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Abstract

We derive a Z-score measure reflecting downside bank insolvency risk, drawing on a
Chebyshev inequality in terms of the lower semivariance. As then illustrated empiri-
cally for US banks, this may provide a useful alternative, or robustness check, to the
more commonly used Z-score measure based on the standard Chebyshev inequality.
Keywords: bank; insolvency risk; Z-score; downside risk; semivariance
JEL classification: G21; G28



1. Introduction

A widely used risk measure in the empirical banking literature to reflect a bank’s
probability of insolvency is the Z-score; it is both relatively simple and can be calcu-
lated entirely from accounting information.1 The Z-score draws on the well-known
Chebyshev inequality, and is generally attributed to Boyd and Graham (1986), Han-
nan and Hanweck (1988) and Boyd et al. (1993).
In particular, defining bank insolvency as a state where (EQ+ ROA) ≤ 0, with

EQ the bank’s capital-asset ratio and ROA its return on assets, Hannan and Hanweck
(1988) and Boyd et al. (1993) showed that if ROA is a random variable with finite
mean µROA and variance σ2ROA, the standard Chebyshev inequality

2 suggests an upper
bound of the probability of insolvency P as

P (ROA ≤ −EQ) ≤ Z−2 ≡ P, (1)

where the Z-score is defined as

Z ≡ (EQ+ µROA)/σROA > 0. (2)

Our paper presents a related approach to the derivation of an alternative Z-score
measure to reflect a bank’s probability of insolvency, which might be better at cap-
turing downside risk. To this end, instead of drawing on the standard Chebyshev
inequality, we exploit the lesser-known Chebyshev inequality in terms of the lower
semivariance (see Berck and Hihn 1982). An empirical illustration using quarterly
call report data for US banks demonstrates the potentially complementary informa-
tion contained in this "downside risk" Z-score. As a consequence, this alternative
measure may prove of practical use to applied researchers in the areas of banking and
financial stability, at a minimum as a straightforward robustness check for results
obtained with the traditional measure, and also potentially serve financial regulators
and market participants more generally.
Section 2 now introduces our alternative "downside risk" Z-score measure; Section

3 empirically illustrates how it compares to the traditional measure when taken to
US data; and Section 4 concludes the paper.

1For some recent papers using this methodology, see e.g. Pino and Sharma (2019), Caiazza et al.
(2018), Berger et al. (2016), Doumpos et al. (2015), Vazquez and Federico (2015), Hakenes et al.
(2014), Berger et al. (2014), Delis et al. (2014), Fang et al. (2014), Fu et al. (2014).

2The standard Chebyshev inequality states that for a random variable X with finite mean µ and
variance σ2, it holds for any k > 0 that P {|X − µ| ≥ k} ≤ σ2/k2 (see e.g. Ross, 1997, p. 396).



2. Bank insolvency and downside risk: an alternative
Z-score measure

The importance of downside risk when return distributions are skewed has been
emphasized as early as Roy (1952); in our context, potential down movements
in bank income and/or capital matter more in relation to bank distress than po-
tential up movements. The lower semivariance σ2−, which is defined as σ2− =
(n− 1)−1

∑
n (min (x− µx, 0))

2, could arguably be better at capturing this asym-
metric impact than the common variance, which obscures it.
We can allow for this by considering an alternative "downside risk" Z-score,

given as Zd ≡ (EQ+ µROA) /σ
−
ROA. Defining bank insolvency as a state where

(EQ+ ROA) ≤ 0, with EQ the bank’s capital-asset ratio and ROA its return on
assets. we can show that Zd relates to a corresponding probability of insolvency as
follows

Proposition. If ROA is a random variable with finite mean µROA and lower semi-
variance σ2−ROA, where σ

2−
ROA = (n− 1)

−1∑
n (min (ROA− µROA, 0))

2, an upper bound
of the bank’s probability of insolvency P is given by

P(ROA ≤ −EQ) ≤ (Zd)−2 ≡ Pd, (3)

where the Z-score measuring downside insolvency risk is defined as

Zd ≡ (EQ+ µROA) /σ
−
ROA > 0. (4)

Proof. This is an application of the Chebyshev inequality in terms of the lower semi-
variance (see Berck and Hihn 1982): it states that for a random variableX with finite
mean µ and lower semivariance σ2−, it holds for anym > 0 that Pr {X ≤ µ−mσ−} ≤
1
m2 . Setting X = ROA and m = (EQ+ µROA)/σ

−
ROA, we obtain our result.

Corollary. The "downside risk" Z-score Zd developed in the Proposition relates to
bounds on the corresponding probability of insolvency that are tighter, by a factor of
σ2−ROA/σ

2
ROA, than those given for the traditional Z-score Z by the standard Chebyshev

inequality.

Proof. This follows straightforwardly from the fact that Zd = σROAZ/σ
−
ROA and

σ2ROA = σ2− + σ2+, with σ2+ the corresponding upper semivariance, as shown in
Berck and Hihn (1982).

This relevant corollary is, of course, not entirely surprising as the Chebyshev
inequality in terms of the lower semivariance incorporates additional information



about the degree of asymmetry of the underlying distribution of ROA which is not
captured by the more general Chebyshev inequality.3

3. Empirical illustration

We now briefly illustrate how the Z-score measures defined by Equations (2) and
(4) compare when taken to the data. To this end, we examine a dataset based
on quarterly call reports for US banks, extracted from WRDS. We clean for obvious
outliers/erroneous data, and calculate time-varying Z and Zd measures4 using moving
mean and standard deviation/lower semi-standard deviation estimates forROA (with
window width eight quarters), combined with current period values of EQ.5 In order
to capture both pre-crisis and crisis periods, we then retain all banks for which we
are able to construct a complete set of time-varying Z and Zd measures for the period
2001q1-2010q4 (resulting in data for 5305 banks in total).
Table 1 presents descriptive statistics for the differences in means and standard

deviations of Z and Zd measures, calculated per bank, for the full sample 2001q1-
2010q4, as well as the pre-crisis/crisis samples 2001q1-2005q4 and 2006q1-2010q4.
Analogous statistics are computed for the differences in means and standard devia-
tions of the corresponding probability bounds P and Pd, given by Equations (1) and
(3), as well as for the correlation coeffi cients between Z-score measures Z and Zd and
the corresponding probability bounds P and Pd, respectively.
We observe that while Zd measures are on average larger than Z ones, across

all three samples, the differences in corresponding probability bounds P and Pd are
on average fairly small. This notwithstanding, the maximum differences in corre-
sponding probability bounds P and Pd can be substantial, and even more so in the
separate pre-crisis/crisis samples. Analogous relationships hold for the variability of
Z-score measures Z and Zd and their corresponding probability bounds P and Pd,
similarly across all three samples. We further note that correlations between Z-score
measures Z and Zd, as well as their corresponding probability bounds P and Pd, are
very high on average, and slightly more so in the crisis period than the pre-crisis one.
Interestingly, the minimum correlations between Z-score measures Z and Zd, as well
as their corresponding probability bounds P and Pd, are significantly lower in the

3See also the Appendix for an analogous comparison of corresponding probability bounds when
using an alternative interpretation of the traditional Z-score Z that draws on the one-sided Cheby-
shev inequality instead (see Lepetit and Strobel 2015).

4Stata code for the calculation of these measures is available from the authors on request.
5For a discussion of different approaches to the construction of time-varying Z-score measures

see Lepetit and Strobel (2013).



separate pre-crisis/crisis samples than for the full sample.
Figures 1 and 2 show scatter plots of Z vs Zd measures and the corresponding

probability bounds P vs Pd, respectively; these illustrate the close but nevertheless
nontrivial relationship between these alternative measures (computed averaged per
bank and for the full sample). In addition, Figures 3 and 4 present scatter plots of
pre-crisis vs crisis correlations between Z-score measures Z and Zd, as well as their
corresponding probability bounds P and Pd. Both displays further demonstrate the
potentially complementary information contained in the "downside risk" Z-score Zd
developed in this paper, suggesting it as a potential alternative to the more commonly
used Z-score measure Z, serving at a minimum as a straightforward robustness check
for results obtained with the traditional measure.

4. Conclusion

We derived a Z-score measure reflecting downside bank insolvency risk, drawing on
a Chebyshev inequality in terms of the lower semivariance. An empirical illustration
using quarterly call report data for US banks suggests that this may provide a use-
ful alternative to the more commonly used Z-score measure based on the standard
Chebyshev inequality. It may therefore be of practical use to applied researchers in
the domains of banking and financial stability, at a minimum as a straightforward ro-
bustness check for results obtained with the traditional measure, but also potentially
serve financial regulators and market participants more generally.

Appendix

An alternative interpretation of the traditional bank insolvency risk measure Z,
drawing on the one-sided Chebyshev inequality, was more recently given by Lepetit
and Strobel (2015): if the bank’s return on assets ROA is a random variable with
finite mean µROA and variance σ2ROA, the one-sided Chebyshev inequality

6 suggests
a refined upper bound of the probability of insolvency as

P(ROA ≤ −EQ) ≤
(
1 + Z2

)−1 ≡ Pr,

6The one-sided Chebyshev inequality states that for a random variable X with finite mean µ
and variance σ2, it holds for any a > 0 that P {X ≤ µ− a} ≤ σ2

σ2+a2 (see Ross, 1997, p. 414, or
previously, Feller, 1971, p. 152).



Table 1: Comparison of Z and Zd measures, and their corresponding probability
bounds P and Pd, for sample of US banks (per bank, N=5305)

mean sd min max

diff_mean_z -19.9437 12.6109 -111.8239 -0.9297

diff_mean_p 0.0027 0.0067 0.0000 0.1172

diff_sd_z -12.3363 9.2669 -91.0827 1.5368

diff_sd_p 0.0038 0.0105 -0.0085 0.1531

corr_z 0.9691 0.0283 0.5900 0.9998

corr_p 0.9641 0.0577 0.3346 1.0000

mean sd min max

diff_mean1_z -21.2099 15.0786 -151.0849 -0.8699

diff_mean1_p 0.0017 0.0075 0.0000 0.2269

diff_sd1_z -10.0271 9.5263 -101.5699 2.8820

diff_sd1_p 0.0016 0.0070 -0.0084 0.1820

corr1_z 0.9550 0.0622 0.1024 0.9999

corr1_p 0.9449 0.0807 0.0327 1.0000

mean sd min max

diff_mean2_z -18.6775 13.6711 -165.7303 -0.6457

diff_mean2_p 0.0037 0.0101 0.0000 0.2025

diff_sd2_z -11.1279 9.8793 -119.6034 6.4833

diff_sd2_p 0.0039 0.0118 -0.1212 0.1737

corr2_z 0.9655 0.0526 -0.0269 1.0000

corr2_p 0.9598 0.0717 0.2168 1.0000

Full Sample: 2001q1-2010q4

Pre-crisis sample: 2001q1-2005q4

Crisis sample: 2006q1-2010q4



with EQ the bank’s capital-asset ratio and the Z-score Z again defined as Z ≡
(EQ+ µROA) /σROA > 0.
In the context of our "downside risk" Z-score Zd, it is then straightforward to

show that
Pd < Pr for σ−ROA/σROA <

√
Z2/(1 + Z2),

with Pd ≥ Pr otherwise; this would suggest min (Pd, Pr) as a best bound on the
probability of insolvency overall.
As illustrated in Figure 5, which plots the resulting best bounds for values κ =

σ−ROA/σROA ∈ {0.3, 0.5, 0.7}, apart from for very low Z-score levels, the "downside
risk" Z-score Zd developed above relates to bounds on the corresponding probability
of insolvency that are generally, and potentially substantially, tighter than those
given for the traditional Z-score Z by the one-sided Chebyshev inequality. Again,
this is a natural consequence of the fact that it incorporates additional information
about the degree of asymmetry of the underlying distribution of ROA.
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Figure 1: Scatter plot of Z vs Zd measures (average per bank, full sample)

Figure 2: Scatter plot of corresponding probability bounds P vs Pd (average per
bank, full sample)



Figure 3: Scatter plot of correlations between Z and Zd measures (per bank, pre-crisis
vs crisis sample)

Figure 4: Scatter plot of correlations between corresponding probability bounds P
and Pd (per bank, pre-crisis vs crisis sample)



Figure 5: Best probability bounds for κ = σ−ROA/σROA ∈ {0.3, 0.5, 0.7}, given Zd =
Z/κ


