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TWO BIFURCATION SETS ARISING FROM THE BETA

TRANSFORMATION WITH A HOLE AT 0

SIMON BAKER AND DERONG KONG

Abstract. Given β ∈ (1, 2], the β-transformation Tβ : x 7→ βx (mod 1) on the circle [0, 1)
with a hole [0, t) was investigated by Kalle et al. (2019). They described the set-valued
bifurcation set

Eβ := {t ∈ [0, 1) : Kβ(t′) 6= Kβ(t) ∀t′ > t},
where Kβ(t) := {x ∈ [0, 1) : Tnβ (x) ≥ t ∀n ≥ 0} is the survivor set. In this paper we
investigate the dimension bifurcation set

Bβ := {t ∈ [0, 1) : dimH Kβ(t′) 6= dimH Kβ(t) ∀t′ > t},
where dimH denotes the Hausdorff dimension. We show that if β ∈ (1, 2] is a multinacci
number then the two bifurcation sets Bβ and Eβ coincide. Moreover we give a complete
characterization of these two sets. As a corollary of our main result we prove that for β a
multinacci number we have dimH(Eβ ∩ [t, 1]) = dimH Kβ(t) for any t ∈ [0, 1). This confirms
a conjecture of Kalle et al. for β a multinacci number.

1. Introduction

Given β ∈ (1, 2], the β-transformation Tβ on the circle R/Z ∼ [0, 1) is defined by

Tβ : [0, 1)→ [0, 1); x 7→ βx (mod 1).

Following the pioneering work of Rényi [11] and Parry [9] there has been a great interest in
the study of Tβ. In general, the system Φβ = ([0, 1), Tβ) does not admit a Markov partition
(cf. [12]), this makes describing the dynamics of Φβ more challenging.

When β = 2, Urbański considered in [14, 15] the open dynamical system under the doubling
map T2 with a hole at zero. More precisely, for t ∈ [0, 1) let

K2(t) := {x ∈ [0, 1) : Tn2 (x) ≥ t ∀ n ≥ 0} .
Here we use a slightly different definition of K2(t) from that by Urbański. By [14, Theorem 1
and Corollary 1] it follows that the dimension function t 7→ η2(t) := dimH K2(t) is a Devil’s
staircase on [0, 1), that is (i) η2 is decreasing and continuous on [0, 1); (ii) η2 is locally constant
almost everywhere on [0, 1); and (iii) η2 is not constant on [0, 1). Here and throughout the pa-
per dimH denotes the Hausdorff dimension. Moreover, Urbański investigated the bifurcation
sets

E2 :=
{
t ∈ [0, 1) : K2(t

′) 6= K2(t) ∀ t′ > t
}

and B2 :=
{
t ∈ [0, 1) : η2(t

′) 6= η2(t) ∀ t′ > t
}
.

Clearly, B2 ⊆ E2. It can be easily deduced from the proof of Theorem 1 in [14] that B2 = E2,
and its topological closure B2 is a Cantor set, i.e., a non-empty compact set that has neither
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2 SIMON BAKER AND DERONG KONG

isolated nor interior points. Furthermore, the following local dimension property was shown
to hold: limr→0 dimH(E2∩ (t−r, t+r)) = η2(t) for all t ∈ E2. Recently, Carminati and Tiozzo
in [1] showed that the local Hölder exponent of the dimension function η2 at any t ∈ E2 equals
η2(t).

Inspired by the work of Urbański [14, 15], Kalle et al. in [6] considered the analogous prob-
lem for the β-transformation with a hole [0, t). More precisely, for t ∈ [0, 1) they investigated
the survivor set

Kβ(t) :=
{
x ∈ [0, 1) : Tnβ (x) ≥ t ∀ n ≥ 0

}
,

and showed that the dimension function t 7→ dimH Kβ(t) is also a Devil’s staircase on [0, 1).
Furthermore, they characterized the set-valued bifurcation set

Eβ :=
{
t ∈ [0, 1) : Kβ(t′) 6= Kβ(t) ∀ t′ > t

}
,

and proved that Eβ is a Lebesgue null set of full Hausdorff dimension for any β ∈ (1, 2). Note
that the bifurcation set Eβ defined here coincides with the set

E+
β :=

{
t ∈ [0, 1) : Tnβ (t) ≥ t ∀n ≥ 0

}
in [6]. Interestingly, they showed that Eβ contains infinitely many isolated points for Lebesgue
almost every β ∈ (1, 2). This is in contrast to the case where β = 2 and E2 has no isolated
points. For β-transformation with an arbitrary hole we refer to the work of Clark [2]. We
also mention that the study of bifurcation sets plays an important role in one-dimensional
dynamics (cf. [5]).

Since for each β ∈ (1, 2) the dimension function ηβ : t 7→ dimH Kβ(t) is a Devil’s staircase,
it is natural to consider the dimension bifurcation set

Bβ :=
{
t ∈ [0, 1) : ηβ(t′) 6= ηβ(t) ∀ t′ > t

}
.

This set records those t for which the dimension function ηβ has a ‘change’ within any right
neighborhood. Since ηβ is continuous, Bβ cannot have isolated points. On the other hand, the
set-valued bifurcation set Eβ contains (infinitely many) isolated points for Lebesgue almost
every β ∈ (1, 2). So in general we cannot expect the coincidence of the two bifurcation sets
Bβ and Eβ. That being said, in this paper we show that if β is a multinacci number, i.e., the
unique root in (1, 2) of the equation

xm+1 = xm + xm−1 + · · ·+ x+ 1

for some m ∈ N, then the two bifurcation sets indeed coincide. Importantly, if β is a multinacci
number then its quasi-greedy expansion of 1 is of the form ((1m0)∞). This property will be
useful in our analysis. Here for β ∈ (1, 2] the quasi-greedy β-expansion δ(β) = δ1(β)δ2(β) . . . of
1 is the lexicographically largest zero-one sequence not ending with an infinite string of zeros
and satisfying 1 =

∑∞
i=1 δi(β)/βi (see Section 2 for more details). Furthermore, throughout

the paper we will use lexicographical order ‘≺,4,�’ and ‘<’ between sequences and words.

When β ∈ (1, 2) is a multinacci number, the following result for the set-valued bifurcation
set Eβ was established in [6, Theorems C and D]. We record it here for later use.

Theorem 1.1 ([6]). Let β ∈ (1, 2] be a multinacci number. Then the topological closure Eβ
is a Cantor set. Furthermore, max Eβ = 1− 1/β.

In order to give a complete description of the dimension bifurcation set Bβ we introduce a
class of basic intervals.
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Definition 1.2. Let β ∈ (1, 2]. A word s1 . . . sm is called β-Lyndon if

si+1 . . . sm � s1 . . . sm−i ∀ 1 ≤ i < m, and σn((s1 . . . sm)∞) ≺ δ(β) ∀ n ≥ 0.

Accordingly, an interval [tL, tR) ⊂ [0, 1) is called a β-Lyndon interval if there exists a β-
Lyndon word s1 . . . sm such that

tL =
m∑
i=1

si
βi

and tR =
βm

βm − 1
· tL.

Here we mention that in Definition 1.2 the left endpoint tL = (s1 . . . sm0∞)β has a finite
β-expansion and the right endpoint tR = ((s1 . . . sm)∞)β has a periodic β-expansion, see
Section 2 for more explanations.

We will show that the β-Lyndon intervals are pairwise disjoint for all β ∈ (1, 2], and when
β is multinacci they cover the interval [0, 1 − 1/β) up to a Lebesgue null set. The latter
statement can be seen as a consequence of our main result for the coincidence of the two
bifurcation sets, which we state below.

Theorem 1. Let β ∈ (1, 2] be a multinacci number. Then

Bβ = Eβ =

[
0, 1− 1

β

)
\
⋃

[tL, tR)

=
{
t ∈ [0, 1) : lim

r→0
dimH(Bβ ∩ (t, t+ r)) = dimH Kβ(t) > 0

}
,

where the union is taken over all pairwise disjoint β-Lyndon intervals.

By Theorem 1 it follows that the topological closure [tL, tR] of each β-Lyndon interval is
indeed a maximal interval where the dimension function ηβ is constant. As a corollary of
Theorem 1 we confirm a conjecture of [6] for β a multinacci number.

Corollary 2. If β ∈ (1, 2] is a multinacci number, then

dimH(Eβ ∩ [t, 1]) = dimH Kβ(t) ∀ t ∈ [0, 1).

The rest of the paper is organized as follows. In Section 2 we recall some properties
from symbolic dynamics and the dimension formula for the survivor set Kβ(t). The proof of
Theorem 1 and Corollary 2 will be given in Section 3. In Section 4 we make some remarks
and point out that the method of proof for Theorem 1 can be applied to some other special
values of β∈ (1, 2].

2. Preliminaries and β-Lyndon intervals

Given β ∈ (1, 2], for each x ∈ Iβ := [0, 1/(β − 1)] there exists a sequence (di) = d1d2 . . . ∈
{0, 1}N such that

x =
∞∑
i=1

di
βi

=: ((di))β.

The sequence (di) is called a β-expansion of x. Sidorov [13] showed that for β ∈ (1, 2)
Lebesgue almost every x ∈ Iβ has a continuum of β-expansions. This is rather different from
the case when β = 2 where every number in I2 = [0, 1] has a unique dyadic expansion except
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for countably many points that have precisely two expansions. Given x ∈ Iβ, among all of its
β-expansions let

b(x, β) = (bi(x, β))

be the greedy β-expansion of x, i.e., the lexicographically largest β-expansion of x. Such a
sequence always exists and is generated by the orbit of x under the map Tβ. Let σ be the left-

shift on {0, 1}N defined by σ((ci)) = (ci+1). Then b(Tβ(x), β) = σ(b(x, β)) for any x ∈ [0, 1).
Similarly, for x ∈ (0, 1/(β − 1)] let

a(x, β) = (ai(x, β))

be the quasi-greedy β-expansion of x (cf. [3]), which is the lexicographically largest β-expansion
of x not ending with 0∞. Here for a word c we denote by c∞ := cc · · · the periodic sequence
with periodic block c. Throughout the paper we will use the lexicographic order between
sequences and words in the usual way. For example, for two sequences (ci), (di) ∈ {0, 1}N
we write (ci) ≺ (di) if c1 < d1, or there exists n > 1 such that c1 . . . cn−1 = d1 . . . dn−1 and
cn < dn. Furthermore, for two words c,d we say c ≺ d if c0∞ ≺ d0∞.

For β ∈ (1, 2] recall that
δ(β) = δ1(β)δ2(β) . . .

is the quasi-greedy β-expansion of 1, i.e., δ(β) = a(1, β). The following lexicographic charac-
terizations of δ(β) and the greedy expansion b(x, β) are essentially due to Parry [9] (see also
[4]).

Lemma 2.1. (i) The map β 7→ δ(β) is a strictly increasing bijection from (1, 2] onto the

set of sequences (δi) ∈ {0, 1}N not ending with 0∞ and satisfying

σn((δi)) 4 (δi) ∀ n ≥ 0.

(ii) Let β ∈ (1, 2]. Then the map x 7→ b(x, β) is a strictly increasing bijection from [0, 1)

onto the set of all sequences (bi) ∈ {0, 1}N satisfying

σn((bi)) ≺ δ(β) ∀ n ≥ 0.

(iii) For any β ∈ (1, 2) the sequence b(1, β) = (bi) satisfies σn((bi)) ≺ δ(β) ∀ n ≥ 1.

For β ∈ (1, 2] let [tL, tR) be a β-Lyndon interval generated by a β-Lyndon word s1 . . . sm.
Then by Definition 1.2 and Lemma 2.1 (ii) it follows that

b(tL, β) = s1 . . . sm0∞ and b(tR, β) = (s1 . . . sm)∞.

Lemma 2.2. For any β ∈ (1, 2] the β-Lyndon intervals are pairwise disjoint.

Proof. Let [tL, tR) and [t′L, t
′
R) be two β-Lyndon intervals generated by the β-Lyndon words

s1 . . . sp and s′1 . . . s
′
q, respectively. Suppose on the contrary that [tL, tR) ∩ [t′L, t

′
R) 6= ∅.

Without loss of generality we assume tL < t′L < tR. Then by Definition 1.2 and Lemma
2.1(ii) it follows that

s1 . . . sp0
∞ ≺ s′1 . . . s′q0∞ ≺ (s1 . . . sp)

∞.

This implies

q > p, s′1 . . . s
′
p = s1 . . . sp and s′p+1 . . . s

′
q0
∞ ≺ (s1 . . . sp)

∞.

Write q = Np+ r with N ≥ 1 and 0 < r ≤ p. So, either there exists 1 ≤ k < N such that

s′p+1 . . . s
′
kp = (s1 . . . sp)

k−1 and s′kp+1 . . . s
′
(k+1)p ≺ s1 . . . sp,
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or
s′p+1 . . . s

′
Np = (s1 . . . sp)

N−1 and s′Np+1 . . . s
′
q 4 s1 . . . sq−Np.

Using s′1 . . . s
′
p = s1 . . . sp we conclude in both cases that

s′j+1 . . . s
′
q 4 s

′
1 . . . s

′
q−j for some j ∈ {p, p+ 1, . . . , q − 1} .

This is not possible by the definition of a β-Lyndon word. �

To describe the Hausdorff dimension of the survivor set

Kβ(t) =
{
x ∈ [0, 1) : Tnβ (x) ≥ t ∀n ≥ 0

}
,

we recall from [8, Chapter 4] the definition of topological entropy for a symbolic set. For a

set X ⊂ {0, 1}N , its topological entropy is defined to be

h(X) = lim inf
n→∞

log #Bn(X)

n
,

where Bn(X) is the set of all length n prefixes of sequences from X.

The following characterization of the set-valued bifurcation set Eβ was implicitly given
in [14] (see also [6, Proposition 2.3]). Furthermore, the Hausdorff dimension of Kβ(t) was
implicitly given by Raith in [10], and was recently explicitly presented in [6, Equation (2.6)].

Proposition 2.3. (i) Let β ∈ (1, 2]. Then

Eβ =
{
t ∈ [0, 1) : Tnβ (t) ≥ t ∀n ≥ 0

}
.

(ii) Let β ∈ (1, 2] and t ∈ [0, 1). Then the Hausdorff dimension of Kβ(t) is given by

dimH Kβ(t) =
h(K̃β(t))

log β
,

where K̃β(t) :=
{

(xi) ∈ {0, 1}N : b(t, β) 4 σn((xi)) 4 δ(β) ∀n ≥ 0
}
. Furthermore, the

dimension function ηβ : t 7→ dimH Kβ(t) is a Devil’s staircase, i.e., ηβ is a non-constant,
decreasing and continuous function which is locally constant almost everywhere in [0, 1).

3. Proof of Theorem 1

In this section we will prove Theorem 1. First we show that the dimension bifurcation set
Bβ coincides with the set-valued bifurcation set Eβ, we then derive a complete characterization
of these sets via the β-Lyndon intervals. The proof heavily relies upon the transitivity of the

symbolic survivor set K̃β(t) (see Lemma 3.2 below).

Proposition 3.1. Let β ∈ (1, 2) be a multinacci number. Then

Bβ = Eβ =

[
0, 1− 1

β

)
\
⋃

[tL, tR),

where the union is taken over all β-Lyndon intervals.

Observe by Lemma 2.2 that the β-Lyndon intervals are pairwise disjoint. In fact the
closed β-Lyndon intervals {[tL, tR]} are also pairwise disjoint. So by Proposition 3.1 it follows
that each closed β-Lyndon interval is a maximal interval where the dimension function ηβ is
constant.
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The proof of Proposition 3.1 will be split into several lemmas. We fix a multinacci number
β ∈ (1, 2) with δ(β) = (1m0)∞ for some m ≥ 1. In view of Proposition 2.3 it is necessary to
investigate the symbolic survivor set

K̃β(t) =
{

(xi) ∈ {0, 1}N : b(t, β) 4 σn((xi)) 4 δ(β) ∀n ≥ 0
}
.

Lemma 3.2. Let β ∈ (1, 2) with δ(β) = (1m0)∞, and let [tL, tR) ⊂ [0, 1−1/β) be a β-Lyndon

interval. Then the set-valued map t 7→ K̃β(t) is constant on [tL, tR], and the set K̃β(tR) is a
transitive subshift of finite type.

Proof. Suppose [tL, tR) is a β-Lyndon interval generated by s1 . . . sp. First we claim that

(3.1) σn((xi)) < s1 . . . sp0
∞ ∀n ≥ 0 ⇐⇒ σn((xi)) < (s1 . . . sp)

∞ ∀n ≥ 0.

Since (s1 . . . sp)
∞ � s1 . . . sp0

∞, the implication ‘⇐=’ in (3.1) is obvious. For the reverse
implication we assume σn((xi)) ≺ (s1 . . . sp)

∞ for some n ≥ 0. Then there exists ` ≥ 0 such
that

xn+1 . . . xn+`p = (s1 . . . sp)
` and xn+`p+1 . . . xn+(`+1)p ≺ s1 . . . sp.

This yields σn+`p((xi)) ≺ s1 . . . sp0∞, completing the proof of ‘=⇒’ in (3.1).

Take t ∈ [tL, tR]. Then by Lemma 2.1(ii) it follows that

K̃β(tR) ⊆ K̃β(t) ⊆ K̃β(tL).

Observe that δ(β) = (1m0)∞ for some m ∈ N. Then

K̃β(tL) = {(xi) : s1 . . . sp0
∞ 4 σn((xi)) 4 (1m0)∞ ∀n ≥ 0}

= {(xi) : (s1 . . . sp)
∞ 4 σn((xi)) 4 (1m0)∞ ∀n ≥ 0} = K̃β(tR).

(3.2)

So, the set-valued map t 7→ K̃β(t) is constant on [tL, tR]. Furthermore, K̃β(tR) is a subshift
of finite type with the set of forbidden blocks given by

F =
{
c1 . . . ck ∈ {0, 1}k : c1 . . . ck0

∞ ≺ s1 . . . sp0∞ or c1 . . . ck0
∞ � (1m0)∞

}
,

where k = max {p,m+ 1}. It remains to prove the transitivity of K̃β(tR).

Since [tL, tR) ⊂ [0, 1 − 1
β ), by Lemma 2.1 (ii) it follows that b(tR, β) ≺ b(1 − 1

β , β), which
gives

(3.3) (s1 . . . sp)
∞ ≺ 01m0∞.

Arbitrarily fix an admissible word ε = ε1 . . . εk and an admissible sequence γ = γ1γ2 . . . in

K̃β(tR). We will construct a word ν such that ενγ ∈ K̃β(tR). Observe that σn((s1 . . . sp)
∞) ≺

(1m0)∞ for all n ≥ 0. Thus, there exists a large integer N such that

(3.4) σn((s1 . . . sp)
∞) ≺ (1m0)N0∞ for all n ≥ 0.

Denote by (δi) := δ(β) = (1m0)∞. Note that εi+1 . . . εk 4 δ1 . . . δk−i for all 0 ≤ i < k. Let
i0 ∈ {0, 1, . . . , k − 1} be the smallest index such that

εi0+1 . . . εk = δ1 . . . δk−i0 .

If such an index i0 does not exist, then we put i0 = k. In either case there exists a word µ
such that εµ = ε1 . . . εi0(1m0)N . Since γ 4 (1m0)∞, there exists q ∈ {0, 1, . . . ,m} such that
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γ begins with γ1 . . . γq+1 = 1q0. We emphasize here that if q = 0 then γ begins with digit 0.
Now we claim that

εµ1m−qγ = ε1 . . . εi0(1m0)N+1γq+2γq+3 . . . ∈ K̃β(tR),

or equivalently,

(3.5) (s1 . . . sp)
∞ 4 σn(εµ1m−qγ) 4 (1m0)∞ for all n ≥ 0.

First we prove the second inequality in (3.5). By the definition of i0 it follows that

σn(εµ1m−qγ) ≺ δ(β) = (1m0)∞ holds for all 0 ≤ n < i0. Furthermore, since γ ∈ K̃β(tR), the
second inequality in (3.5) also holds for n ≥ |ε| + |µ| + m − q. Here for a word c we denote
its length by |c|. For the remaining n we observe that σi0(εµ1m−qγ) = (1m0)N+1γq+2γq+3 . . .

and γq+2γq+3 . . . ∈ K̃β(tR). So it is easy to verify that

σn(εµ1m−qγ) 4 (1m0)∞ for all i0 ≤ n < |ε|+ |µ|+m− q.
This proves the second inequality in (3.5).

For the first inequality in (3.5) we observe that εµ1m−qγ = ε1 . . . εi0(1m0)N1mγq+1γq+2 . . .

and γq+1γq+2 . . . ∈ K̃β(tR). Then by (3.3) it follows that

σn(εµ1m−qγ) < (s1 . . . sp)
∞ for all n ≥ i0.

If i0 = 0, then we are done. Otherwise, we take 0 ≤ n < i0. Since ε1 . . . εi0 is an admissible

word in K̃β(tR), we have
εn+1 . . . εi0 < t1 . . . ti0−n,

where (ti) := (s1 . . . sp)
∞. The first inequality in (3.5) now holds by (3.4), which tells us that

(1m0)N1mγq+1γq+2 . . . � ti0−n+1ti0−n+2 . . . .

This completes the proof of our claim.

Since ε and γ are chosen arbitrarily, it follows that K̃β(tR) is transitive. �

Remark 3.3. • The fact that K̃β(tR) is a subshift of finite type can also be deduced
from [7].
• The proof of Lemma 3.2 can be adjusted to prove the more general case with β > 2

with δ(β) = (Mmk)∞, where M = dβe−1 and k ∈ {0, 1, . . . ,M − 1}. The transitivity

property of K̃β(tR) holds only for tR sufficiently close to 0.

To prove the coincidence of Bβ and Eβ we still need the following inequalities.

Lemma 3.4. Let (t1 . . . tN )∞ ∈ {0, 1}N be a periodic sequence with period N ≥ 2. If

σn((t1 . . . tN )∞) < (t1 . . . tN )∞ ∀ n ≥ 0,

then
tj+1 . . . tN � t1 . . . tN−j ∀ 1 ≤ j < N.

Proof. Note that N ≥ 2 is the period of (t1 . . . tN )∞, and

(3.6) σn((t1 . . . tN )∞) < (t1 . . . tN )∞ ∀ n ≥ 0.

Then t1 = 0 and tN = 1. Taking the reflection on both sides of (3.6) it follows that

σn((t1 . . . tN )∞) 4 (t1 . . . tN )∞ for all n ≥ 0.
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Here for a word c1 . . . ck ∈ {0, 1}k its reflection is defined by c1 . . . ck := (1−c1)(1−c2) . . . (1−
ck). By Lemma 2.1(i) it follows that (t1 . . . tN )∞ is the quasi-greedy expansion of 1 for some
base β′ ∈ (1, 2], i.e., δ(β′) = (t1 . . . tN )∞. Since N is the period of the sequence δ(β′), the
greedy β′-expansion of 1 is given by

b(1, β′) = t1 . . . tN−1 10∞.

So, by Lemma 2.1 (iii) it follows that

tj+1 . . . tN ≺ tj+1 . . . tN−1 1 4 t1 . . . tN−j for all 1 ≤ j < N.

Then the lemma follows by taking the reflection in the above equation. �

Now we prove the coincidence of the two bifurcation sets.

Lemma 3.5. Let β ∈ (1, 2) with δ(β) = (1m0)∞. Then Eβ = Bβ.

Proof. By the definition of the two bifurcation sets it is easy to see that Bβ ⊂ Eβ. So in the
following we prove Eβ ⊂ Bβ.

Let t ∈ Eβ with its greedy β-expansion b(t, β) = (ti). Then by Theorem 1.1 we have
t ≤ 1 − 1/β < 1/β. This gives t1 = 0. By Lemmas 2.1 (ii) and Proposition 2.3 (i) it follows
that

σn((ti)) < (ti) for all n ≥ 0.

Let N ≥ 1 be the smallest index such that σN ((ti)) = (ti). If such an integer N does not
exist, then we set N =∞. In the following we will prove t ∈ Bβ by considering the following
two cases: (I) N <∞; and (II) N =∞.

Case (I). N <∞. We claim that t1 . . . tN is a β-Lyndon word. If N = 1, then (ti) = t∞1 =
0∞. It is easy to check that t1 = 0 is a β-Lyndon word. In the following we assume N ≥ 2.
Since σN ((ti)) = (ti), we have (ti) = (t1 . . . tN )∞. Note that (ti) is the greedy β-expansion of
t. Then by Lemma 2.1 (ii) it follows that

σn((t1 . . . tN )∞) ≺ δ(β) for all n ≥ 0.

Note that σn((t1 . . . tN )∞) < (t1 . . . tN )∞. Then by Lemma 3.4 and the definition of N, it
follows that

tj+1 . . . tN � t1 . . . tN−j for all 1 ≤ j < N.

So by Definition 1.2 we establish the claim.

Hence, t = ((t1 . . . tN )∞)β = tR is the right endpoint of a β-Lyndon interval generated by

t1 . . . tN . By Lemma 3.2 it follows that K̃β(t) is a transitive subshift of finite type. Observe
that for any t′ > t we have

K̃β(t′) ⊂ K̃β(t) and (t1 . . . tN )∞ ∈ K̃β(t) \ K̃β(t′).

Recall by [8, Corollary 4.4.9] that for any transitive subshift of finite type, any proper subshift
has strictly smaller topological entropy. Therefore,

h(K̃β(t′)) < h(K̃β(t)) for any t′ > t.

By Proposition 2.3 (ii) this yields ηβ(t′) < ηβ(t) for any t′ > t. So t ∈ Bβ.

Case (II). N =∞. Then σn((ti)) � (ti) for all n ≥ 1. So (ti) is not periodic. Observe that
(ti) begins with digit 0, and

σn((ti)) ≺ (1m0)∞ for all n ≥ 0.
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So there exists a subsequence (mk) of positive integers such that for any k ≥ 1 we have
tmk = 0, and the word t1 . . . t

+
mk

:= t1 . . . tmk−11 does not contain m + 1 consecutive ones.
Then by noting t1 = 0 it follows that

σn((t1 . . . t
+
mk

)∞) ≺ (1m0)∞ ∀ n ≥ 0.

Since σn((ti)) < (ti) for all n ≥ 0, by Definition 1.2 it follows that t1 . . . t
+
mk

is a β-Lyndon

word for any k ≥ 1. Let sk := ((t1 . . . t
+
mk

)∞)β. Then sk is the right endpoint of a β-Lyndon

interval generated by t1 . . . t
+
mk

. Furthermore, sk strictly decreases to t = ((ti))β as k →∞.

So, for any t′ > t we can find k such that sk ∈ (t, t′). By the same arguments as in the
proof of Case (I) for sk we conclude that

ηβ(t′) < ηβ(sk) ≤ ηβ(t).

So t ∈ Bβ, completing the proof. �

Finally, we describe the bifurcation sets via the β-Lyndon intervals.

Lemma 3.6. Let β ∈ (1, 2] with δ(β) = (1m0)∞. Then[
0, 1− 1

β

)
\
⋃

[tL, tR) ⊂ Eβ.

Proof. Take t ∈ [0, 1− 1/β) \ Eβ with its greedy β-expansion (ti). Then t1 = 0. Since t /∈ Eβ,

by Proposition 2.3 (i) there exists a smallest positive integer N such that TNβ (t) < t, which
implies

(3.7) tN+1tN+2 . . . ≺ (ti).

We claim that t1 . . . tN is a β-Lyndon word. Clearly, if N = 1 then t1 = 0 is a β-Lyndon
word. In the following we assume N ≥ 2. By Definition 1.2 it suffices to prove

(3.8) tj+1 . . . tN � t1 . . . tN−j for all 1 ≤ j < N,

and

(3.9) σn((t1 . . . tN )∞) ≺ (1m0)∞ for all n ≥ 0.

First we prove (3.8). By the definition of N in (3.7) it follows that

(3.10) tj+1tj+2 . . . < (ti) for all 1 ≤ j < N,

which implies tj+1 . . . tN < t1 . . . tN−j for all 1 ≤ j < N . Suppose tj+1 . . . tN = t1 . . . tN−j for
some j ∈ {1, 2, . . . , N − 1}. Applying (3.7) and then (3.10) it follows that

tj+1tj+2 . . . = t1 . . . tN−jtN+1tN+2 . . . ≺ t1 . . . tN−jt1t2 . . . 4 (ti),

leading to a contradiction with the minimality of N . This proves (3.8).

To prove (3.9) we observe that δ(β) = (1m0)∞ and (ti) is the greedy β-expansion of t.
Then by Lemma 2.1 (ii) it follows that t1 . . . tN cannot contain m+ 1 consecutive ones. Since
t1 = 0, we have

σn((t1 . . . tN )∞) 4 (1m0)∞ for all n ≥ 0.

So to prove (3.9) it remains to prove that σn((t1 . . . tN )∞) 6= (1m0)∞ for any n ≥ 0. Suppose
the equality σn((t1 . . . tN )∞) = (1m0)∞ holds for some n ≥ 0. Then by using t1 = 0 it follows
that

t1 . . . tm+1 = 01m.
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This implies b(t, β) = (ti) < 01m0∞ = b(1− 1/β, β). By Lemma 2.1 (ii) we have t ≥ 1− 1/β,
leading to a contradiction. This establishes (3.9).

By the claim there exists a β-Lyndon interval [tL, tR) generated by t1 . . . tN . Furthermore,
by (3.7) it follows that

(ti) = t1 . . . tN tN+1tN+2 . . . ≺ t1 . . . tN t1t2 . . . = (t1 . . . tN )2tN+1tN+2 . . .

≺ (t1 . . . tN )2t1t2 . . . = (t1 . . . tN )3tN+1tN+2 . . .

· · ·
4 (t1 . . . tN )∞.

Therefore, t1 . . . tN0∞ 4 (ti) ≺ (t1 . . . tN )∞, which gives t ∈ [tL, tR) by Lemma 2.1 (ii). This
completes the proof. �

Proof of Proposition 3.1. By Lemmas 3.5 and 3.6 it suffices to prove

Bβ ⊂
[
0, 1− 1

β

)
\
⋃

[tL, tR).

Note by Lemma 3.5 and Theorem 1.1 that Bβ = Eβ ⊂ [0, 1 − 1/β]. In fact we have Eβ ⊂
[0, 1 − 1/β). Observe that b(1 − 1/β, β) = 01m0∞. Then Tm+1

β (1 − 1/β) < 1 − 1/β. By

Proposition 2.3 (i) this implies 1− 1/β /∈ Eβ. Hence, Eβ ⊂ [0, 1− 1/β).

In the following it remains to prove Bβ ∩
⋃

[tL, tR) = ∅. Take a β-Lyndon interval [tL, tR).
If t ∈ [tL, tR), then by (3.2) it follows that

K̃β(t) = K̃β(tL) = K̃β(tR),

which gives ηβ(t′) = ηβ(t) = ηβ(tL) for all t′ ∈ (t, tR). So, t /∈ Bβ. �

As a consequence of Proposition 3.1 and Theorem 1.1 it follows that for β ∈ (1, 2] a
multinacci number the β-Lyndon intervals cover [0, 1− 1/β) up to a Lebesgue null set.

Corollary 3.7. Let β ∈ (1, 2] be a multinacci number.

(i) The union of all β-Lyndon intervals covers [0, 1− 1/β) up to a Lebesgue null set. Fur-
thermore, for any t ∈ Bβ and any r > 0 the interval (t, t+ r) contains infinitely many
β-Lyndon intervals.

(ii) ηβ(t) > 0 if and only if t < 1− 1/β.

Proof. Note that Eβ is a Lebesgue null set which, by Theorem 1.1, has no isolated points.
Then (i) follows from Proposition 3.1 which tells us that

⋃
[tL, tR) = [0, 1 − 1/β) \ Eβ. For

(ii) it can be deduced from Proposition 3.1 and Theorem 1.1 that sup Bβ = 1 − 1/β and
1− 1/β /∈ Bβ. �

Now we turn to investigate the local dimension of the bifurcation set Bβ.

Lemma 3.8. Let β ∈ (1, 2] with δ(β) = (1m0)∞. Then

lim
r→0

dimH(Bβ ∩ (t, t+ r)) = dimH Kβ(t) > 0 ∀ t ∈ Bβ.
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Proof. Take t ∈ Bβ. By Proposition 3.1 we have t < 1− 1/β, and then by Corollary 3.7 (ii)
it gives ηβ(t) = dimH Kβ(t) > 0. Note by Proposition 3.1 and Proposition 2.3 (i) that

Bβ ∩ (t, t+ r) = Eβ ∩ (t, t+ r) ⊆ Kβ(t) for any r > 0.

Then limr→0 dimH(Bβ ∩ (t, t+ r)) ≤ ηβ(t). So it remains to prove

(3.11) lim
r→0

dimH(Bβ ∩ (t, t+ r)) ≥ ηβ(t).

We prove this now by considering the following two cases: (I) t = tR is the right endpoint of
a β-Lyndon interval; (II) t ∈ [0, 1− 1/β) \

⋃
[tL, tR].

Case (I). Suppose t = tR is the right endpoint of a β-Lyndon interval. Let (ti) = (t1 . . . tp)
∞

be the greedy β-expansion of tR. Note that tR ∈ Bβ. Then by Corollary 3.7 (i) there exists

a sequence (t
(n)
R ) ⊂ Bβ such that each t

(n)
R is a right endpoint of a β-Lyndon interval and

t
(n)
R ↘ tR as n→∞. Fix r > 0. Then we can find a large integer N satisfying

t
(n)
R ∈ (tR, tR + r) for all n ≥ N.

Furthermore, since b(tR, β) = (t1 . . . tp)
∞, by Lemma 2.1 (ii) it follows that for each n ≥ N

there exists an integer kn such that the greedy β-expansion b(t
(n)
R , β) of t

(n)
R satisfies

(3.12) b(t
(n)
R , β) � (t1 . . . tp)

kn1∞.

Observe by Proposition 3.1 and Proposition 2.3 (i) that

Bβ = Eβ = {((si))β : (si) 4 σ
n((si)) ≺ (1m0)∞ ∀n ≥ 0} .

So by using tR ∈ Bβ, (3.12) and Lemma 2.1 (ii) it follows that for any n ≥ N ,{(
(t1 . . . tp)

knx1x2 . . .
)
β

: x1 . . . xp = t1 . . . tp, (xi) ∈ K̃β(t
(n)
R )
}

⊆ Bβ ∩ [tR, t
(n)
R )

⊆ Bβ ∩ [tR, tR + r).

(3.13)

Note by Lemma 3.2 that K̃β(t
(n)
R ) is a transitive subshift of finite type. Then by (3.13) it

follows that

dimH(Bβ ∩ (tR, tR + r)) ≥ dimH Kβ(t
(n)
R ) = ηβ(t

(n)
R ) for all n ≥ N.

Letting n→∞ and by the continuity of ηβ (see Proposition 2.3 (ii)) we obtain that

dimH(Bβ ∩ (tR, tR + r)) ≥ ηβ(tR).

Since r > 0 was given arbitrary, letting r → 0 we conclude that

(3.14) lim
r→0

dimH(Bβ ∩ (tR, tR + r)) ≥ ηβ(tR).

Case (II). t ∈ [0, 1− 1
β ) \

⋃
[tL, tR]. Then by Corollary 3.7 (i) there exists a sequence (t

(k)
R )

such that each t
(k)
R is the right endpoint of a β-Lyndon interval, and t

(k)
R ↘ t as k → ∞.

So, for any r > 0 there exists a sufficiently large integer k such that t
(k)
R ∈ (t, t + r). By

(3.14) with tR replaced by t
(k)
R it follows that for any ε > 0 there exists rk > 0 such that

(t
(k)
R , t

(k)
R + rk) ⊂ (t, t+ r) and

dimH(Bβ ∩ (t, t+ r)) ≥ dimH(Bβ ∩ (t
(k)
R , t

(k)
R + rk)) ≥ ηβ(t

(k)
R )− ε.
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Letting r → 0, and then t
(k)
R → t, we conclude by the continuity of ηβ that

lim
r→0

dimH(Bβ ∩ (t, t+ r)) ≥ ηβ(t)− ε.

Since ε > 0 was arbitrary, we obtain limr→0 dimH(Bβ ∩ (t, t + r)) ≥ ηβ(t). This, together
with (3.14), proves (3.11). �

Proof of Theorem 1. Let β ∈ (1, 2) with δ(β) = (1m0)∞. By Lemma 2.2, Proposition 3.1 and
Lemma 3.8 it suffices to prove

(3.15)
{
t ∈ [0, 1) : lim

r→0
dimH(Bβ ∩ (t, t+ r)) = ηβ(t) > 0

}
⊂ Bβ.

Take t ∈ [0, 1) \Bβ. Then by Proposition 3.1 we have t ∈ [1 − 1/β, 1) or t ∈ [tL, tR) for
some β-Lyndon interval. If t ≥ 1 − 1/β, then ηβ(t) = 0 by Corollary 3.7 (ii). If t ∈ [tL, tR),
then by Proposition 3.1 there exists r > 0 such that Bβ ∩ (t, t+ r) = ∅. This completes the
proof. �

Proof of Corollary 2. Note by Proposition 3.1 that Eβ ⊂ [0, 1− 1/β). So if t ≥ 1− 1/β, then
clearly the result holds by Corollary 3.7 (ii). Now let t ∈ [0, 1−1/β). Observe by Proposition
2.3 (i) that Eβ ∩ [t, 1] ⊂ Kβ(t). So it suffices to prove

(3.16) dimH(Eβ ∩ [t, 1]) ≥ dimH Kβ(t).

If t ∈ [0, 1 − 1/β) \ [tL, tR), then (3.16) follows by Lemma 3.8. If t ∈ [tL, tR), then we still
have (3.16) by using Lemma 3.8 that

dimH(Eβ ∩ [t, 1]) ≥ dimH(Eβ ∩ [tR, 1]) ≥ dimH Kβ(tR) = dimH Kβ(t),

where the last equality holds by (3.2). �

4. Final remarks

The main results obtained in this paper can be easily modified to study the following
analogous bifurcation sets:

E ′β :=
{
t ∈ [0, 1) : Kβ(t′) 6= Kβ(t) ∀t′ 6= t

}
,

B′β :=
{
t ∈ [0, 1) : dimH Kβ(t′) 6= dimH Kβ(t) ∀t′ 6= t

}
.

If β ∈ (1, 2] is a multinacci number, one can show that

B′β = E ′β =

[
0, 1− 1

β

)
\
⋃

[tL, tR]

=
{
t ∈ [0, 1) : lim

r→0
dimH(Eβ ∩ (t− r, t)) = lim

r→0
dimH(Eβ ∩ (t, t+ r)) = dimH Kβ(t) > 0

}
,

where the union is taken over all pairwise disjoint closed β-Lyndon intervals.

Observe that the main result Theorem 1 holds under the assumption that β ∈ (1, 2] is a
multinacci number, i.e., δ(β) = (1m0)∞ for some m ∈ N. The method used in this paper
can be adapted to show that Theorem 1 still holds for β ∈ (1, 2] with δ(β) = (10m)∞. It
is worth mentioning that in [6] Kalle et al. considered a general Farey word base β, i.e.,
δ(β) = (s1 . . . sp)

∞ with spsp−1 . . . s2s1 a non-degenerate Farey word. They showed that for
a general Farey word base β ∈ (1, 2), the set-valued bifurcation set Eβ has no isolated points
and Theorem 1.1 holds. We finish by posing the following conjecture.
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Conjecture 4.1. Let β ∈ (1, 2]. Then Bβ = Eβ if and only if Eβ has no isolated points.
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