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An expansion algorithm for constructing axial

algebras

Justin McInroy∗ Sergey Shpectorov†

Abstract

An axial algebra A is a commutative non-associative algebra gen-
erated by primitive idempotents, called axes, whose adjoint action on
A is semisimple and multiplication of eigenvectors is controlled by a
certain fusion law. Different fusion laws define different classes of axial
algebras.

Axial algebras are inherently related to groups. Namely, when the
fusion law is graded by an abelian group T , every axis a leads to
a subgroup of automorphisms Ta of A. The group generated by all
Ta is called the Miyamoto group of the algebra. We describe a new
algorithm for constructing axial algebras with a given Miyamoto group.
A key feature of the algorithm is the expansion step, which allows us to
overcome the 2-closedness restriction of Seress’s algorithm computing
Majorana algebras.

At the end we provide a list of examples for the Monster fusion law,
computed using a magma implementation of our algorithm.

1 Introduction

Axial algebras are a new class of non-associative algebras introduced recently
by Hall, Rehren and Shpectorov [6] as a broad generalization of the class of
Majorana algebras of Ivanov [9]. The key features of these algebras came
from the theory of vertex operator algebras (VOAs) which first arose in
connection with 2D conformal field theory and they were used by Frenkel,
Lepowsky and Meurman [4] in their construction of the moonshine VOA V \

whose automorphism group is the Monster M , the largest sporadic finite
simple group. The rigorous theory of VOAs was developed by Borcherds [1]
as part of his proof of the monstrous moonshine conjecture.

Roughly speaking, VOAs are infinite dimensional graded vector spaces
V =

⊕∞
i=0 Vi with infinitely many products linked in an intricate way. The
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Monster was originally constructed by Griess [5] as the automorphism group
of a 196, 883-dimensional non-associative real algebra, called the Griess al-
gebra, and the Moonshine VOA V \ contains a unital deformation of the
Griess algebra as its weight 2 part V \

2 .
One of the key properties that axial algebras axiomatise was first ob-

served in VOAs by Miyamoto [14]. He showed that you could associate
involutory automorphisms τa of a VOA V , called Miyamoto involutions, to
special conformal vectors a in V2 called Ising vectors [14]. Moreover, in

the Moonshine VOA, a
2 is an idempotent in the Griess algebra V \

2 , called a
2A-axis because the corresponding involution τa lies in the class 2A of the
Monster M .

The subalgebras of the Griess algebra generated by two 2A-axes, which
we call dihedral subalgebras, were first studied by Norton [3]. He showed that
the isomorphism class of the dihedral subalgebra generated by 2A-axes a and
b is determined by the conjugacy class of the product τaτb. There are nine
classes in M containing products of two 2A involutions, labelled 1A, 2A, 2B,
3A, 3C, 4A, 4B, 5A and 6A. Remarkably, Sakuma [17] showed that each sub
VOA generated by two Ising vectors is also one of nine isomorphism types.
Therefore, the above nine classes in M are used as labels for the 2-generated
VOAs arising in Sakuma’s theorem.

Sakuma’s result was extended to Majorana algebras in [10] and later to
axial algebras with the Monster fusion law and a Frobenius form1 in [6].

Majorana algebras were introduced by Ivanov [9] to abstract the prop-
erties of 2A-axes. Axial algebras provide a further broad generalisation re-
moving the less essential restrictions of Majorana algebras. An axial algebra
is a commutative non-associative algebra generated by axes, that is, primi-
tive semisimple idempotents whose adjoint eigenvectors multiply according
to a certain fusion law. We say that an axial algebra is of Monster type if
its fusion law is the Monster fusion law (see Table 1). For the exact details
see Section 2. A Majorana algebra is then an axial algebra of Monster type
which satisfies some additional conditions.

Whenever the fusion law is T -graded, where T is an abelian group, asso-
ciated to each axis a we get an automorphism τa(χ) for every linear character
χ ∈ T ∗. We define Ta = {τa(χ) : χ ∈ T ∗}, which is a subgroup of the au-
tomorphism group of the algebra of size at most |T |. The group generated
by the Ta for all axes a is called the Miyamoto group. For the important
motivating example of the Griess algebra, the fusion law is Z2-graded and
so, for every axis a, there is an involutory automorphism τa := τa(χ−1) cor-
responding to the unique non-trivial character χ−1 of Z2. The Miyamoto
group generated by all the τa is the Monster M and the τa are the whole
2A conjugacy class.

1Franchi, Mainardis and Shpectorov announced at the Axial Algebra Focused Work-
shop in Bristol in May 2018 that the Frobenius form condition has been removed.
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Another example of a class of axial algebras with a different fusion law
are algebras of Jordan type comprising Matsuo algebras, whose Miyamoto
groups are 3-transposition groups, and Jordan algebras, whose Miyamoto
groups include classical groups and groups of exceptional Lie type F4 and
G2.

Problem. 1. For a given fusion law, which groups G can occur as the
Miyamoto group of an axial algebra?

2. For such a group G, how do we construct all axial algebras with Miyamoto
group G?

Sakuma’s theorem, suitably generalised, addresses the first of the two
questions for the Monster fusion law: it implies that τaτb is of order at most
6 for all pairs of axes a and b; that is, a Miyamoto group arising from an
axial algebra of Monster type (in particular, from a Majorana algebra) is a
group of 6-transpositions.

Seress [18] addressed the second question for the class of Majorana al-
gebras by developing an algorithm that computes, for a given group G,
possible 2-closed Majorana algebras. (An axial algebra is 2-closed if it is
spanned by axes and by products of two axes.) He also provided a GAP
implementation of his algorithm. However, his code was lost when he sadly
died. Pfeiffer and Whybrow [15] have recently developed an improved GAP
implementation of Seress’s algorithm which can now handle some m-closed
algebras for m > 2.

In this paper we describe a new algorithm for addressing the second
question for a given group G. The new algorithm is based on the concept
of expansion and it differs in several key ways. Our algorithm works for a
general axial algebra over an arbitrary field with an arbitrary fusion law,
rather than just for the Monster fusion law over R. Crucially, we do not
assume that the algebra is m-closed for some small m. Our algorithm can
complete more examples even in the class of 1-, 2- and 3-closed algebras than
Seress’s algorithm, but we also have found several examples which are 4- and
5-closed and these certainly seem out of reach for the previous algorithm.
We also do not assume that the algebra has an associating bilinear form (a
Frobenius form), whereas the earlier algorithm assumes this and moreover
that the form is positive definite. We do not assume the so-called 2Aa, 2Ab,
3A, 4A, 5A conditions (see [18, page 314]) which restrict the configuration of
the dihedral subalgebras. Last but not least, we do not require that the axes
a be in bijection with the axis subgroups Ta. At the end of the paper, we
present results for axial algebras of Monster type obtained using a magma
implementation [12, 2] of this algorithm. We choose this fusion law as it is
currently the one for which we know the groups G which may occur and all
the 2-generated algebras.
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The first implementation of expansion was done by the second author
during his visit to Seress in December 2012. It wasn’t a complete program,
but rather a toolbox of GAP routines to allow computing algebras of Monster
type by repeated expansions. One of the early successes was the completion
of all twelve possible shapes for S4 and also the construction of the 3-closed
algebra of dimension 46 for A5. In 2016, the first author took over and
implemented a much more efficient code in magma, making it into a full
package and introducing many further improvements including generalising
the field, fusion law, gluings and implementing saving and loading of the
algebras.

Let F be a T -graded fusion law and G be a group acting on a set X. We
aim to build an axial algebra where the action on the axes by (a supergroup
of) the Miyamoto group is given by the action of G on X. In Section 3 we
rigorously define admissible τ -maps and the shape of an algebra. Roughly
speaking, τ : X × T ∗ → G is an admissible τ -map if it has the properties
that the map (a, χ) 7→ τa(χ) in an axial algebra has. The subgroup G0 EG
generated by the image of this map will be our Miyamoto group. The
shape is a choice of 2-generated subalgebra for each pair of axes a, b ∈ X.
Since the isomorphism class of 2-generated subalgebras is preserved under
automorphisms, in particular, under the action of the Miyamoto group, we
need only make one choice for each conjugacy class of pairs of axes. In
fact, there are some addition constraints on the shape given by containment
of 2-generated subalgebras in one another as described in Section 3. Our
algorithm takes F , G, X, τ and the shape as its input. We show the
following:

Theorem. Suppose that the algorithm terminates and returns A. Then
A is a (not necessarily primitive) axial algebra generated by axes X with
automorphism group G, τ -map τ and of the given shape.

Moreover, the algebra A is universal. That is, given any other axial
algebra B with the same axes X, automorphism group G, τ -map τ and
shape, B is a quotient of A.

We find several new examples of axial algebra with the Monster fusion
law. Some of these are 3-closed examples (in fact we find some examples
which are 5-closed), but we also find many examples that do not satisfy
the so-called M8-condition. This condition severely restricts the allowable
intersections of certain dihedral subalgebras in the shape. We also see in
our results several shapes which do not satisfy the 2Aa, 2Ab, 3A, 4A, 5A
conditions (see Section 2.2), but still produce good axial algebras.

Interestingly, all the algebras we construct have a Frobenius form which
is non-zero on the axes and invariant under the action of the Miyamoto
group, even though we do not require this in our algorithm. Moreover,
in all our examples, the form is positive semi-definite. It is known that
axial algebras of Jordan type (those with three eigenvalues, 1, 0 and η) all
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have Frobenius forms [8] and it has previously been observed that the other
known examples also have Frobenius forms. Such a form, if it does exist,
is uniquely determined by its values on the axes. So we make the following
conjecture.

Conjecture. All primitive axial algebras of Monster type admit a Frobenius
form which is non-zero on the axes and invariant under the action of the
Miyamoto group.

The structure of the paper is as follows. In Section 2, we define axial
algebras and discuss various properties such as Miyamoto involutions and
dihedral subalgebras. We define the shape of an algebra in Section 3. Sec-
tion 4 gives some lemmas and further properties of axial algebras which we
will need. Our main result is the algorithm which is described in Section
5. Finally, in Section 6, we present examples computed by our magma
implementation of the algorithm.

We thank Simon Peacock for some useful comments on an early draft of
this paper and the referee for other useful comments.

2 Background

We will review the definition and some properties of axial algebras which
were first introduced by Hall, Rehren and Shpectorov in [6]. We will pay
particular attention to the motivating examples coming from the Monster
sporadic finite simple group and also indicate the extra conditions for such
an axial algebra to be a Majorana algebra.

Definition 2.1. Let F be a field, F ⊆ F a subset, and ? : F × F → 2F a
symmetric binary operation. We call the pair (F , ?) a fusion law over F. A
single instance λ ? µ is called a fusion rule.

Abusing notation, we will often just write F for (F , ?). We can also
extend the operation ? to subsets I, J ⊆ F in the obvious way: I ? J is the
union of all µ ? ν for µ ∈ I and ν ∈ J . We note that after extending the
operation, (2F , ?) is closed and so is a commutative magma. We will further
abuse notation and mix subsets and elements.

Let A be a commutative non-associative (i.e. not-necessarily-associative)
algebra over F. For an element a ∈ A, the adjoint endomorphism ada : A→
A is defined by ada(v) := av, for all v ∈ A. Let Spec(a) be the set of
eigenvalues of ada, and for λ ∈ Spec(a), let Aaλ be the λ-eigenspace of ada.
Where the context is clear, we will write Aλ for Aaλ. We will also adopt the
convention that for subsets I ⊆ F , AI :=

⊕
λ∈I Aλ.

Definition 2.2. Let (F , ?) be a fusion law over F. An element a ∈ A is an
F-axis if the following hold:
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1. a is idempotent (i.e. a2 = a);

2. a is semisimple (i.e. the adjoint ada is diagonalisable);

3. Spec(a) ⊆ F and AλAµ ⊆ Aλ?µ for all λ, µ ∈ Spec(a).

Furthermore, we say that the F-axis a is primitive if A1 = 〈a〉.

Note that, when Spec(a) 6= F , we can still talk of Aaλ for all λ ∈ F :
if λ /∈ Spec(a) then Aaλ = 0. With this understanding, the last condition
means that AλAµ ⊆ Aλ?µ for all λ, µ ∈ F .

Definition 2.3. An F-axial algebra is a pair (A,X) such that A is a com-
mutative non-associative algebra and X is a set of F-axes generating A. An
axial algebra is primitive if it is generated by primitive axes.

Where the fusion law is clear from context, we will drop the F and
simply use the term axis and axial algebra. Although an axial algebra has
a distinguished generating set X, we will abuse the above notation and just
write A for the pair (A,X). Note that it has been usual in the literature to
drop the adjective primitive and consider only primitive axial algebras.

The fusion law over R associated to the Monster is given by Table 1.
This fusion law is exhibited by the so-called 2A-axes in the Griess algebra.

1 0 1
4

1
32

1 1 1
4

1
32

0 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 14

Table 1: Monster fusion law

Indeed, noting that these generate the Griess algebra shows that it is an
axial algebra. We say that an axial algebra is of Monster type if it is an
axial algebra with the Monster fusion law.

By definition, an axial algebra A is spanned by products of the axes. We
say that A is m-closed if A is spanned by products of length at most m in
the axes.

Definition 2.4. A Frobenius form on an axial algebra A is a non-zero
(symmetric) bilinear form (·, ·) : A × A → F such that the form associates
with the algebra product. That is, for all x, y, z ∈ A,

(x, yz) = (xy, z).
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We will be particularly interested in Frobenius forms such that (a, a) 6= 0,
for all a ∈ X. That is, they are non-zero on the set of axes X. Note that
an associating bilinear form on an axial algebra is necessarily symmetric [6,
Proposition 3.5]. Also, the eigenspaces for an axis in an axial algebra are
perpendicular with respect to the Frobenius form.

Lemma 2.5. [11, Lemma 4.17] Suppose that A is a primitive axial algebra
admitting a Frobenius form. Then the form is uniquely determined by the
values (a, a) on the axes a ∈ X.

Majorana algebras were introduced by Ivanov by generalising certain
properties found in subalgebras of the Griess algebra [9]. Axial algebras were
developed as a generalisation of Majorana algebras, so Majorana algebras
can be thought of as the precursor of axial algebras. As such, we can give a
definition of them in terms of axial algebras.

Definition 2.6. A Majorana algebra is a primitive axial algebra A of Mon-
ster type over R such that

M1 A has a positive definite Frobenius form (·, ·); furthermore, (a, a) = 1
for every axis a.

M2 Norton’s inequality holds. That is, for all x, y ∈ A,

(x · y, x · y) ≤ (x · x, y · y).

In some papers, the M2 axiom is not assumed and in others additional
axioms on the subalgebras are assumed such as the M8 axiom, which we will
explain later in Section 2.2.

2.1 Gradings and automorphisms

The key property that axial algebras and Majorana algebras generalise from
the Griess algebra is that there is a natural link between justinautomor-
phisms and axes. This link occurs precisely when we have a graded fusion
law.

Definition 2.7. The fusion law F is T -graded, where T is a finite abelian
group, if F has a partition F = ∪t∈TFt such that

Fs ? Ft ⊆ Fst

for all s, t ∈ T .

Note that, in the same way as we allow trivial eigenspaces, we also allow
empty parts in the partition in the above definition.

7



Let A be an algebra and a ∈ A an F-axis (we do not require A to be an
axial algebra here). If F is T -graded, then this induces a T -grading on A
with respect to the axis a. The weight t subspace At of A is

At = AFt =
⊕
λ∈Ft

Aλ.

This leads to automorphisms of the algebra. Let T ∗ denote the group
of linear characters of T . That is, the homomorphisms from T to F×. For
χ ∈ T ∗, we define a map τa(χ) : A→ A by

v 7→ χ(t)v

for v ∈ At and extend linearly to A. Since A is T -graded, this map τa(χ) is an
automorphism of A, which we call a Miyamoto automorphism. Furthermore,
the map sending χ to τa(χ) is a homomorphism from T ∗ to Aut(A). The
subgroup Ta := Im(τa) of Aut(A) is called the axis subgroup corresponding
to a.

We are particularly interested in Z2-graded fusion laws. In this case, we
write Z2 as {+,−} with the usual multiplication of signs. For example, the
Monster fusion law F is Z2-graded where F+ = {1, 0, 14} and F− = { 1

32}.
When the fusion law is Z2-graded and char(F) 6= 2, T ∗ = {χ1, χ−1},

where χ1 is the trivial character and χ−1 is the alternating character of
T = Z2. Here the axis subgroup contains just one non-trivial automorphism,
τa := τa(χ−1). We call this the Miyamoto involution associated to a. It is
given by the linear extension of

vτa =

{
v if v ∈ A+;

−v if v ∈ A−.

When the fusion law is Z2-graded, we will often consider τ to be a map on
X mapping a ∈ X to the involution τa.

Let Y ⊆ X be a set of axes in A. We define

G(Y ) := 〈Ta : a ∈ Y 〉.

We call G(X) the Miyamoto group.
For a subset Y ⊆ X of axes, we define Y = Y G(Y ). By [11, Lemma 3.5],

G(Y ) = G(Y ) and so Y
G(Y )

= Y . We call Y the closure of Y and we say
that Y is closed if Y = Y .

2.2 Subalgebras generated by two axes

Since the defining property of axial algebras is that they are generated by
a set of axes, it is natural to ask: What are the axial algebras that are
generated by just two axes? We call such axial algebras 2-generated and, if

8



Type Basis Products & form

2A a0, a1,

aρ

a0 · a1 = 1
8
(a0 + a1 − aρ)

a0 · aρ = 1
8
(a0 + aρ − a1)

(a0, a1) = (a0, aρ) = (a1, aρ) = 1
8

2B a0, a1 a0 · a1 = 0

(a0, a1) = 0

3A a−1, a0,

a1, uρ

a0 · a1 = 1
25

(2a0 + 2a1 + a−1) − 33·5
211

uρ

a0 · uρ = 1
32

(2a0 − a1 − a−1) + 5
25
uρ

uρ · uρ = uρ, (a0, a1) = 13
28

(a0, uρ) = 1
4
, (uρ, uρ) = 23

5

3C a−1, a0,

a1

a0 · a1 = 1
26

(a0 + a1 − a−1)

(a0, a1) = 1
26

4A a−1, a0,

a1, a2

vρ

a0 · a1 = 1
26

(3a0 + 3a1 − a−1 − a2 − 3vρ)

a0 · vρ = 1
24

(5a0 − 2a1 − a2 − 2a−1 + 3vρ)

vρ · vρ = vρ, a0 · a2 = 0

(a0, a1) = 1
25

, (a0, a2) = 0

(a0, vρ) = 3
23

, (vρ, vρ) = 2

4B a−1, a0,

a1, a2

aρ2

a0 · a1 = 1
26

(a0 + a1 − a−1 − a2 + aρ2)

a0 · a2 = 1
23

(a0 + a2 − aρ2)

(a0, a1) = 1
26

, (a0, a2) = (a0, aρ2) = 1
23

5A a−2, a−1,

a0, a1,

a2, wρ

a0 · a1 = 1
27

(3a0 + 3a1 − a2 − a−1 − a−2) + wρ

a0 · a2 = 1
27

(3a0 + 3a2 − a1 − a−1 − a−2) − wρ

a0 · wρ = 7
212

(a1 + a−1 − a2 − a−2) + 7
25
wρ

wρ · wρ = 52·7
219

(a−2 + a−1 + a0 + a1 + a2)

(a0, a1) = 3
27

, (a0, wρ) = 0, (wρ, wρ) = 53·7
219

6A a−2, a−1,

a0, a1,

a2, a3

aρ3 , uρ2

a0 · a1 = 1
26

(a0 + a1 − a−2 − a−1 − a2 − a3 + aρ3) + 32·5
211

uρ2

a0 · a2 = 1
25

(2a0 + 2a2 + a−2) − 33·5
211

uρ2

a0 · uρ2 = 1
32

(2a0 − a2 + a−2) + 5
25
uρ2

a0 · a3 = 1
23

(a0 + a3 − aρ3), aρ3 · uρ2 = 0

(a0, a1) = 5
28

, (a0, a2) = 13
28

(a0, a3) = 1
23

, (aρ3 , uρ2) = 0,

Table 2: Norton-Sakuma algebras
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the fusion law is Z2-graded, we also call them dihedral because the Miyamoto
group in this case is dihedral.

In the Griess algebra, the dihedral subalgebras, called Norton-Sakuma
algebras, were investigated by Norton and shown to be one of nine different
types [3]. In particular, for each pair of axes a0, a1 in the Griess algebra,
the isomorphism class of the subalgebra which they generate is determined
by the conjugacy class in the Monster of the product τa0τa1 of the two
involutions τa0 and τa1 associated to the axes. The nine different types are:
1A (when a0 = a1), 2A, 2B, 3A, 3C, 4A, 4B, 5A and 6A.

The algebra 1A is just one dimensional, but the remaining eight Norton-
Sakuma algebras are given in Table 2 whose content we will now explain.
The notation is from [18, Section 2]. Let nL be one of the dihedral algebras.
Since its generating axes a0 and a1 give involutions τa0 and τa1 in the Mon-
ster, we have the dihedral group D2n

∼= 〈τa0 , τa1〉 acting as automorphisms
of nL (possibly with a kernel). In particular, let ρ = τa0τa1 . We define

aε+2k = aρ
k

ε

for ε = 0, 1. It is clear that each ai is an axis as it lies in the orbit of a0 or
a1 under the action of ρ. In fact, the orbits of a0 and a1 under the action
of ρ (in fact, under the action of D2n) have the same size. If n is even, then
these two orbits have size n

2 and are disjoint, whereas if n is odd, the orbits
coincide and have size n. The map τ associates an involution to each axis
a and τ ga = τag for all g ∈ Aut(nL). In almost all cases, the axes ai are
not enough to span the algebra. We index the additional basis elements by
powers of ρ. Using the action of D2n, it is enough to just give the products
in Table 2 to fully describe each algebra. The axes in each algebra are
primitive and each algebra admits a Frobenius form that is non-zero on the
set of axes and invariant under the Miyamoto group; the values for this are
also listed in the table.

Amazingly the classification of dihedral algebras also holds, and is known
as Sakuma’s theorem [17], if we replace the Griess algebra by the weight
two subspace V2 of a vertex operator algebra (VOA) V =

⊕∞
n=0 Vn over R

where V0 = R1 and V1 = 0 (those of OZ-type). After Majorana algebras
were defined generalising such VOAs, the result was reproved for Majorana
algebras by Ivanov, Pasechnik, Seress and Shpectorov in [10]. In the paper
introducing axial algebras, the result was also shown to hold in axial algebras
of Monster type over a field of characteristic 0 which have a Frobenius form
[6]. It is conjectured that the Frobenius form is not required.

Conjecture 2.8. A dihedral axial algebra of Monster type over a field of
characteristic 0 is one of the nine Norton-Sakuma algebras.2

2A proof of this conjecture was recently announced by Franchi, Mainardis and Shpec-
torov at the Axial Algebra Focused Workshop in Bristol in May 2018.

10



For Majorana algebras, the following axiom is also often assumed.

M8 Let ai ∈ X be axes for 0 ≤ i ≤ 2. If a0 and a1 generate a dihedral
subalgebra of type 2A, then aρ ∈ X and τaρ = τa0τa1 . Conversely, if
τa0τa1τa2 = 1, then a0 and a1 generate a dihedral subalgebra of type
2A and a2 = aρ.

This severely restricts the possible configuration of subalgebras. We will
explain this later in Section 3 once we have introduced shapes.

Seress [18] also assumed that the map τ was a bijection between the set
of axes X and a union of conjugacy classes of involutions in G. Moreover
the following conditions which restrict the intersections of subalgebras were
also assumed. Let ai, bi ∈ X and ρ(a0, a1) = τa0τa1 .

2Aa If τa0τa1τa2 = 1 and 〈a0, a1〉 ∼= 2A, then a2 ∈ 〈a0, a1〉 and a2 = aρ.

2Ab If 〈a0, a1〉 and 〈b0, b1〉 are both of type 2A and 〈ρ(a0, a1)〉 = 〈ρ(b0, b1)〉,
then the extra basis elements aρ(a0, a1) and aρ(b0, b1) are equal.

3A If 〈a0, a1〉 and 〈b0, b1〉 are both of type 3A and 〈ρ(a0, a1)〉 = 〈ρ(b0, b1)〉,
then the extra basis elements uρ(a0, a1) and uρ(b0, b1) are equal.

4A If 〈a0, a1〉 and 〈b0, b1〉 are both of type 4A and 〈ρ(a0, a1)〉 = 〈ρ(b0, b1)〉,
then the extra basis elements vρ(a0, a1) and vρ(b0, b1) are equal.

5A If 〈a0, a1〉 and 〈b0, b1〉 are both of type 5A and 〈ρ(a0, a1)〉 = 〈ρ(b0, b1)〉,
then the extra basis elements wρ(a0, a1) and wρ(b0, b1) are equal up to
a change of sign.

We can also consider a wider class of axial algebras. Axial algebras of
Jordan type η were considered in [7]. Here there are just three eigenvalues,
1, 0 and η. When η 6= 1

2 , all algebras were classified and they relate to
3-transposition groups. The Ising fusion law Φ(α, β) is given in Table 3.

1 0 α β

1 1 α β

0 0 α β

α α α 1, 0 β

β β β β 1, 0, α

Table 3: Ising fusion law Φ(α, β)

In particular, note that the Monster fusion law is just Φ(14 ,
1
32). In [16],

Rehren studies dihedral axial algebras over Φ(α, β) with a Frobenius form
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and shows that the nine algebras above can be generalised and live in families
which exist for values of α and β lying in certain varieties. It turns out that
(α, β) = (14 ,

1
32) is a distinguished point.

3 Shapes

The shape of an axial algebra A specifies which 2-generated subalgebras
arise in A. Clearly, a precondition for such a description is the knowledge
of the possible 2-generated algebras; that is, for the class of axial algebras
under consideration we either should have classified all 2-generated algebras
or, minimally, we should have an explicit list of such algebras that we want
to allow in A.

Note that the 2-generated algebras should be classified not up to an ab-
stract algebra isomorphism, but rather up to the (unique possible) isomor-
phism sending the two generating axes of one algebra to the two generating
axes of the other algebra. That is, we consider the 2-generated algebras
as having marked generators and isomorphisms must respect them: if B
has marked generators a and b and B′ has marked generators a′ and b′

then (B, (a, b)) is isomorphic to (B′, (a′, b′)) only if there is an isomorphism
ϕ : B → B′ such that ϕ(a) = a′ and ϕ(b) = b′. In principle, an algebra may
have non-equivalent pairs of generators and then this algebra must accord-
ingly appear on the list several times. Note that for algebras of Monster
type, Sakuma’s theorem classifies dihedral algebras exactly in this sense: in
each of the eight Norton-Sakuma algebra the marked generators are a0 and
a1 and any other pairs of generators is equivalent to (a0, a1). Therefore,
in order to motivate the general case, we consider first the case of an axial
algebra of Monster type.

Let A be an axial algebra of Monster type and suppose that X is a set of
axes which generates A. Note that by enlarging our set X, we may assume
that X is closed under the action of the Miyamoto group G of A.

Lemma 3.1. The action of G on X is faithful.

Proof. Suppose that g ∈ G fixes all the axes in X. However, the subspace of
A fixed by g is a subalgebra and, since it contains X, it contains the whole
algebra A.

As G is a group of automorphisms of A, if a, b ∈ X generate a dihedral
subalgebra B, then, for any g ∈ G, the subalgebra generated by ag, bg is
isomorphic to B. In this way, we obtain the shape of the algebra which is a
map S from the set of G-orbits on X ×X to the set of dihedral algebras.

Given a pair of axes (a, b), let Da,b be the dihedral group generated by τa
and τb. Define Xa,b = aD ∪ bD, where D := Da,b. It is clear that Da,b = Db,a

and Xa,b = Xb,a.
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A Norton-Sakuma algebra has type nL. We wish to show that n can be
determined solely from the action of the dihedral group Da,b.

Lemma 3.2. Let a, b ∈ X and D := Da,b. Then, |aD| = |bD|. If a and b
are in the same orbit, then the length of this orbit is 1, 3, or 5. Otherwise,
if a and b are in different orbits, then the length of each orbit is 1, 2, or
3. Moreover, the Norton-Sakuma algebra generated by a and b has type nL,
where n = |Xa,b|.

Proof. A direct proof would be long and computational. So instead we ob-
serve that each Norton-Sakuma algebra is contained in the Griess algebra
and there we have a bijection between axes and 2A-involutions in the Mon-
ster M . So, we may take the dihedral subgroup H ≤ M generated by the
involutions associated to each axis (in the Griess algebra). In particular, up
to the kernel, the action of H on X is the same as the action of D on X.

Since in the Griess algebra we have a bijection between axes and 2A-
involutions and τ gx = τxg for g ∈ H, we may consider the orbits of involutions
in H rather than the orbits of axes. The result now follows from properties
of dihedral groups and Sakuma’s theorem.

Thus, when we know the action of G on X, n is known for each orbit
and the shape is determined by choices of L. Furthermore, these choices are
not independent.

If a, b, c, d ∈ X then we say (a, b) dominates (c, d) if c, d ∈ Xa,b. In
particular, when this happens, Xc,d ⊆ Xa,b and Dc,d ≤ Da,b. Note also that
the subalgebra 〈c, d〉 is contained in 〈a, b〉. Hence, if (a, b) dominates (c, d),
then the choice of dihedral subalgebra 〈a, b〉 determines the choice for 〈c, d〉.
For the Monster fusion law, we have the following non-trivial inclusions

〈a, b〉 〈c, d〉
4A 2B
4B 2A
6A 2A
6A 3A

Note that here, not only does the choice of 〈a, b〉 determine the choice for
〈c, d〉, but also the choice for 〈c, d〉 uniquely determines the choice for 〈a, b〉.
Additionally, note that the pair (a, b) always dominates (b, a) and vice versa,
so in the next concept which describes the totality of choices, we may just
work with the set {a, b} instead of the pairs (a, b) and (b, a). Notice also that
since Xa,b = Xb,a, the concept of domination is not affected by the switch
to sets.

Let
(
X
2

)
denote the set of 2-subsets of X. The orbits of G on

(
X
2

)
are

the vertices of a directed graph, called the shape graph, with the edges given
by domination. By the above comment, there is at most one choice of
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dihedral subalgebra for each weakly connected component (i.e. a connected
component of the underlying undirected graph). So, the shape of an algebra
is fully described by assigning one dihedral subalgebra per weakly connected
component. Sometimes there is no choice for a given component. Namely,
when that component contains a 6A, or 5A.

Additionally, if the M8 axiom is assumed, then this further restricts the
allowable shapes. Suppose that a and b are such that Xa,b = {a, b} and τa
and τb are the involutions associated to a and b. Then τaτb has order two.
If τaτb is in the image of the τ -map, then M8 demands that the dihedral
subalgebra B = 〈a, b〉 generated by a and b be a 2A. Conversely, if τaτb
is not in the image τ , then the dihedral subalgebra B must be a 2B. In
both cases, this defines the shape on the connected component containing
the orbit of {a, b}. However, the only connected components which don’t
contain any dihedral subalgebras with n = 2 are those which just contain a
single dihedral subalgebra with n = 3. So, if the M8 condition is assumed the
only choice over a shape is choosing whether those connected components
which consist of a single 3L are 3A, or 3C.

We now turn to the general case of a fusion law F which is T -graded and
an abstract group of permutations G acting faithfully on a set X. We are
thinking of an unknown axial algebra A with fusion law F and the action of
the Miyamoto group on the axes being the action of (a normal subgroup of)
G on X. It is clear that we may just consider actions up to isomorphism.
Recalling the definition of a Miyamoto automorphism from Section 2.1, we
will define analogous concepts to above.

Definition 3.3. Let G be a permutation group acting on a set X and T an
abelian group. A map τ : X × T ∗ → G is called a τ -map if for all x ∈ X,
χ ∈ T ∗, g ∈ G

1. τx : T ∗ → G is a group homomorphism;

2. τx(χ)g = τxg(χ).

We call the image G0 := 〈τx(χ) : x ∈ X,χ ∈ T ∗〉 E G the Miyamoto group
of τ .

As previously, we define Tx := 〈τx(χ) : χ ∈ T ∗〉 ≤ G0.

Lemma 3.4. Tx ⊆ Z(Gx), where Gx is the stabiliser in G of x.

Proof. Let g ∈ Gx. Then for χ ∈ T ∗,

[τx(χ), g] = τx(χ)−1τx(χ)g = τx(χ)−1τxg(χ) = τx(χ)−1τx(χ) = 1

We define D = Da,b := 〈Ta, Tb〉 for a, b ∈ X. Unlike the Monster type
case, D does not have to be a dihedral group. In an F-axial algebra, Da,b

acts on the subalgebra 〈a, b〉. Suppose that we know a list L of 2-generated
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subalgebras with marked generators for the fusion law F . We wish to impose
conditions on τ so that Da,b has an action on Xa,b := aD ∪ bD which is
an action observed on the axes of some 2-generated algebra in our list.
Otherwise, τ cannot lead to a valid F-axial algebra.

Definition 3.5. A τ -map τ : X×T ∗ → G is called L-admissible if for every
set {a, b} ∈

(
X
2

)
, the action of Da,b on Xa,b agrees with at least one algebra

in the list L.

Where the list L is understood, we will just say admissible.
For example, let F be the Monster fusion law. Then the complete list L

is just the list of Norton-Sakuma algebras given in Table 2. In particular,
the orbits of a and b under D must have the properties given in Lemma 3.2.
That is,

1. k := |aD| = |bD|.

2. If a and b are in the same D-orbit, then k = 1, 3, or 5.

3. If a and b are in different D-orbits, then k = 1, 2, or 3.

From now on, we only consider admissible τ -maps. The normaliser N =
NSym(X)(G) of the action of G on X acts on the set of admissible τ -maps
by

τ 7→ τn where (τn)x(χ) := τ
xn−1 (χ)n

for n ∈ N . Note that, by the definition of a τ -map, G acts trivially on each
τ . So an action of N/G is induced on the set of τ -maps. Thus, we may just
consider admissible τ -maps up to the action of N/G.

Next we introduce domination.

Definition 3.6. For {a, b}, {c, d} ∈
(
X
2

)
, we say {a, b} dominates {c, d} if

c, d ∈ Xa,b.

Definition 3.7. The shape graph Γ is a directed graph with vertices given
by orbits of G on

(
X
2

)
and edges given by domination between pairs from

those orbits.

As observed above, for the Monster fusion law, any one choice of 2-
generated subalgebra for a weakly connected component of the shape graph
determines all other 2-generated algebras in that component. For a general
fusion law, the dominated algebra may not always determine the larger al-
gebra uniquely. However, the larger, dominating algebra always determines
the smaller algebra. We will call these the domination restrictions.

Definition 3.8. Given an abstract group G acting faithfully on a set X and
an admissible τ -map, a shape on X is a set of choices of 2-generated algebra
for all orbits of G on

(
X
2

)
which satisfy the domination restrictions.
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Given a group G acting faithfully on a set X and an admissible τ -map
τ , we may consider all the possible shapes. Let K = StabN (τ). As noted
above, G acts trivially on each τ , and in fact it also fixes every shape. On
the other hand, K (or rather K/G) permutes the G-orbits of

(
X
2

)
, and so

may act non-trivially on the set of shapes. So, we may consider shapes for
τ up to the action of K.

In summary, given an action of a group G on a putative set of axes X, we
can determine all the possible admissible τ -maps. Given a particular τ -map
τ , we can further determine all the possible shapes that an axial algebra
with Miyamoto group G0 and τ -map τ could have.

4 Useful lemmas

In this section, we will discuss some properties which must hold in axial
algebras. We will use these later in the algorithm to discover relations and
to build up eigenspaces.

Recall that we adopt the notation that for a subset I ⊆ F ,

AI =
⊕
λ∈I

Aλ

We begin by noting that, since we allow I to be a subset, we can add and
intersect the AI .

Lemma 4.1. Let I, J ⊆ F , then

1. AI +AJ = AI∪J

2. AI ∩AJ = AI∩J

By an abuse of terminology, we will call the AI eigenspaces of a.

Lemma 4.2. Let a be an axis, I ⊆ F , λ ∈ I and AI = AaI . Then, for all
u ∈ AI

ua− λu ∈ AI−λ

Proof. We may decompose u ∈ AI as u =
∑

µ∈I uµ, where uµ ∈ Aµ. Multi-
plying by a and subtracting λu, we have

ua− λu =
∑
µ∈I

uµa− λu

=
∑
µ∈I

(µ− λ)uµ

Since the coefficient of uλ is zero, the above is in AI−λ.
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Recall that we extended the operation ? to all subsets of F , turning the
fusion law into a magma. Moreover, the eigenspaces AI satisfy the fusion
law. However, not all fusion rules on subsets are equally useful for our
algorithm. In particular, assuming that F is T -graded, we only need to
consider I fully contained in a part Ft for some t ∈ T . We call such subsets
pure.

Definition 4.3. Let I ⊆ Fs and J ⊆ Ft for s, t ∈ T . We define a fusion
rule I ? J = K to be useful if

1. K $ Fs?t; and

2. there does not exist I $ I ′ ⊆ Fs, or J $ J ′ ⊆ Ft such that

I ′ ? J = K or I ? J ′ = K

In particular, given a useful fusion rule I ?J = K, if we require it to hold,
all other rules X ? Y = K for subsets X ⊆ I and Y ⊆ J will automatically
be satisfied. In this way, it is enough to impose just the useful fusion rules
and the grading to capture all the information from the fusion law.

To calculate the useful fusion rules for any fusion law F we begin by
writing out the expanded fusion table for all pure subsets of F with rows
and columns partially ordered by inclusion. We then consider all sets K
which occur as entries in the table. The useful rules are precisely those
where K is not a full part Ft, for t ∈ T , and it does not appear in the
expanded table below in that column, or to the right in that row. Doing
this to the Monster fusion law results in the following list.

Lemma 4.4. The useful fusion rules for the Monster fusion table are

1 ? 0 = ∅ 1 ? {1, 0} = 1 1 ? {0, 14} = 1
4 1 ? {1, 0, 14} = {1, 14}

0 ? {1, 0} = 0 0 ? {1, 14} = 1
4 0 ? {1, 0, 14} = {0, 14}

1
4 ?

1
4 = {1, 0} 1

4 ? {1, 0} = 1
4

{1, 0} ? {1, 0} = {1, 0} {1, 0} ? {1, 14} = {1, 14} {1, 0} ? {0, 14} = {0, 14}

Note that all useful fusion rules for the Monster fusion law come from
the even part. That is because the values of ? involving the odd part { 1

32}
are fully determined by the grading.

If A is primitive, then for an axis a, Ga certainly fixes every vector in
Aa1. We now describe another trick which uses this weaker condition.

Lemma 4.5. Let 1 ∈ I ⊂ F and u ∈ AI(a) for an axis a. Suppose further
that Ga fixes every vector in Aa1. Then, for all g in the stabiliser Ga,

ug − u ∈ AI−1
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Proof. We decompose u =
∑

µ∈I uµ with respect to the eigenspaces of a.
Since g fixes a, it preserves every eigenspace of a. Furthermore, since g fixes
every vector in Aa1, we have the following

ug − u =
∑
µ∈I

ugµ −
∑
µ∈I

uµ

= ug1 − u1 +
∑
µ∈I−1

ugµ − uµ

=
∑
µ∈I−1

ugµ − uµ ∈ AI−1

5 Algorithm

In this section, we describe our main result which is an algorithm for con-
structing an axial algebra. A very similar algorithm can also be used to
build a module for a known axial algebra. However, we don’t want to com-
plicate this paper with extra definitions and so we just deal with the task of
constructing an axial algebra.

In principle, there is no reason to believe that an axial algebra which is
generated by a finite set of axes is even finite dimensional. Clearly, if it is
infinite dimensional, our algorithm will not finish. However, in practice, we
can compute a large number of examples as we shall see in Section 6.

As described in Section 3, associated with a T -graded F-axial algebra
A we have a group G acting faithfully on a set X, an admissible τ -map
τ : X × T ∗ → G0 E G and a shape. Given such a G, X, τ and shape, the
algorithm, if successful, builds an axial algebra A with axes X and Miyamoto
group G0. It does so by defining a partial algebra and completing it step by
step into a full algebra.

As input to our algorithm, we take a field F, a T -graded fusion law F ,
a group G acting faithfully on a set X, an admissible τ -map τ and a shape.
These are fixed throughout the rest of this section.

5.1 Partial algebras

At the core of the algorithm is a concept which we call a partial algebra.
The idea is that there is a G-module W on which we only know how to
multiply vectors coming from a certain submodule V and the results of
this multiplication lie in W . We stress that just because we can multiply
u, v ∈ V , their product µ(u, v) does not have to lie in V . We write S2(V )
for the symmetric square of V .

Definition 5.1. Given a group G, a partial G-algebra is a triple W =
(W,V, µ) where W is a G-module over F, V ⊆ W is a G-submodule and
µ : S2(V )→W is a linear map which is G-equivariant.
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Where it is clear, we will abuse notation and write uv for µ(u, v).

Lemma 5.2. Given a G-invariant set Y in W , there exists a unique smallest
G-submodule W (Y ) of W such that

W (Y ) = 〈Y 〉+ µ(S2(W (Y ) ∩ V ))

Proof. Let U0 := 〈Y 〉 and define inductively

Ui+1 := Ui + µ(S2(Ui ∩ V )).

Let Ũ =
⋃∞
i=0 Ui; it is a G-submodule of W since every Ui is. We claim

that Ũ = 〈Y 〉 + µ(S2(Ũ ∩ V )). Clearly, 〈Y 〉 ⊆ Ũ . Let u, v ∈ Ũ ∩ V , then
by definition u, v ∈ Ui ∩ V for some i. Hence µ(u ∨ v) ∈ Ui+1 ⊆ Ũ and
so the right hand side is contained in Ũ . The reverse inclusion is clear by
induction.

Finally, if U is any submodule of W satisfying U = 〈Y 〉+µ(S2(U ∩V )),
we see, again by induction on i, that each Ui ⊆ U and hence Ũ ⊆ U .

We call W (Y ) = (W (Y ),W (Y )∩ V, µ|S2(W (Y )∩V )) the partial subalgebra
generated by Y . If W (Y ) = W , then we say that Y generates W . For
example, an axial algebra A with Miyamoto group G is a partial G-algebra
and the set of axes X generates A.

Definition 5.3. Let (W,V, µ) be a partial G-algebra and (W ′, V ′, µ′) be
a partial G′-algebra. A homomorphism of partial algebras is a pair (ϕ,ψ)
where

1. ϕ : W →W ′ is a vector space homomorphism such that ϕ(V ) ⊆ V ′.

2. ψ : G→ G′ is a group homomorphism such that

ϕ(wg) = ϕ(w)ψ(g)

for all w ∈W , g ∈ G.

3. ϕ(µ(u, v)) = µ′(ϕ(u), ϕ(v)) for all u, v ∈ V .

In other words, we have the following commutative diagram and addi-
tionally the action of G (sometimes acting through ψ) commutes with the
diagram.

S2(V ) W V

S2(V ′) W ′ V ′

µ

ϕ∨ϕ ϕ ϕ

µ′
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5.2 Gluings

In order to correctly build an axial algebra, we must impose the conditions
coming from the shape. We do this by gluing in the 2-generated algebras
appearing in the shape.

Informally, the concept of gluing can be explained as follows. Let W (X)
be a partial G-algebra with a τ -map τ on the axes X. Suppose that Y ⊆ X
is a closed set of axes. That is, Y is closed under the action of G(Y ) (recall
from Section 2.1 that G(Y ) := 〈Ta : a ∈ Y 〉). Then W (Y ) is a G(Y )-
partial algebra generated by the set Y of axes. If we want Y to generate a
subalgebra B in the final algebra, then at every step of the algorithm there
had better be a homomorphism of partial algebras (ϕ,ψ) from W (Y ) to B.
This partial homomorphism is our gluing. In fact, we make the definition
even more general by allowing our target algebra B to be a partial algebra.
Note that G(Y ) may not act on the set Y of axes faithfully and hence ψ
may have a non-trivial kernel.

Definition 5.4. Let (W,V, µ) be a G-partial algebra generated by X, Y ⊆
X be a closed set of axes and suppose that (W ′, V ′, µ′) is a partial H-
algebra generated by a set X ′. A gluing of W ′ onto Y is a homomorphism
of partial algebras (ϕ,ψ) from the G(Y )-partial subalgebra (W (Y ),W (Y )∩
V, µ|S2(W (Y )∩V )) to (W ′, V ′, µ′) such that ϕ(Y ) = X ′.

Note that we implicitly assume in the above definition that W and W ′

both have the same fusion law. Typically, ϕ induces a bijection from Y onto
X ′ but this is not assumed. Also, as we will see later in the algorithm, the
surjection of Y onto X ′ identifies ϕ and ψ uniquely.

5.3 Relations

Throughout our algorithm, we keep track of various (sums of) eigenspaces for
each axis. These are key to finding enough relations to allow our algorithm to
terminate. Recall that the sum of eigenspaces is denoted by WI =

⊕
λ∈IWλ,

for a subset I ⊆ F . Note that at any given stage in our algorithm, we
may not know the full λ-eigenspace and so we do not necessarily know the
decomposition W =

⊕
λ∈F Wλ. Indeed, we may know that a vector lies in

WI , for some I ⊂ F , but not know how to decompose it into the sum of
eigenvectors for eigenvalues λ ∈ I. For this reason, we keep track of sums
of eigenspaces WI . Note that relations are vectors in W∅. Since G acts on
W , we may just consider axes and their associated decompositions up to the
action of G.

It turns out that it is enough to keep track of just the WI , for pure
subsets I. That is, the WI for I ⊆ Ft, for t ∈ T . We show that this holds,
provided we make a mild assumption on the grading group T .

Indeed, by assumption, for each axis a ∈ X, there is a decomposi-
tion W =

⊕
t∈T Wt. We claim that we can recover the decomposition
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W =
⊕

t∈T/RWt, where R :=
⋂
χ∈T ∗ ker(χ), from the action on Ta on W .

Indeed, recall from the definition that τa(χ) ∈ Ta acts on Wt by scalar multi-
plication by χ(t). Since this must hold in any axial algebra we build, we can
distinguish the T -grading up to the kernel R =

⋂
χ∈T ∗ ker(χ). If T ∗ ∼= T ,

then R = 1. However if R is non-trivial, for example when the characteris-
tic divides |T |, or when the field doesn’t contain the suitable roots of unity,
we can only detect a coarser grading by T/R ∼= T ∗. Since we may always
consider a more coarse grading, from now on, we may assume that T ∗ ∼= T
and hence Ta detects the T -grading. Note that for a Z2-grading, provided
the field is not of characteristic two, −1 is always in the field and hence we
can detect a Z2-grading using the axis subgroup.

Let J ⊂ F . Since we know the decomposition W =
⊕

t∈T Wt, this
induces a decomposition WJ =

⊕
t∈T WJt , where Jt := J ∩ Ft. Now, the

only results we will use in our algorithm are those found in Section 4, namely,
summation and intersection of subspaces, being an eigenvector, obeying the
fusion law and, optionally, Lemma 4.5. It is easy to see that for all of these,
the information gained about WJ is precisely the sum of the information
gained about the WJt . For example, if λ ∈ J , then by Lemma 4.2, ua−λu ∈
AJ−λ. But, since we may decompose u =

∑
t∈T ut, we have

uta− λut ∈ AJt−λ =

{
AJt if λ /∈ Jt
AJt−λ if λ ∈ Jt

In particular, we recover the only non-trivial result by just considering the
pure subset Jt ⊆ Ft. This justifies our claim that it is enough to keep track
of the WI , for pure subsets I.

5.4 The algorithm

Our task is to build an algebra of the correct shape. We will do this by
defining a sequence of partial algebras and at each stage ‘discovering’ more
of the multiplication. Throughout our algorithm W = (W,V, µ) will be a
partial G-algebra generated by the set X, our putative set of axes on which
G acts faithfully. Our algorithm will terminate when V = W . That is, when
we know all the multiplication. We begin with W having basis indexed by
the set X. That is, W is a permutation module for the action of G on X.
No products are known at this stage, so V = 0.

The information for the multiplication, and so also for the eigenspaces,
will come from gluing in algebras to our partial algebra according to the
shape. In order to fully describe our axial algebra, we must glue in enough
algebras to cover all those 2-generated algebras given in the shape. However,
we may glue in known algebras of the correct shape which are generated by
three or more axes. These have the advantage of containing more informa-
tion. (We may also glue in some partial algebras, so long as we also glue in
enough known algebras to cover those given in the shape.)
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Since no multiplication is known when we start and W is spanned by the
axes, for each gluing of an algebra B onto a closed subset of axes Y , we have
W (Y ) = 〈Y 〉 and ϕ is the corresponding injection on these axes compatible
with the action.

After initialisation, the main part of the algorithm has three stages:

1. Expansion by adding the formal products of vectors we do not already
know how to multiply.

2. Work to discover relations and construct the eigenspaces for the axes.

3. Reduction by factoring out by known relations.

We continue applying these three stages until V = W and that is when
our algorithm terminates. Again, we note that since we use the action of
the group, we need only consider subalgebras and axes up to the action of
G.

If our algorithm does terminate, then we have the following result, which
we will prove after describing our algorithm.

Theorem 5.5. Suppose that the algorithm terminates and returns A. Then
A is a (not necessarily primitive) axial algebra generated by axes X with
automorphism group G, τ -map τ and of the given shape.

Moreover, provided we do not use the optional Lemma 4.5 in stage 2 of
the algorithm, the algebra is universal. That is, given any other axial algebra
B with the same axes X, automorphism group G, τ -map τ and shape, B is
a quotient of A.

Note that, if we do use Lemma 4.5 in stage 2 of the above algorithm,
then we have assumed that Ga fixes every vector in Aa1 for each axis a. This
holds in primitive axial algebras, but not necessarily in the non-primitive
case.

Initialisation

We begin with W being a permutation module for the action of G on X and
V = 0. We glue in enough algebras to cover all 2-generated algebras in the
shape.

We now give a detailed description of the steps of the algorithm.

Stage 1: Expansion

We expand W to a larger partial algebra Wnew by adding vectors which are
the formal products of elements we do not yet know how to multiply.

Step 1. We begin by finding a complement subspace C for V in W . Hence,
as a vector space

W = V ⊕ C
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Wherever possible, we choose C to be a G-submodule. For example, in
characteristic 0, this is always possible.

Since we know the multiplication on V and our multiplication is com-
mutative, we just need to add the products of V with C and products of C
with C.

Step 2. Form a new partial algebra Wnew = (Wnew, Vnew, µnew) with

Wnew = W ⊕ V ⊗ C ⊕ S2(C)

Vnew = W

and µ extended in the obvious way to µnew.

Note that if C is a G-submodule, then the summands in Wnew are all
G-submodules and hence Wnew can be seen to be a G-module in a natural
way. Otherwise, we must compute the action of G on Wnew.

Step 3. For each algebra B glued onto a closed set of axes Y , we extend
the gluing as follows3. Since U := W (Y ) ⊂ W and Vnew = W , we now
know all the products of elements in U , so we expand the gluing map ϕ
to be defined on the entire U . Specifically, let UV = U ∩ V and find a
complement D so that

U = UV ⊕D.

Then
Unew := U ⊕ µ(UV , D)⊕ µ(D,D)

is the partial G(Y )-subalgebra of Wnew generated by Y . Indeed, since
D projects injectively into C, µ(D,D) projects injectively into S2(C).
Similarly, µ(UV , D) projects injectively into V ⊗C. In particular, Unew ∩
W = U and hence Unew is the full partial subalgebra generated by Y , as
claimed.

Note that the above also means that µ(UV , D) ∼= UV ⊗D and µ(D,D) ∼=
S2(D) and so Unew has the same structure as Wnew. This allows us to
extend the map ϕ to ϕnew in the obvious way, by mapping the new prod-
ucts in Unew to the corresponding products in B. Hence, ϕnew preserves
multiplication. Observe that Unew is also a G(Y )-submodule and so the
homomorphism ψ is unchanged. Hence, (ϕnew, ψ) is a gluing of B onto
Y in Wnew.

Step 4. For each gluing, we add the kernel of ϕnew to the space of relations.

3Note that at each stage, the image of our gluing map ϕ is a partial subalgebra of the
algebra B we are gluing in. Only after we have done enough expansions, will we have
glued in all of B.
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Indeed, if ϕnew(v) = 0, then v must be the zero vector in any final axial
algebra, hence it is a relation.

Step 5. For each axis a and partial subalgebra Unew which contains a, we
use ϕnew to pull back the eigenspaces of B ∩ ϕnew(Unew) to add to the
eigenspaces in Wnew.

Since we only consider axes and gluings up to G-orbit, we must be careful
as one orbit of axes may split into several orbits when intersected with the
subalgebra.

We note that the above expansion step can be made to work if we do not
expand to the whole of W , but just to some G-submodule U of W which
contains V . That is, we choose some subspace complement C to V in U
(picking it to be a G-submodule if possible) and we expand to

Wnew = W ⊕ V ⊗ C ⊕ S2(C)

and have Vnew = U . The gluing for the partial subalgebras and the eigenspaces
are updated similarly to above. This partial expansion has the advantage
that it is easier to do computationally as it is smaller and we may still be
able to find relations.

Stage 2: Building up eigenspaces

We begin by recovering the grading on Wnew, before finding further eigen-
vectors and relations. Recall that relations are simply elements of the
eigenspace Wnew,∅.

Step 1. For each axis a, we compute the action of Ta on Wnew and hence
find the decomposition Wnew =

⊕
t∈T Wnew,t with respect to a.

For example, in the Monster fusion law case, we have the Z2-decomposition
Wnew = Wnew,+ ⊕Wnew,−, where Wnew,+ and Wnew,− are the 1- and −1-
eigenspaces of τa, respectively.

If C is a submodule, then the calculation can be simplified as follows

Wnew,t = Wt ⊕
⊕
s∈T

(Vs ⊗ Cs−1t)⊕
⊕
s∈T

Cs × Cs−1t

where Vs and Cs are the T -graded parts of V and C respectively.
We no longer need the old W , so we now drop the subscript and write

W for Wnew and similarly V for Vnew.

Step 2. We repeatedly apply the following techniques until the pure eigenspaces
WI (including the relation eigenspace W∅) stop growing.
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1. For each t ∈ T , we sum together and take intersections of the WI

for each pure subset I $ Ft as per Lemma 4.1.

2. For each t ∈ T , let λ ∈ I ⊆ Ft. For each u ∈WI∩V , we add ua−λu
to WI−λ as per Lemma 4.2.

3. We apply each useful fusion rule I ? J = K. That is, for all u ∈
WI ∩ V and v ∈WJ ∩ V , we add their product uv to WK .

Note that in parts (2) and (3), we of course may just do these for a basis
of the eigenspaces concerned.

In the case of the Monster fusion law, F− = { 1
32}. So, for the odd

subspace W−, there are no subspaces to sum or intersect in part (1) above.
Also in part (2) for W−, since the only choice for λ is 1

32 , we obtain that
ua− 1

32u ∈W∅ is a relation. Since W− = W 1
32

will not grow in size, we need

only apply part (2) once. Also, as noted after Lemma 4.4, all the useful
fusion rules for the Monster fusion law come from the even part. Therefore,
for the Monster fusion law, we only need apply part (2) once to the odd part
and then just work on the even part.

Step 3. (Optional) If additionally we want to force that Ga fixes every
vector in W1T (as is true for primitive algebras), then we may apply the
technique from Lemma 4.5 to get ug − u ∈ W1T−1 for all g ∈ Ga and
u ∈W1T .

By the assumptions in Lemma 4.5, we may only apply this lemma to
subsets such that 1 ∈ I. We claim that it is enough to just apply it to
1T . By the discussion at the beginning of the section, since 1 ∈ 1T we need
just consider pure subsets I ⊂ F1T with 1 ∈ I. Let u ∈ WI ⊂ W1T . So,
the vector v = ug − u is found in both WI−1 and W1T−1. Since the action
of g ∈ Ga preserves the eigenspaces, we know trivially that v ∈ WI . So,
by intersecting as in Step 2 (1), we recover that v ∈ WI−1 = W1T−1 ∩WI .
Moreover, once we have done the expansion step, we know the decomposition
given by the T -grading and this does not change until the next expansion
step. Hence, we need only apply Step 3 once per expansion.

Stage 3: Reduction

If we have found some relations for our algebra (i.e. W∅ 6= 0), we may reduce
our partial algebra W by factoring out by the relations. Let R be the G-
submodule generated by the W∅. Before forming the quotient, we search for
additional relations by using the two following techniques.

First, if R intersects V non-trivially, then we may multiply R ∩ V by
elements of V . Since elements r ∈ R are relations and must become zero in
the target algebra, so are vr, for all r ∈ R∩ V and v ∈ V . So we repeatedly
multiply by elements of V to grow R until the dimension of R stabilises.
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Secondly, suppose that R intersects a subspace U = W (Y ) where we have
glued in an algebra B. Let (ϕ,ψ) be the gluing map. Then R′ := ϕ(U ∩R)
are relations in the algebra B. Since we know the multiplication in B, we
can use the first technique to multiply by elements of B to grow R′ (this
may include multiplying by elements we do not yet know how to multiply
by in W , hence giving us extra information). We then pull back R′ to W
using ϕ−1 to get additional relations.

Step 1. We use the above two techniques repeatedly, until we find no fur-
ther relations. Let π : W → W/R be the quotient map. We define Wnew

as the image π(W ), Vnew = π(V ) and µnew is the map induced by µ.

Step 2. For each gluing, we update both the subspace and the partial sub-
algebra by taking Unew = π(U) and Bnew = B/π(U ∩ R) and updating
the gluing maps accordingly.

Step 3. We transfer the axes and eigenspaces WI to Wnew by applying π.

Note that if R contains any relations of the form a− b for axes a and b,
then we have reduced the (potential) algebra to one generated by a smaller
set of axes X ′. Hence we may exit the algorithm.

Now that we have described our algorithm, we shall prove Theorem 5.5.

Proof of Theorem 5.5. It is clear from the construction of the algorithm that
A is spanned by products of axes in X. Since each axis is contained in its
own 1-eigenspace, they are idempotents. At stage 2 we use Lemma 4.2,
so each axis must be semisimple. Also at stage 2 we impose the fusion
law, therefore the multiplication must satisfy this and hence A is an axial
algebra for the required fusion law. By construction, A is a G-module and
the multiplication is invariant under the action of G, hence G is a group of
automorphisms of A containing the Miyamoto group.

Observe that any axial algebra B with the same axes, automorphism
group, τ -map and shape must satisfy the relations we have factored by in
our algorithm. If we do not use Lemma 4.5 in stage 2, then we have not
factored by any other relations and so B must be a quotient of A.

In practice, for reasons of efficiency, we perform some of the steps above
in a different order. For example, we may perform the reduction step at
any stage. In particular, it may be computationally advantageous to reduce
once we find enough relations as any further calculations will be performed
in a smaller space and hence may be quicker.

6 Results

In Tables 4 and 5, we present some of the results that the implementation
of our algorithm [12] in magma [2] has found. Our current implementation
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is restricted to a Z2-graded fusion law with one eigenvalue in the negative
part and the examples given in the table are all for the Monster fusion
law. All the results here are also over Q, although our implementation
works over finite fields and even function fields. Note that, although in
our algorithm and implementation we do not require that the τ -map be
bijective, this is the case we concentrate on in Table 4 as this is the situation
considered by Seress [18, Table 3]. In Table 4, for a number of groups G0,
we list all possible shapes for the Miyamoto group G0, action on axes and τ -
map, whether completed or not, whereas in Table 5 we list some additional
interesting algebras constructed without claiming we have considered all
possible shapes. Note that (Sa × Sb)+ denotes the group of even elements
in Sa × Sb.

The columns in the tables are

• Miyamoto group G0.

• Axes, where we give the size decomposed into the sum of orbit lengths.

• Shape. Here we omit shapes of type 5A and 6A as where these occur
they are uniquely defined. If an algebra contains a 4A, or 4B, we
omit to mention the 2B, or 2A, respectively, that is contained in it.
Likewise, we omit the 2A and 3A that are contained in a 6A.

• Dimension of the algebra. A question mark indicates that our algo-
rithm did not complete and a 0 indicates that the algebra collapses
(that is, there is no such non-trivial algebra with the required axes,
Miyamoto group, τ -map and shape).

• The minimal m for which A is m-closed. Recall that an axial algebra
is m-closed if it is spanned by products of length at most m in the
axes.

• Whether the algebra has a G0-invariant Frobenius form that is non-
zero on the set of axes X. If it is additionally positive definite or
positive semi-definite, we mark this with a pos, or semi, respectively.

In addition to the results in the tables, we have computed many of the
smaller groups acting on larger numbers of axes. For example, we have
computed S4 acting on 6, 6+6, 6+6+6, 12, 12+12, 12+12+12, 1+3+6,
1 + 3 + 6 + 6, 1 + 3 + 3 + 6 + 6, 3 + 6, 3 + 3 + 6 and 3 + 6 + 6 axes, but we
do not present these results here. Several of these are useful for gluing in to
complete examples for larger groups G0 ≥ S4.

Compared to Seress [18] and Pfeiffer and Whybrow [15], we find many
new algebras 4. Importantly, we use only the fusion law and the 2-generated

4In the tables of both Seress [18], and Pfeiffer and Whybrow [15], some algebras appear
twice. Namely, the algebras of dimension 70 and 76 arise for both A6 and 3 Ȧ6 and similarly
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algebras to build our algebras. Both Seress, and Pfeiffer and Whybrow, use
additional axioms or extra properties. These may be assuming a positive
definite Frobenius form or some extra conditions such as the so-called M8
axiom or 2Aa, 2Ab, 3A, 4A, or 5A conditions. It is perhaps the strongest
argument in favour of the axial algebra approach that we do not use any
of the additional conditions and yet the algebras still complete. Indeed,
among our completed examples we have many algebras which satisfy these
conditions but also some which do not.

Even though we do not assume it, all the examples have a G0-invariant
Frobenius form that is non-zero on the axes. This supports our conjecture
given in the introduction. Moreover, in all the examples, the form is positive
semi-definite. Although the vast majority are in fact positive definite, in
Table 5 we give four algebras which are not. For example, there is an algebra
of dimension 14 for the group 22 acting on 1 + 2 + 2 axes. The radical of the
form is 3-dimensional and it is an ideal in the algebra. Once we factor out
by this ideal, the resulting 11-dimensional algebra has the same group, orbit
structure of axes and shape and it now has a positive definite Frobenius
form.

We find many new examples of m-closed algebras with m ≥ 3. Indeed,
the largest m for which we have examples is 5. In Table 5, we list three such
5-closed algebras, one of dimension 22 for the group 24 acting on 2+2+2+2
axes and two of dimensions 27 and 52 for the group S4 acting on 1 + 3 + 6
axes. We also give three 4-closed algebras of dimensions 14, 19 and 27 for
the group 24 acting on 2 + 2 + 2 + 2 axes and a further twenty six 3-closed
algebras.

In all the cases in Table 4, there is a unique admissible τ -map up to
symmetry, however this is not true in general. For example, the group 24

acting on 2 + 2 + 2 + 2 axes has four different admissible τ -maps at least
three of which lead to non-trivial axial algebras. Some of these are given in
Table 5.

All the examples found so far are primitive (although for some cases the
optional step 3 in stage 2 using Lemma 4.5 was used to construct them).

One limitation of all available algorithms, including ours, and a possible
reason why some cases cannot be completed is that there may be several
different universal algebras of the same shape. Indeed, Whybrow has found
an infinite family of examples for the group 22 acting on 2 + 2 + 2 axes, of
shape (4A)3 [19]. It can be seen to be a 12-dimensional algebra over Q(t),
where different specialisations of t give non-isomorphic 12-dimensional alge-
bras. The first author together with Simon Peacock used our algorithm and
code run over a function field, together with some additional code, to inves-

the algebra of dimension 196 for A7 and 3 Ȧ7. This is because the central element of order 3
acts trivially on the algebra. Another consequence of this is that the algebras of dimension
105 for 3 Ȧ6 and of dimension 254 for 3 Ȧ7 in fact have Miyamoto groups A6 and A7 and
this is how they appear in our Table 4.
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tigate varieties of axial algebras for other shapes [13]. They reconstructed
Whybrow’s example and found a second case for 22 acting on 2 + 2 + 2 axes
of shape (4A)2 (2A)2 where a similar parameter t could be introduced but
the result in this case was quite different. Namely, the algebra collapses if
t 6= ± 1

128 , is 10-dimensional if t = 1
128 and does not currently complete if

t = − 1
128 .

Finally, we note that the function which takes the most time in our
implementation is the construction of G-submodules in large dimensional
modules. If this could be speeded up, then many larger examples could be
completed.

G0 axes shape dim m form

S3 × S3 3+3 3A3A2A ?
S3 × S3 3+3 3A3A2B 8 2 pos
S3 × S3 3+3 3A3C2A 0 0 -
S3 × S3 3+3 3A3C2B 7 2 pos
S3 × S3 3+3 3C3C2A 0 0 -
S3 × S3 3+3 3C3C2B 6 1 pos
S3 × S3 3+9 3A3A 18 2 pos
S3 × S3 3+9 3A3C 0 0 -
S3 × S3 3+9 3C3A 0 0 -
S3 × S3 3+9 3C3C 0 0 -
S3 × S3 3+3+9 3A2A 18 2 pos
S3 × S3 3+3+9 3A2B 25 3 pos
S3 × S3 3+3+9 3C2A 0 0 -
S3 × S3 3+3+9 3C2B 0 0 -

S4 6 3A2A 13 2 pos
S4 6 3A2B 13 3 pos
S4 6 3C2A 9 2 pos
S4 6 3C2B 6 1 pos
S4 3+6 4A3A2A 23 3 pos
S4 3+6 4A3A2B 25 3 pos
S4 3+6 4A3C2A 0 0 -
S4 3+6 4A3C2B 12 2 pos
S4 3+6 4B3A2A 13 2 pos
S4 3+6 4B3A2B 16 2 pos
S4 3+6 4B3C2A 9 1 pos
S4 3+6 4B3C2B 12 2 pos

A5 15 3A2A 26 2 pos
A5 15 3A2B 46 3 pos
A5 15 3C2A 20 2 pos
A5 15 3C2B 21 2 pos
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S5 10 3A2A ?
S5 10 3A2B ?
S5 10 3C2A 0 0 -
S5 10 3C2B 10 1 pos
S5 10+15 4A 61 2 pos
S5 10+15 4B 36 2 pos

L3(2) 21 4A3A ?
L3(2) 21 4A3C 57 3 pos
L3(2) 21 4B3A 49 2 pos
L3(2) 21 4B3C 21 1 pos

A6 45 4A3A3A ?
A6 45 4A3A3C 0 0 -
A6 45 4A3C3C 187 3 pos
A6 45 4B3A3A 76 2 pos
A6 45 4B3A3C 105 2 pos
A6 45 4B3C3C 70 2 pos

S6 15 3A2A ?
S6 15 3A2B ?
S6 15 3C2A 0 0 -
S6 15 3C2B 15 1 pos
S6 15+15 4A3A3A2A ?
S6 15+15 4A3A3A2B ?
S6 15+15 4A3A3C2A 0 0 -
S6 15+15 4A3A3C2B 0 0 -
S6 15+15 4A3C3C2A 0 0 -
S6 15+15 4A3C3C2B 0 0 -
S6 15+15 4B3A3A2A 0 0 -
S6 15+15 4B3A3A2B ?
S6 15+15 4B3A3C2A 0 0 -
S6 15+15 4B3A3C2B 0 0 -
S6 15+15 4B3C3C2A 0 0 -
S6 15+15 4B3C3C2B 0 0 -
S6 15+45 4A4A3A2A 151 2 pos
S6 15+45 4A4A3A2B 0 0 -
S6 15+45 4A4A3C2A 0 0 -
S6 15+45 4A4A3C2B 0 0 -
S6 15+45 4B4B3A2A 0 0 -
S6 15+45 4B4B3A2B 91 2 pos
S6 15+45 4B4B3C2A 0 0 -
S6 15+45 4B4B3C2B 0 0 -
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S6 15+15+45 4A2A2A2A 151 2 pos
S6 15+15+45 4A2A2A2B 0 0 -
S6 15+15+45 4A2A2B2B 0 0 -
S6 15+15+45 4A2B2A2A 151 2 pos
S6 15+15+45 4A2B2A2B 0 0 -
S6 15+15+45 4A2B2B2B 0 0 -
S6 15+15+45 4B2A2A2A 0 0 -
S6 15+15+45 4B2A2A2B 0 0 -
S6 15+15+45 4B2A2B2B 0 0 -
S6 15+15+45 4B2B2A2A 0 0 -
S6 15+15+45 4B2B2A2B 0 0 -
S6 15+15+45 4B2B2B2B 106 2 pos

3 Ṡ6 45 3A ?
3 Ṡ6 45 3C 0 0 -
3 Ṡ6 45+45 3A2A 0 0 -
3 Ṡ6 45+45 3A2B 0 0 -
3 Ṡ6 45+45 3C2A 0 0 -
3 Ṡ6 45+45 3C2B 136 2 pos

(S4 × S3)+ 18 3A3A3A ?
(S4 × S3)+ 18 3A3A3C 0 0 -
(S4 × S3)+ 18 3A3C3C ?
(S4 × S3)+ 18 3C3C3C ?
(S4 × S3)+ 18+3 3A3A3A2A ?
(S4 × S3)+ 18+3 3A3A3A2B ?
(S4 × S3)+ 18+3 3A3A3C2A 0 0 -
(S4 × S3)+ 18+3 3A3A3C2B 0 0 -
(S4 × S3)+ 18+3 3A3C3C2A ?
(S4 × S3)+ 18+3 3A3C3C2B ?
(S4 × S3)+ 18+3 3C3C3C2A 24 2 pos
(S4 × S3)+ 18+3 3C3C3C2B 27 2 pos

A7 105 3A 196 2 pos
A7 105 3C 211 2 pos

S7 21 3A2A ?
S7 21 3A2B ?
S7 21 3C2A 0 0 -
S7 21 3C2B 21 1 pos
S7 21+105 3A2A 0 0 -
S7 21+105 3A2B 217 2 pos
S7 21+105 3C2A 0 0 -
S7 21+105 3C2B 0 0 -
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L2(11) 55 6A5A5A 101 2 pos

L3(3) 117 3A 0 0 -
L3(3) 117 3C 144 2 pos

(S5 × S3)+ 30 3A3A ?
(S5 × S3)+ 30 3A3C 0 0 -
(S5 × S3)+ 30 3C3A 0 0 -
(S5 × S3)+ 30 3C3C 0 0 -
(S5 × S3)+ 15+30 3A 67 2 pos
(S5 × S3)+ 15+30 3C 0 0 -

M11 165 6A4B5A 286 2 pos

Table 4: Results for some groups

G0 axes shape dim m form

1 1+1+1 (2A)3 6,9 2,3 pos

22 1+2+2 4A (2A)2 14 3 semi
22 1+2+2 4A 2A 2B 10 3 pos
22 2+2+2 (4A)2 (2B)2 9 3 pos

23 2+2+4 (4A)2 (2B)3 13 3 pos
23 2+2+4 4A 4B (2A)2 2B 15 3 pos
23 2+4+4 (4A)2 (4B)2 (2A)2 16 2 semi

24 2+2+2+2 (4A)2 (2A)2 (2B)2 22 5 semi
24 2+2+2+2 (4A)3 (2B)3 14 4 pos
24 2+2+2+2 4A4B 2A2B2A2B 27 4 semi
24 2+2+2+2 4A4B 2A (2B)3 19 4 pos

S3 1+1+1+3 3A (2A)4 (2B)2 19 3 pos
S3 1+1+3 3A2A2A2B 13 3 pos
S3 1+3+3 2A2B 13 3 pos

S4 1+3+6 4A3A 2A2A2A 36 3 pos
S4 1+3+6 4A3A 2A2A2B 36 3 pos
S4 1+3+6 4A3A 2A2B2A 36 3 pos
S4 1+3+6 4A3A 2A2B2B 52 5 pos
S4 1+3+6 4A3A 2B2B2A 24 3 pos
S4 1+3+6 4A3A 2B2B2B 26 3 pos
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S4 1+3+6 4A3C 2A2B2B 27 5 pos
S4 3+3+6 (4A)2 3A (2A)3 2B 36 3 pos
S4 3+6+6 (4A)2 2A2B2A 36 3 pos

PSL(2, 7) 21+21 (4A)3 (2A)2 102 3 pos

22 : S4 12+12 (4A)3 4B 3C 60 3 pos
22 : S4 12+12 4A (4B)3 3A 59 3 pos
22 : S4 12+12+12 4A (4B)4 (2B)3 72 3 pos

Table 5: Additional interesting algebras
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