tested. A, B, 

C and D all share similar architectures with DSNet except for 

the key differences of DSNet that are described in Section II 

above. Overall accuracy (OA), average accuracy (AA) and 

Kappa (Ka) coefficient of different methods are quantitatively 

compared. In all experiments, the size of neighborhood 

window Nu is set to 15, namely, the input size is 15 × 15 × 9. 

A. Evaluation and analysis on Flevoland dataset 1 

The first dataset was obtained by the AIRSAR platform of 

NASA Jet Propulsion Laboratory on August 16, 1989. It 

covers the L-band four-look polarimetric sense of farmland in 

Flevoland, Netherlands, and its resolution is 6.6 × 12.10m. The 

pseudo color image can be generated by Pauli decomposition, 

as shown in Fig. 4(a). The ground truth map is illustrated in 

Fig. 4(b), as used in [41]. In Fig. 4(b), different colors 

represent different categories and black represents unlabeled 

image regions. There are 15 identified classes including peas, 

stem beans, three different kinds of wheat, lucerne, beet, rape 

seed, barley, potatoes, grass, bare soil, forest, water, and a 

small area of buildings.  

  

(a)                                              (b) 

 
(c) 

Fig. 4.  Flevoland data set 1: (a) Pauli pseudo color image. (b) Ground truth 

map. (c) Legend of different classes. 
   

Different PolSAR images are obtained for different scenes 

with different configuration parameters, such as polarimetric 

mode, resolution, electromagnetic wave band, etc. Therefore, 

most PolSAR classification algorithms use both training data 

and testing data derived from labeled samples in the same 

PolSAR image. The commonly used sampling rate is 5%-10%. 

Namely, 5%-10% of labeled samples are used as training sets, 

and the remaining 90%-95% labeled data are used as testing 

sets. It can be seen that the training sets are very limited in 

PolSAR classification problems. In our experiments, in order 

to conveniently compare with other algorithms, we measured 

the classification results of DSNet under a 1% sampling rate 

(very low sampling rate) and a 5% sampling rate (used in 

much of the literature). The lower sampling rate provides a 

difficult challenge for PolSAR classification algorithms.  All 

algorithms are executed under the same conditions.  

 

TABLE II 

CLASSIFICATION RESULTS OF FLEVOLAND DATA SET 1. 

Class SVM  W-DBN  CV-CNN Network A Network B Network C Network D DSNet (1%) DSNet (5%) 

Stembeas 0.9112  0.9882  0.9861  0.9892  0.9920  0.9813  0.9880 0.9749  0.9969  

Peas 0.9153  0.9875  0.9827  0.9922  0.9887  0.9836  0.9891 0.9928  0.9973  

Forest 0.9440  0.9915  0.9833  0.9778  0.9832  0.9867  0.9875 0.9945  0.9964  
Lucerne 0.9426  0.9847  0.9804  0.9518  0.9647  0.9548  0.9645 0.9883  0.9969  

Wheat 0.9499  0.9738  0.9703  0.9719  0.9817  0.9781  0.9749 0.9884  0.9959  

Beet 0.9406  0.9577  0.9881  0.9678  0.9723  0.9633  0.9806 0.9827  0.9871  

Potatoes 0.3913  0.9779  0.9808  0.9765  0.9801  0.9778  0.9812 0.9774  0.9959  

Bare 0.4977  0.9984  1.0000  0.9734  0.9925  0.9256  1.0000 0.9971  0.9932  
Grass 0.8556  0.9245  0.9357  0.9324  0.9442  0.8794  0.9379 0.9239  0.9848  

Rapeseed 0.8204  0.9328  0.9441  0.9102  0.9392  0.9646  0.9420 0.9507  0.9835  

Barely 0.9466  0.9575  0.9789  0.9655  0.9593  0.9691  0.9635 0.9788  0.9930  
Wheat2 0.9378  0.9763  0.9656  0.9394  0.9341  0.9649  0.9840 0.9696  0.9854  

Wheat3 0.9550  0.9930  0.9914  0.9892  0.9924  0.9939  0.9927 0.9942  0.9966  

Water 0.7385  0.9999  0.9979  0.9987  0.9994  0.9985  0.9990 0.9977  0.9974  
Buildings 0.5000  0.8508  0.8193  0.8550  0.8214  0.8067  0.8277 0.9832  0.9853  

Sample rate 5% 5% 10% 1% 1% 1% 1% 1% 5% 

AA 0.8164  0.9663  0.9670  0.9594  0.9630  0.9552  0.9676 0.9796  0.9924  

OA 0.8582  0.9759  0.9775  0.9683  0.9742  0.9728  0.9781 0.9816  0.9934  

Ka 0.8454  0.9238  0.9754  0.9654  0.9719  0.9703  0.9761 0.9799  0.9928  
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(a)                                                                    (b)                                                                   (c) 

   
(d)                                                                    (e)                                                                   (f) 

   
(g)                                                                    (h)                                                                   (i) 

Fig. 5. Classification result maps of Flevoland data set 1: (a) SVM (b) W-DBN (c) CV-CNN (d) Network A (e) Network B (f) Network C (g) Network D (h) DSNet 

(1% sampling rate) (i) DSNet (5% sampling rate)

We have compared DSNet with several algorithms and the 

final results are shown in TABLE II, and segmentation result 

maps are shown in Fig. 5. The sampling rates of SVM, 

W-DBN and CV-CNN are 5%, 5% and 10% respectively. 

Under 1% sampling rate, the values of AA, OA and Kappa 

of DSNet are all approximately equal to 0.98. Compared with 

above three algorithms, DSNet only uses 1/5 or 1/10 training 

samples but still generates better results. DSNet is also 

compared with Networks A, B, C and D under 1% sampling 

rate. DSNet’s OA, AA and Kappa coefficient are all higher 

than B and C. This suggests that the combination of depthwise 

separation convolution and dense connection makes more 

difference in improving a networks’ performance than either 

dense connection or depthwise separation convolution alone. 

Compared with DSNet and Network D, OA, AA and Kappa of 

DSNet are respectively 1.2 %, 0.35 % and 0.42 % higher, 

which demonstrates the effectiveness of extending dense 

connection to the arbitrary-typed (including pooling) layers. 

Some algorithms introduce post-processing methods to 

improve their classification accuracy. For example, W-DBN 

uses post-processing methods based on local information, and 

CV-CNN post-processes its classification maps by majority 

voting. DSNet can be seen as an end-to-end system and does 

not use any post-processing techniques. There are two main 

advantages to this approach. On the one hand, post-processing 

methods are specific to data. It is hard to design a 

post-processing method that is generalizable enough to give 

good results on all data sets. On the other hand, from TABLE 

II, it can be seen that under 5% sampling rate, DSNet has 

achieved more than 99% OA, and post-processing helps little 

to improve the final results. 

B. Evaluation and analysis in Flevoland data set 2  

The second Flevoland data was obtained by AIRSAR in 

1991 under L-band. It is a fully polarimetric image of 

agricultural area in Flevoland. The pseudo color map by Pauli 

decomposition is shown in Fig. 6(a), with size 1020×1024. 

  
(a)                                                          (b) 
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(c) 

Fig. 6. Flevoland data set 2: (a) Pauli pseudo color image. (b) Ground truth 

map.  (c) Legend of different classes. 

It can be seen from the ground truth map that there are 14 

categories in the data set, including potatoes, fruit, oats, beet, 

barely, onions, wheats, beans, peas, maize, flax, rapeseed, 

grass, lucerne. The AA, OA, and Kappa coefficient of different 

algorithms are shown in TABLE III. 

TABLE III 

CLASSIFICATION RESULTS OF FLEVOLAND DATA SET 2. 

Class SVM  W-DBN  CV-CNN Network A Network B Network C Network D DSNet (1%) DSNet (5%) 

Potato 0.9969  0.9972  0.9974  0.9998  0.9967  0.9990  0.9972  0.9962  0.9998  
Fruit 1.0000  1.0000  0.9828  0.9919  0.9899  0.9765  1.0000  1.0000  1.0000  

Oats 1.0000  0.9813  0.9885  0.9964  0.9677  0.9871  0.9921  0.9821  0.9770  

Beet 0.8964  0.9933  0.9606  0.8978  0.9417  0.9322  0.9528  0.9805  0.9936  
Barely 0.9537  0.9969  0.9961  0.9914  0.9969  0.9959  0.9943  0.9941  0.9991  

Onions 0.7277  0.6174  0.9319  0.9009  0.8000  0.8920  0.9512  0.9188  0.9803  

Wheats 0.9988  0.9970  0.9990  0.9990  0.9988  0.9943  0.9942  0.9987  0.9995  
Beans 0.7200  0.9510  0.9067  0.8688  0.9233  0.9529  0.8928  0.9344  0.9871  

Peas 1.0000  0.9954  0.9903  0.9991  1.0000  0.9500  0.9731  0.9944  1.0000  
Maize 0.9620  0.9558  0.9814  0.6868  0.8791  0.8085  0.8798  0.9109  0.9698  

Flax 0.9986  0.9895  0.9695  0.9872  0.9886  0.9847  0.9984  0.9935  0.9970  

Rapeseed 0.9990  0.9968  0.9981  0.9988  0.9985  0.9965  0.9976  0.9998  0.9999  
Grass 0.8352  0.8694  0.9660  0.9841  0.9512  0.9441  0.9715  0.9810  0.9955  

Lucerne 0.9885  0.9356  0.9922  0.9268  0.9593  0.9739  0.9488  0.9817  0.9834  

Sample rate 5% 5% 10% 1% 1% 1% 1% 1% 5% 

AA 0.9341  0.9483  0.9758  0.9449  0.9566  0.9563  0.9674  0.9762  0.9916  

OA 0.9700  0.9843  0.9902  0.9814  0.9854  0.9835  0.9878  0.9923  0.9976  

Ka 0.9647  0.9748  0.9884  0.9781  0.9828  0.9806  0.9856  0.9910  0.9972  

 

  With 1% sampling rates, DSNet’s OA and Kappa 

coefficient are above 0.99. All single class accuracy rates are 

higher than 0.98 except onions, beans and maize. Notably, the 

accuracy rates of fruit are up to 100%. The final segmentation 

maps are shown in Fig. 7. For DSNet, the result under only 1% 

sampling rates for training data is still good. When the 

sampling rate is increased to 5%, the accuracy of all classes is 

increased, and several classes achieve the best results. While 

compared with 1% sampling rate, 5% sampling brings 

relatively little improvement. This suggests that more training 

samples does not bring great performance improvements, and 

5% sampling rate reaches the saturation state, beyond-which 

additional labeled training samples are not useful. An 

appropriate choice of sampling rate is important. 

   
  (a)                                                      (b)                                                           (c) 

   
 (d)                                                      (e)                                                       (f) 
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    (g)                                                      (h)                                                        (i) 

Fig. 7. Classification result maps of Flevoland data set 2: (a) SVM (b) W-DBN (c) CV-CNN (d) Network A (e) Network B (f) Network C (g) Network D (h) DSNet 

(1% sampling rate) (i) DSNet (5% sampling rate)

We next analyze the influence of sampling rates on DSNet’s 

OA. The relationship between OA and sampling rates is shown 

in Fig. 8. 

 

Fig. 8. OA under different sampling rates 

From Fig. 8, it can be seen that DSNet has reached 92% OA 

when using 0.1% sampling rate. And OA rapidly increases to 

99% when the sampling rate approaches 0.6%. When the 

sampling rate grows from 0.6% to 3%, OA more gradually 

rises to 99.7%. When the sampling rate is higher than 3%, OA 

does not show appreciable further improvement. Therefore, 

0.6%-3% sampling rate is suitable in this data set. Compared 

with other algorithms, fewer labeled samples are needed to 

train DSNet to a high accuracy. This highlights DSNet’s 

efficiency in the use of training data. 

C. Evaluation and analysis in Oberpfaffenhofenin data set 

In this experiment, the PolSAR image is L-band and collected  

by ESAR in the Oberpfaffenhofenin area of Germany. The 

pseudo color map generated by Pauli decomposition is shown 

in Fig. 9(a), and its size is 1300 × 1200, which is bigger than 

the previous two Flevoland data sets. The ground truth map is 

described in Fig. 9(b), which is gleaned from [43]. The data set 

totally contains 3 different types of land, including built-up 

areas, wood areas and open-areas. 

  
(a)                                                         (b) 

 
 (c) 

Fig. 9.  Oberpfaffenhofenin data set: (a) Pauli pseudo color image. (b) Ground 

truth map. (c) Legend of different classes. 

There are only three classes in the Oberpfaffenhofenin data 

set, which is much less than the previous two data sets. 

However, this image has more complex terrain. As can be seen 

in Fig. 9(a), some areas belonging to different classes are very 

similar and easy to confuse. This causes severe difficulties to 

accurately classify every pixel in the data set. The test results 

are shown in TABLE IV.  

The performance of all the compared algorithms decreases 

compared with the previous two Flevoland data sets. However, 

DSNet still achieves the best result. At 1% sampling rate, the 

OA of DSNet is 2.39%, 2.20%, 1.13%, 1.69%, 0.75% higher 

than CV-CNN, A, B, C and D respectively. These results 

suggest that DSNet is better able to deal with complex data 

sets. Classification maps are shown in Fig. 10. 

TABLE IV 

CLASSIFICATION RESULTS OF OBERPFAFFENHOFENIN DATA SET. 

Class SVM  W-DBN  CV-CNN Network A Network B Network C Network D DSNet (1%) DSNet (5%) 

Build-up 0.7928  0.8688  0.8667  0.8944  0.8396  0.8110  0.8869  0.9278  0.9730  
Wood 0.9058  0.8955  0.9280  0.9731  0.9654  0.9691  0.9492  0.9557  0.9880  

Open-areas 0.9694  0.9860  0.9645  0.9838  0.9868  0.9882  0.9780  0.9708  0.9919  

Sample rate 5% 5% 1% 1% 1% 1% 1% 1% 5% 

AA 0.8893  0.9168  0.9197  0.9235  0.9306  0.9228  0.9380  0.9514  0.9843  

OA 0.9134  0.9397  0.9334  0.9353  0.9460  0.9404  0.9498  0.9573  0.9864  

Ka 0.8504  0.8804  0.8861  0.8895  0.9067  0.8969  0.9139  0.9272  0.9769  
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(a)                                               (b)                                                (c) 

   
(d)                                               (e)                                               (f) 

   
(g)                                               (h)                                                (i) 

Fig. 10. Classification result maps with mask of Oberpfaffenhofenin data set (3 classes): (a) SVM (b) W-DBN (c) CV-CNN (d) Network A (e) Network B (f) 

Network C (g) Network D (h) DSNet (1% sampling rate) (i) DSNet (5% sampling rate) 

 

Under 5% sampling rate, there are too many noise points in 

the classification maps of SVM (Fig. 10(a)) and W-DBN (Fig. 

10(b)). While the result of DSNet (Fig. 10(i)) has less noise 

points and it is very smooth. It is clear that the result of DSNet 

is closer to the ground truth map. 

D. The influence of ground truth maps 

 In TABLE IV, DSNet gets very high accuracy and its final 

result map is very close to the ground truth map. Unfortunately, 

manually labeled “ground truth” is not always believable, due 

to speckle noise and other factors [45]. The ground truth map 

and the results in Fig. 9. may seem to be unnaturally rough. To 

get a more accurate result, we use another ground truth map 

created by [44], shown in Fig. 11.  

This ground truth map contains 5 different types of land, 

including woodland, farmland, suburban, road and other 

objects. This is finer-grained classification than the ground 

truth map used in Section C. The test results are listed in 

TABLE V, and the result maps are shown in Fig. 12.  

   
(a)                                     (b) 

Fig. 11.  Oberpfaffenhofenin data set (5 classes): (a) Ground truth map. (b) 

Legend of different classes. 

   In TABLE V, the OA of all algorithms decreases 

significantly, but DSNet still achieves the best result. Its AA, 

OA and Ka reach 81.75%, 85.19% and 78.37% respectively. 

The accuracy of road of DSNet (1% sampling rate) reaches 

75.01%, which is obviously higher than other algorithms. 
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TABLE V 

CLASSIFICATION RESULTS OF OBERPFAFFENHOFENIN DATA SET. 

Class SVM  W-DBN  CV-CNN Network A Network B Network C Network D DSNet (1%) DSNet (5%) 

Other 0.9234  0.8944  0.9488  0.9229  0.9267  0.8889  0.9118  0.8955  0.9442  

Woodland 0.7763  0.8545  0.8222  0.8290  0.8479  0.8401  0.8628  0.8709  0.9190  

Farmland 0.6776  0.8224  0.8400  0.7843  0.8099  0.8024  0.7601  0.8062  0.9123  
Suburban 0.1621  0.5879  0.6975  0.5706  0.5772  0.6919  0.7442  0.7649  0.8851  

Road 0.1593  0.5959  0.4452  0.5381  0.5142  0.6747  0.6772  0.7501  0.8226  

Sample rate 5% 5% 1% 1% 1% 1% 1% 1% 5% 

AA 0.5397 0.7510  0.7501  0.7290  0.7352  0.7796  0.7912  0.8175  0.8966  

OA 0.7220  0.8219  0.8352  0.8177  0.8245  0.8294  0.8414  0.8519  0.9169  

Kappa 0.5619 0.7173  0.7265  0.7249  0.7348  0.7493  0.7657  0.7837  0.8784  

 

   
                                                             (a)                                                              (b)                                                               (c) 

   
                                                             (d)                                                              (e)                                                               (f) 

   
                                                              (g)                                                              (h)                                                               (i) 
Fig. 12. Classification result maps of Oberpfaffenhofenin data set: (a) SVM (b) W-DBN (c) CV-CNN (d) Network A (e) Network B (f) Network C (g) Network D 

(h) DSNet (1% sampling rate) (i) DSNet (5% sampling rate)

In Fig. 12, a lot of pixels of road is misclassified in (a), (b), 

(c), (d) and (e). While (f), (g) and (h) have more accurate 

segmentation in road class. TABLE IV and TABLE V suggest 

that DSNet outperforms the other algorithms in different 
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ground truth maps. Clearly it is very important that ground 

truth maps are sufficiently reliable. Low-quality labeled data 

will have undesirable impact on the performance of 

classification algorithms. One solution is to select a smaller 

amount of more credible data to train the network. Therefore, 

the networks which require less training data will have great 

advantages. 

E. Time Consumption Analysis 

We have compared the computation time of four different 

networks, including network A, B, C mentioned above and 

DSNet. We have measured the forward propagation and back 

propagation time that each network required for each batch 

(1000 samples per batch). Our experiments were executed in 

Tensorflow 1.10.0 environment using Intel core i7 2.60 GHz 

CPU under single thread conditions. The overall computation 

time is listed in Table VI. 

TABLE VI 

TIME CONSUMPTION ANALYSIS 

Network 
Foreword 

calculation Time /s 

Back propagation 

Time/s 

A 0.3965 1.3235 

B 0.3072 1.2528 

C 0.2629 0.5850 

DSNet 0.1993 0.5035 

It can be seen that DSNet has significantly lower forward 

calculation time and back propagation time than the other three 

algorithms. The combination of dense connection and 

depthwise separable convolution can save a lot of computing 

resources and be run more efficiently compared with 

independent dense connection or depthwise separable 

convolution. 

F. data augmentation and up-sampling 

In this section, we use data augmentation and up-sampling 

to further improve the performance of DSNet. Data 

augmentation is a useful method that applies some reasonable 

transforms to the training data to generate additional training 

samples. It can enhance the performance of a network and 

alleviate the problem of overfitting. Our data augmentation 

rotates images by 90, 180 or 270 degrees randomly. To handle 

imbalanced classification problems, we use up-sampling 

(resample or copy instances from the minority class to match 

the number of samples of the majority class). In this way, each 

class number is roughly equal in every training epoch. The 

result is shown in Table VII. 

Data1, Data2 and Data3 represent Flevoland data set 1, 2 

and Oberpfaffenhofenin data set (3 classes) respectively. Data 

augmentation and up-sampling can slightly improve the 

performance of DSNet in AA, OA and Kappa. It is therefore 

recommended to use both of them. 

 

 

 

TABLE VII 

RESULTS UNDER DIFFERENT TRAINING CONDITION 

Training 
condition 

Raw 
Data 

augmentation 
Up-samplin

g 

Data 
augmentation 

and 
Up-sampling 

Data1 

AA 0.9796  0.9732  0.9828  0.9838  

OA 0.9816  0.9823  0.9819  0.9828  

Kp 0.9799  0.9807  0.9802  0.9812  

Data2 

AA 0.9762  0.9759  0.9904  0.9943  

OA 0.9923  0.9926  0.9930  0.9940  

Kp 0.9910  0.9912  0.9917  0.9929  

Data3 

AA 0.9514  0.9614  0.9587  0.9634  

OA 0.9573  0.9675  0.9601  0.9681  

Kp 0.9272  0.9444  0.9321  0.9455  

G. The Architecture of DSNet 

The architecture of DSNet is based on the sub-network 

(from C3 layer to F6 layer) of LeNet [35], which includes a 

convolutional layer with 5 × 5 filters (C3), a max-pooling layer 

(stride is 2) with 2 × 2 filters (S4), another convolutional layer 

with 5 × 5 filters (C5) and a fully connected output layer with 

o dimensions (F6), where o is the class number. 

TABLE VIII 

THE ARCHITECTURES OF DIFFERENT OF NETWORKS. 

Network Structure 

N1 N2 N3 

DpCov(9, 27)@6*6+Max-pooling 

DpCov(72, 216)@5*5 
DpCov(72, 144)@3*3 DpCov(72, 216)@3*3 

DpCov(216, 216)@3*3 Max-pooling 

FC 

“DpCov(y,z)” represents the depthwise separable convolution with y 

depthwise convolutional filters and z pointwise convolutional filters.   

The size of input feature maps of LeNet’s C3 is 14 × 14, 

while in this paper we have used 15 × 15. We use 6 × 6 filters 

to replace the first 5 × 5 filters to adapt this difference. We 

have designed 3 different networks (N1, N2 and N3), and their 

architectures are listed in TABLE VIII. 

N1 is similar to LeNet’s sub-network. N2 adopts the 

structure of VggNet [26] to use two 3 × 3 convolutional filters 

to replace the second 5 × 5 filter, which can reduce some free 

parameters. And N3 uses a 3 × 3 convolutional filter and a 

max-pooling layer with 3 × 3 filters and 1 stride to replace the 

second 5 × 5 filter, which can reduce more parameters on the 

basis of N2. Final results of these networks are shown in 

TABLE IX. 

TABLE IX 

CLASSIFICATION RESULTS IN DIFFERENT DATA SETS. 

network N1 N2 N3 

Data1 

AA 0.9653  0.9796 0.9545  

OA 0.9773  0.9816 0.9739  

Ka 0.9752  0.9799 0.9715  

Data2 

AA 0.9325  0.9762 0.9440  

OA 0.9814  0.9923 0.9860  

Ka 0.9781  0.9910 0.9835  

Data3 

AA 0.9421  0.9514 0.9458  

OA 0.9525  0.9573 0.9544  

Ka 0.9185  0.9272 0.9219  

The results show that N2 provides better performance than 

N1 and N3 in all three datasets.  
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IV. CONCLUSIONS 

CNN have achieved great success in image classification 

problems. To overcome the limited training data available in 

PolSAR imaging problems, we designed a novel CNN, called 

DSNet. DSNet uses depthwise separable convolution to 

replace the standard convolution operation, which can extract 

the features of PolSAR images more efficiently and avoids 

obtaining redundant features. DSNet also introduces dense 

connections into networks to reuse feature maps and 

strengthen information transmission. Due to the improved 

structure, DSNet has fewer parameters than regular CNNs. 

DSNet was tested on three real PolSAR data sets and 

compared against several commonly used algorithms, such as 

SVM, W-DBN, CV-CNN. Experimental results show that 

DSNet achieves better results than conventional CNN and 

other algorithms. Its AA, OA and Kappa coefficients achieve 

the best scores for three different benchmark data sets. The 

structure of DSNet can also be conveniently applied to other 

neural networks, such as complex-valued neural networks, 

where it may achieve additional useful results. Finally, CNN is 

a conditional probability model. It therefore cannot handle 

those classification problems where the training dataset has 

distributions that are inconsistent with those of the test dataset. 

If training dataset and test dataset are not taken from one single 

PolSAR image (e.g. training dataset and test dataset may have 

different wavelength or look angle), then CNN methods are 

unlikely to perform well. 
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