UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders

BAT-VAL study investigators; Harrison, Paul

DOI: 10.1111/jth.14683

License: Other (please specify with Rights Statement)

Citation for published version (Harvard):

BAT-VAL study investigators & Harrison, P 2020, 'Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: A communication from the Platelet Physiology SSC', *Journal of thrombosis and haemostasis : JTH*, vol. 18, no. 3, pp. 732-739. https://doi.org/10.1111/jth.14683

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is the peer reviewed version of the following article: Gresele, P, Orsini, S, Noris, P, et al. Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: A communication from the Platelet Physiology SSC. J Thromb Haemost. 2020; 18: 732–739. https://doi.org/10.1111/jth.14683, which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1111/jth.14683. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

SUPPLEMENTARY MATERIALS

Statistical analysis

Based on previous data on the prevalence of hemorrhagic symptoms in VWD-1, patients with IPFD or IT and HC [1-3], we expected that a significant difference in the BS would be shown by enrolling at least 300 subjects per group (β =0.8, α =0.05).

Descriptive analyses have been performed to assess the sample composition: age, sex, type of diagnosis, age at diagnosis. Data are reported as medians and 25th-75th percentiles (IQR) when continuous, and as counts and percentages when categorical.

Distributions of WHO bleeding score and ISTH-BAT bleeding score in the four groups (HC, VWD-1, IT, IPFD) have been compared using Sidak's multiple comparisons test.

Pearson correlation coefficient was calculated to assess the association between WHO bleeding score and ISTH-BAT bleeding score with age, age at diagnosis and platelet number.

The kappa statistic was used to test interrater reliability [4]. Receiver operating characteristic (ROC) curves were calculated for diagnostic prediction rule to discriminate between different groups and area under curve (AUC), with binomial exact confidence interval for AUC [5,6], sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) for the analyzed populations were assessed. Cut-off values using the Youden index for the most relevant comparisons were also calculated.

The R software (R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org) was used for all analyses. A two-sided p<0.05 was considered as statistically significant.

References

- 1. Bowman M, Mundell G, Grabell J, Hopman WM, Rapson D, Lillicrap D, James P. Generation and validation of the Condensed MCMDM-1VWD Bleeding Questionnaire for von Willebrand disease. *J Thromb Haemost*. 2008; **6**: 2062-6. 10.1111/j.1538-7836.2008.03182.x.
- 2. Lowe GC, Lordkipanidze M, Watson SP; UK GAPP study group. Utility of the ISTH bleeding assessment tool in predicting platelet defects in participants with suspected inherited platelet function disorders. *J Thromb Haemost*. 2013; **11**: 1663-8. 10.1111/jth.12332
- 3. Quiroga T, Goycoolea M, Panes O, Aranda E, Martinez C, Belmont S, Munoz B, Zuniga P, Pereira J, Mezzano D. High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls. *Haematologica*. 2007; **92**: 357-65. 10.3324/haematol.10816
- 4. Cohen J. A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*. 1960;**20**:37-46.
- 5. Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, 3rd ed. Hoboken: John Wiley & Sons.
- 6. DeLong ER DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.*Biometrics*. 1988; **44**:837-845.

Supplementary table 1. Diagnostic criteria for IT required for the enrollment in the study.

Disease (abbreviation, OMIM entry)	Inheritance	Gene (chromosome localization)	Diagnostic criteria
	SYNDRON	AIC FORMS	
X-linked thrombocytopenia (XLT, 313900)	XL	WAS (Xp11)	Genetic analysis
MYH9-related disease (MYH9-RD,155100)	AD	МҮН9 (22q12-13)	Genetic analysis or positive immunofluorescence screening test for MYH9 protein aggregates
Paris-Trousseau thrombocytopenia (TCPT, 188025/600588), Jacobsen syndrome (JBS, 147791)	AD	Large deletion (11q23-ter)	Genetic analysis
Thrombocytopenia with absent radii (TAR, 274000)	AR	<i>RBM8A</i> (1q21.1)	Genetic analysis or typical phenotype
Congenital thrombocytopenia with radio-ulnar synostosis (CTRUS, 605432)	AD	HOXA11 (7p15-14)	Genetic analysis or typical phenotype
Thrombocytopenia associated with sitosterolaemia (STSL, 210250)	AR	ABCG5, ABCG8 (2p21)	Genetic analysis
	NON-SYNDR	OMIC FORMS	<u> </u>
Monoallelic Bernard-Soulier syndrome (mBSS, 153670)	AD	<i>GP1BA</i> (17p13), <i>GP1BB</i> (22q11)	Genetic analysis
ANKRD26-related thrombocytopenia (THC2, 313900)	AD	ANKRD26 (10p2)	Genetic analysis
<i>TUBB1</i> -related thrombocytopenia (TUBB1-RT, 613112)	AD	<i>TUBB1</i> (6p21.3)	Genetic analysis
CYCS-related thrombocytopenia (THC4, 612004)	AD	<i>CYCS</i> (7p15.3)	Genetic analysis
Congenital amegakaryocytic thrombocytopenia (CAMT, 604498)	AR	MPL (1p34)	Genetic analysis or typical phenotype
<i>GATA1</i> -related diseases (<i>GATA1</i> -RDs, Dyserythropoietic anemia with thrombocytopenia, 300367 – X-linked thrombocytopenia with thalassemia, 314050)	XL	GATAI (Xp11)	Genetic analysis
ACTN1-related thrombocytopenia (ACTN1-RT, 615193)	AD	ACTN1 (14q24)	Genetic analysis
FLNA-related thrombocytopenia (FLNA-RT, nd)	XL	FLNA (Xq28)	Genetic analysis

AD= autosomal dominant; AR= autosomal recessive; XL= X-linked

Disease (abbreviation, OMIM entry)	Inheritance	Gene (chromosome localization)	Diagnostic criteria								
SYNDROMIC FORMS											
		HPS1, ADTB3A, HPS3, HPS4, HPS5,HPS6, DTNBP1, BLOC1S3									
Hermansky–Pudlak syndrome (HPS, 203300)	AR	BLOC1S3 (different locations)	Genetic analysis or typical phenotype + delta granule deficiency or								
		HPS4, HPS5,HPS6, DTNBP1	decrease in platelet nucleotide content and increased ATP/ADP ratio (+decreased 5HT content)								
		BLOC1S3 (different locations)									
Chediak-Higashi Syndrome (CHS, 214500)	AR	CHS1 (1q42.1- 42.2)									
	NON SYNDRO	MIC FORMS									

Supplementary table 2. Diagnostic criteria for IPFD required for the enrollment in the study.

NON SYNDROMIC FORMS

Glanzmann thrombasthenia (GT, 273800)	AR	<i>ITGA2B</i> (17q21.31), <i>ITGB3</i> (17q21.32)	Genetic analysis or absent platelet aggregation to all agonists but ristocetin or absent GPIIb-IIIa
[§] <i>ITGA2B/ITGB3</i> -related thrombocytopenia (<i>ITGA2B/ITGB3</i> - <i>RT</i> , 187800)	AD	<i>ITGA2B</i> (17q21.31), <i>ITGB3</i> (17q21.32)	Genetic analysis
[§] Biallelic (bBSS, 231200)	AR	GP1BA (17p13), GP1BB (22q11), GP9 (3q21)	Genetic analysis or absent GPIb/IX/V or absent RIPA and normal to other agonists
[§] Familial platelet disorder and predisposition to acute myelogenous leukemia (FPD/AML, 601399)	AD	<i>RUNXI</i> (21q22)	Genetic analysis
P2Y ₁₂ deficiency (nd, 609821)	AR	<i>P2RY12</i> (3q24- q25)	Genetic analysis or selective, severe defect of platelet aggregation by ADP, defect of inhibition o adenylyl cyclase by ADP (VASP phosphorylation assay)
Defect of thromboxane A2 receptor (nd, 188070)	AD	<i>TBXA2R</i> (19p13.3)	Genetic analysis or defective platelet aggregation by U46619 and by arachidonic acid

Scott syndrome (SCTS, 262890)	AR	<i>TMEM16F</i> (12q12)	Genetic analysis
Quebec platelet disorder (QPD, 601709)	AD	<i>PLAU</i> (10q24)	Genetic analysis
Delta granule deficiency	AR/AD	Unknown	Absence of delta-granules (TEM) or decrease in platelet nucleotide content and increased ATP/ADP ratio (+decreased 5HT content)
Combined alpha-delta granule deficiency (nd, 185050)	AR/AD	Unknown	Severe deficiency of alpha and delta granules
[§] Platelet-type Von Willebrand Disease (VWDP, 177820)	AD	GP1BA (17p13.2)	Genetic analysis
[§] Gray platelet syndrome (GPS, 139090)	AR	NBEAL2 (3p21.1)	Genetic analysis or absence of alpha- granules
[§] Gray platelet syndrome with mutation in GFI1B (187900)	AD	<i>GFI1B</i> (9q34.13)	Genetic analysis
Primary secretion defect (nd, nd)	AR/AD	Unknown	Reduced primary platelet granule secretion upon stimulation by different platelet aggregation agonists, normal TxB2 production induced by AA (or serum TxB2) and normal granule content.
Defects in collagen receptors (nd, nd)	AR	Unknown	Defective platelet aggregation in the response to collagen
Stormorken syndrome (nd, 185070)	AD	ORAI1 (12q24.31) STIM1 (11p15.5)	Genetic analysis
COX-1 deficiency	AD	Unknown	Defective aggregation in response to arachidonic acid; defective serum TXB2;
cPLA2 deficiency	AR	PLA2G4A (1q31.1)	Genetic analysis
Tx synthase deficiency	AD	TBXAS1 (7q34)	Genetic analysis
PKC deficiency	unknown	Unknown	Defective aggregation in response to Thrombin and PAF; defective GPIIb/IIIa activation

§= IPFD associated with thrombocytopenia.

AD= autosomal dominant; AR= autosomal recessive; XL= X-linked

	N	Females %	Median age (IQR)	Median platelet count (x10 ⁹ /L) (IQR)
IPFD	196	61.0	31 (18.5-50)	190 (120-265.5)
IT	286	54.6	41 (29-52)	57.5 (28-85)
VWD-1	303	59.1	38 (23-51)	250 (210-298.5)
HC	313	60.1	40 (29-53)	245.5 (215-283.5)
TOT	1098	58.5	39 (25-52)	211 (93-298.5)

Supplementary Table 3. Baseline characteristics of the patients and controls.

HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; IQR=interquartile range; VWD-1= von Willebrand disease type 1.

IPFD	N	Median ISTH- BAT (IQR)	ISTH-BAT Median (IQR) F Median (IQR) M	ISTH-BAT Min-max F Min-max M	Median WHO (IQR)
Glanzmann thrombasthenia	79	11 (8-16)	12 (8-16) 10 (7-13.5)	1-26 4-20	3 (3-3)
δ-storage pool deficiency	21	6 (3.75-10.5)	6 (5-13.5) 4 (2.75-9.25)	1-17 1-16	2 (1-2)
Biallelic Bernard Soulier syndrome	20	8.5 (7.5-12.5)	8.5 (8-11.5) 8 (1-12.75)	4-27 0-16	3 (2-3)
Primary secretion defect	20	7.5 (3.5-12.5)	12 (7-14) 6 (0.5-6)	1-21 0-11	1 (1-2)
Familial platelet disorder associated with myeloid malignancy	8	4.5 (1-5.5)	4.5 (3.5-6.2) 2.5 (0-5.2)	2-10 0-6	1.5 (0.7-2)
Gray platelet syndrome	7	12 (10-14.25)	15 (13.5-15.5) 10 (9.5-10.5)	12-16 8-12	2 (2-2.5)
Hermansky-Pudlak syndrome	7	5 (2-13.25)	6.5 (2.75-13.2) 1 -	2-18 1-1	2 (1-2.5)
Quebec platelet disorder	7	12 (9-20.75)	8 - 16 (12-20.7)	8-8 8-27	3 (3-3)
Defect of the P2Y ₁₂ Purinergic Receptor	6	10.5 (4-15)	13 (10.5-14) 4 (3-11)	8-15 2-18	2 (1.2-2.7)
Combined alpha-delta granule deficiency	5	8 (5.75-9)	8.5 (6.5-9) 7 -	2-9 7-7	2 (1-2)
Glanzmann Thrombasthenia Variant	5	8 (1.5-8.25)	8 (2-8)	0-9 -	2 (1-3)
CalDAG-GEFI defect	3	22 (13-23.5)	24 - 16 (13-19)	24-24 10-22	3 (3-3)
Defect of the TP receptor	3	4 (4-5.5)	4 (4-5) 2 -	4-6 2-2	2 (1.5-3)
Defects of collagen receptors	2	2.5 (2-3)	3 - 2 -	3-3 2-2	0.5 (0.2-0.7)
Paris-Trousseau syndrome	2	14.5 (12-17)	14.5 (12-17)	12-17	1 (1-1)
cPLA ₂ deficiency	1	10 -	- 10 -	- 10-10	3 -
Platelet-type Von Willebrand Disease	1	11 -	11 -	11-11	2 -

Supplementary Table 4. ISTH-BAT and WHO BS distribution in specific IPFDs and ITs

IT	Ν	Median ISTH- BAT (IQR)	ISTH-BAT Median (IQR) F Median (IQR) M	ISTH-BAT Min-max F Min-max M	Median WHO (IQR)
MYH9-related disease	115	1 (0-3)	2 (0.5-3) 0 (0-2.25)	0-17 0-12	1 (0-2)
ANKRD26-related thrombocytopenia	64	2.5 (1-4.5)	3 (1-6) 2 (1-3)	0-13 0-10	2 (0.75-2)
Monoallelic Bernard-Soulier syndrome	60	1 (0-3)	2 (0-3.25) 0 (0-1)	0-12 0-13	1 (0-2)
ETV6 -related disease	23	0 (0-2.75)	0 (0-1.5) 1 (0-2.5)	0-10 0-3	1 (0-1)
ACTN1-related thrombocytopenia	16	1 (0-3)	1 (0-3) 1 (0.5-2.5)	0-5 0-4	1 (0-1.25)
X-linked thrombocytopenia	7	4 (1-8.5)	- 4 (1-8.5)	- 1-13	1 (0-2.5)
Thrombocytopenia with absent radii	2	10.5 (7-14)	14 (14-14) 7 (7-7)	14-14 7-7	1.5 (1.2-1.7)
CYCS-related thrombocytopenia	1	1 -	1 -	1-1	1 (1-1)
GATA1-related diseases	1	11 -	- 11 -	- 11-11	2 (2-2)
TUBB1-related thrombocytopenia	1	0 -	- 0 -	- 0-0	0 (0-0)
Wiskott-Aldrich syndrome	1	12 -		- 12-12	4 (4-4)

- -

		WHO median (IQ	PR)		ISTH-BAT median (IQR)					
	All	Females	Males	All	Females	Males	Females excluding post-partum hemorrhage and menorrhagia			
IPFD	3 (2-3)	3 (2-3)	3 (1-3)	9 (6-14)	9 (6.75-15)	8 (4-12)	8 (4-12)			
IT	1 (0-2)	1 (0-2)	1 (0-2)	2 (0-3)	2 (0-4)	1 (0-3)	1 (0-3)			
VWD-1	1 (1-2)	1 (1-2)	1 (0-2)	5 (2-8)	5 (3-9)	4 (1.75-6)	4 (1-7)			
HC	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-1)	0 (0-1)	0 (0-0)	0 (0-1)			

Supplementary Table 5. The WHO and ISTH-BAT BSs in the four groups.

HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; IQR=interquartile range; VWD-1= von Willebrand disease type 1.

Supplementary Table 6. Frequency of the different bleeding symptoms in the different groups: (A) whole populations and (B) pediatric subjects.

Α

			Symptom, n of subjects (% of subjects requiring medical attention)												
	Number of subjects	Epistaxis	Cutaneous	Bleeding From Minor Wounds	Oral Cavity	GI Bleeding	Hematuria	Tooth Extraction	Surgery	НМВ	РРН	Muscle Hematoma s	Hemarthrosis	CNS	Other
HC	313	25	23	6	31	6	4	15	14	25	6	11	3	0	1
		(28%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(43%)	(28%)	(33%)	(9%)	(0%)	(0%)	(0%)
IPFD	196	125	118	79	115	35	17	64	68	84	18	44	10	4 (75%)	20
		(71%)	(23%)	(10%)	(43%)	(57%)	(29%)	(61%)	(76%)	(61%)	(78%)	(32%)	(40%)		(40%)
IT	286	77	109	31	63	6	5	18	31	61	7	11	0	5 (80%)	7
		(33%)	(5%)	(0%)	(9%)	(50%)	(0%)	(44%)	(55%)	(16%)	(71%)	(9%)	(0%)		(0%)
VWD-1	303	131	140	72	114	24	9	86	91	138	28	19	8	1	16
		(43%)	(7%)	(7%)	(12%)	(37%)	(0%)	(42%)	(57%)	(33%)	(46%)	(42%)	(37%)	(100%)	(12%)

B

			Symptom, n of pediatric subjects (% of pediatric subjects requiring medical attention)											
	Number										Muscle			
	of			Bleeding From	Oral	GI		Tooth			Hematoma		CNS	Other
	subjects	Epistaxis	Cutaneous	Minor Wounds	Cavity	Bleeding	Hematuria	Extraction	Surgery	HMB	S	Hemarthrosis		1
HC	25	3	3	0	3	0	0	0	0	0	1	0	0	0
		(33.3%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(43%)	(0%)	(0%)	(0%)	(0%)	(0%)
IPFD	44	35	20	13	32	8	5	5	3	7	6	3	0	6
		(88.5%)	(50%)	(15.3%)	(65%)	(50%)	(60%)	(40%)	(100%)	(85.7%)	(33.3%)	(66.6%)	(0%)	(33.3%)
IT	31	13	13	2	5	0	0	1	3	2	1	0	1	1
		(15.3%)	(15.3%)	(0%)	(0%)	(0%)	(0%)	(0%)	(33.3%)	(50%)	(0%)	(0%)	(0%)	(0%)
VWD-1	32	19	16	6	12	1	0	5	2	4 (50%)	6	0	0	0
		(26.3%)	(12.5%)	(0%)	(50%)	(100%)	(0%)	(60%)	(100%)		(50%)	(0%)	(0%)	(0%)

CNS: central nervous system bleeding; GI: gastrointestinal; HC= healthy controls; HMB: heavy menstrual bleeding; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; PPH: Post-Partum Hemorrhage; VWD-1= von Willebrand disease type 1.

Other: excessive umbilical stump bleeding, cephalohematoma, bleeding at circumcision, venipuncture bleeding, suction bleeding, ovulation bleeding.

Supplementary Table 7. Frequency of the different bleeding symptoms in the most representative inherited platelet disorders (enrolling ≥ 16 patients).

						Symptom,	n of patients (%	% of patients r	equiring me	dical atten	tion)				
	N	Epistaxis	Cutaneous	Bleeding From Minor Wounds	Oral Cavity	GI Bleeding	Hematuria	Tooth Extraction	Surgery	НМВ	РРН	Muscle Hematomas	Hemarthrosis	CNS	Other
bBSS	19	11	8	3	9	4	2	5	5	11	2	0	0	0	2
		(72%)	(25%)	(33%)	(55%)	(100%)	(0%)	(100%)	(80%)	(82%)	(50%)	(0%)	(0%)	(5%)	(100%)
δ-SPD	21	9	17	12	8	0	1	7	7	8	1	7	0	1	2
		(89%)	(6%)	(0%)	(25%)	(0%)	(100%)	(29%)	(43%)	(62%)	(100%)	(14%)	(0%)	(100%)	(0%)
GT	79	64	43	31	60	23	7	21	17	32	5	25	5	2	12
		(76%)	(32%)	(9%)	(66%)	(52%)	(43%)	(66%)	(76%)	(72%)	(100%)	(36%)	(60%)	(50%)	(50%)
PSD	20	9	11	9	14	2	2	10	10	10	4	3	1	0	1
		(44%)	(27%)	(0%)	(0%)	(0%)	(0%)	(20%)	(70%)	(30%)	(50%)	(0%)	(0%)	(0%)	(0%)
ACTN-1	16	2	7	0	2	0	0	0	4	5	0	0	0	0	0
		(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(25%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
ANKDR26	62	20	37	9	21	0	1	5	5	11	3	3	0	1	1
		(15%)	(3%)	(0%)	(5%)	(0%)	(0%)	(80%)	(60%)	(27%)	(100%)	(0%)	(0%)	(100%)	(0%)
mBSS	55	8	14	6	11	3	0	5	8	16	3	1	0	0	0
		(12%)	(7%)	(0%)	(9%)	(67%)	(0%)	(20%)	(62%)	(6%)	(33%)	(100%)	(0%)	(0%)	(0%)
ETV6	23	8	5	0	0	0	0	0	0	3	0	0	0	0	0
		(37%)	(20%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(33%)	(0%)	(0%)	(0%)	(0%)	(0%)
MYH9-RD	115	31	36	12	20	2	2	6	11	26	1	3	0	1	3
		(39%)	(3%)	(0%)	(20%)	(50%)	(0%)	(50%)	(45%)	(19%)	(100%)	(0%)	(0%)	(100%)	(0%)

ACTN-1: *ACTN1*-related thrombocytopenia; ANKDR26: *ANKRD26*-related thrombocytopenia; bBSS: biallelic Bernard Soulier syndrome; CNS: central nervous system bleeding; ETV6: *ETV6*-related thrombocytopenia; δ-SPD: δ-storage pool deficiency; GT: Glanzmann thrombasthenia; HMB: heavy menstrual bleeding; mBSS: monoallelic Bernard Soulier syndrome; *MYH9*-RD: *MYH9*-related disease; PSD: primary secretion defect; PPH: post-partum hemorrhage;

Other: excessive umbilical stump bleeding, cephalohematoma, bleeding at circumcision, venipuncture bleeding, suction bleeding, ovulation bleeding.

Supplementary Table 8A. Sensitivity, specificity, positive and negative predictive values of the ISTH-BAT-BS in the overall study populations.

					PPV	NPV
	Best cut-off	AUC (p)	Sensitivity	Specificity	(95% CI)	(95% CI)
IPFD vs HC	>3	0.951 (<0.0001)	86.73	92.33	87.63	91.75
VWD-1 vs HC	>2	0.878 (<0.0001)	73.6	87.86	85.44	77.46
IPFD vs IT	>5	0.872 (<0.0001)	77.55	84.97	77.95	84.67
IT vs VWD-1	≤3	0.735 (<0.0001)	64.03	75.52	63.33	78.20
IPFD vs VWD-1	>7	0.731 (<0.0001)	72.27	67.96	69.71	63.94
IT vs HC	>1	0.684 (<0.0001)	50.70	79.87	83.85	61.73

Supplementary Table 8B. Sensitivity, specificity, positive and negative predictive values of the WHO-BS in the global populations.

					PPV	NPV
	Best cut-off	AUC (p)	Sensitivity	Specificity	(95% CI)	(95% CI)
IPFD vs HC	> 0	0.911 (p<0.0001)	90.8	84.0	78.1	93.6
VWD-1 vs HC	> 0	0.799 (p<0.0001)	76.4	84.0	80.8	80.2
IPFD vs IT	≥2	0.788 (p<0.0001)	78.1	69.5	57.5	80.1
IT vs VWD-1	>0	0.581 (p<0.01)	76.4	39.9	55.0	66.6
IPFD vs VWD-1	≥2	0.687 (p<0.0001)	78.1	59.3	57.7	79.1
IT vs HC	>0	0.721 (p<0.0001)	60.1	84.0	77.5	69.8

Supplementary Table 8C. Comparison of the AUCs of the ISTH-BAT and the WHO BSs

	ISTH-BAT WHO-BAT Difference Diff. SE				р
HC vs IPFD	0.951	0.911	0.040	0.009	< 0.0001
HC vs IT	0.684	0.722	0.038	0.013	0.005
HC vs VWD-1	0.873	0.799	0.074	0.013	< 0.0001
IPFD vs IT	0.872	0.788	0.084	0.015	< 0.0001
IPFD vs VWD-1	0.736	0.747	0.011	0.019	0.5717
IT vs VWD-1	0.729	0.563	0.166	0.018	< 0.0001

AUC= area under curve; HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; NPV= negative predictive value; PPV= positive predictive value; VWD-1= von Willebrand disease type 1.

Supplementary Table 9. Sensitivity, specificity, positive and negative predictive values of the ISTH-BAT BS as discriminator between IPFD and HC.

Cut-off	AUC	Sensitivity	Specificity	PPV	NPV
>4	0.895	80.61	96.17	92.94	88.79
>5	0.877	77.55	97.76	95.60	87.43
>6	0.850	70.92	99.04	97.89	84.47
>7	0.836	67.86	99.36	98.52	83.16

AUC= area under curve; NPV= negative predictive value; PPV= positive predictive value.

	Ν	Females (%)	Median age (IQR)	Median platelet count (x10 ⁹ /L) (IQR)
IPFD	44	59	10 (7-14)	250 (150-341)
IT	31	45	12 (7-15)	57 (28-79)
VWD-1	32	31	11 (9-13)	285 (229-387)
HC	25	52	11 (6-14)	240 (210-309)
TOT	132	47	11 (7-14)	220 (96-305)

Supplementary Table 10. Baseline characteristics of the pediatric population.

HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; IQR=interquartile range; NPV= negative predictive value; PPV= positive predictive value; VWD-1= von Willebrand disease type 1.

Pediatric	2	WHO median (IQR)			ISTH-BAT median (IQR)		
	All	Female	Males	All	Female	Males	
IPFD	3 (2-3)	3 (2-3)	2.5 (1.75-3)	8 (6.5-14)	8 (8-13)	8 (4-11)	
IT	1 (0-2)	1 (0-2)	1 (0-1.5)	1 (0-3)	1.5 (0-4.2)	1 (0-2.5)	
VWD-1	1 (1-2)	1 (0-2)	1 (0.25-2)	3 (1-6)	6 (0-12.5)	3 (1-5)	
HC	0 (0-0)	0 (0-0.5)	0 (0-0)	0 (0-1)	0 (0-1)	0 (0-0)	

Supplementary Table 11. The WHO and ISTH-BAT BSs in the pediatric population.

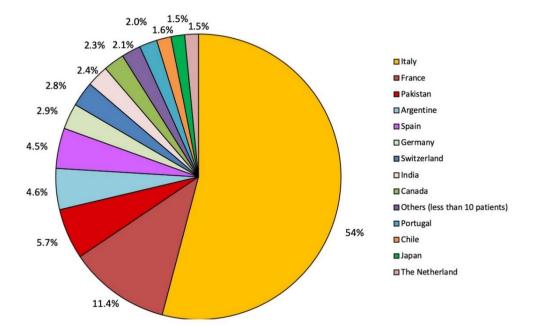
HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; IQR=interquartile range; NPV= negative predictive value; PPV= positive predictive value; VWD-1= von Willebrand disease type 1.

Supplementary Table 12. Sensitivity and specificity of ISTH-BAT BS in the pediatric population.

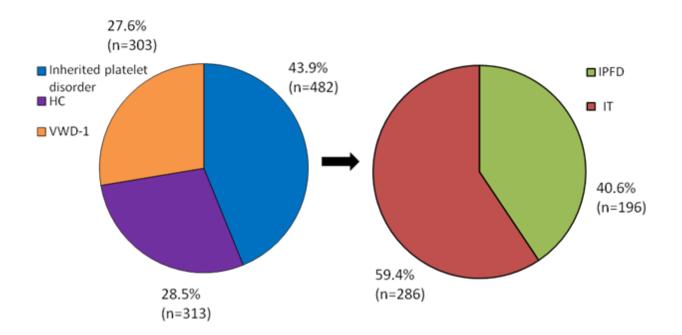
	Best cut-off	AUC (p)	Sensitivity	Specificity
IPFD vs HC	>1	0.992 (<0.0001)	100	92
VWD-1 vs HC	>1	0.839 (<0.0001)	71.87	92
IPFD vs IT	>3	0.915 (<0.0001)	88.64	80.65
IT vs VWD-1	≤2	0.691 (<0.0001)	62.5	70.97
IPFD vs VWD-1	>7	0.802 (<0.0001)	81.25	75
IT vs HC	>1	0.657 (<0.0001)	45.16	92

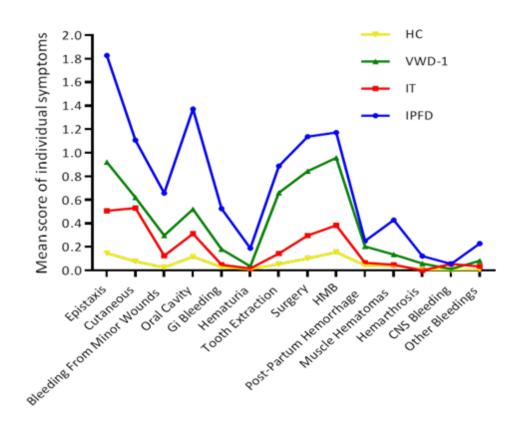
AUC= area under curve, HC= healthy controls; IPFD= inherited platelet function disorders; IT= inherited thrombocytopenias; VWD-1= von Willebrand disease type 1.

Legends to the supplemental figures

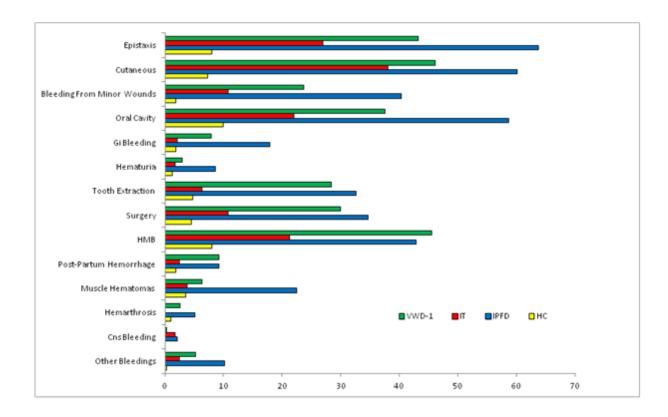

Supplementary Figure 1. World distribution of the enrolled subjects.

Supplementary Figure 2. Distribution of enrolled subjects according to study group.


Supplementary Figure 3. Mean scores of the individual symptoms of the ISTH-BAT in the 4 groups. The severity of epistaxis, cutaneous bleeding, bleeding from minor wounds, oral cavity bleeding, GI bleeding, bleeding after tooth extraction, menorrhagia and muscle hematomas in the VWD-1 group was lower than in IPFD but higher than in IT, while the severity in HC group was the lowest. Epistaxis, oral cavity bleeding and hemarthrosis were the most severe symptoms in IPFD compared to VWD-1, IT and HC, while bleeding after tooth extraction, bleeding after surgery and menorrhagia were more severe in IPFD and VWD-1 compared to IT and HC.


Suppl. Figure 4. Frequency of the individual symptoms of the ISTH-BAT score in the four groups (% of patients manifesting the symptom).

Supplementary figure 1



Supplementary figure 2

Supplementary figure 4

