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Improving Musculoskeletal Model Scaling Using
an Anatomical Atlas: The Importance of
Gender and Anthropometric Similarity

to Quantify Joint Reaction Forces
Ziyun Ding , Chui K. Tsang, Daniel Nolte , Angela E. Kedgley, and Anthony M. J. Bull

Abstract—Objective: The accuracy of a musculoskeletal
model relies heavily on the implementation of the underly-
ing anatomical dataset. Linear scaling of a generic model,
despite being time and cost efficient, produces substantial
errors as it does not account for gender differences and
inter-individual anatomical variations. The hypothesis of
this study is that linear scaling to a musculoskeletal model
with gender and anthropometric similarity to the individual
subject produces similar results to the ones that can be ob-
tained from a subject-specific model. Methods: A lower limb
musculoskeletal anatomical atlas was developed consisting
of ten datasets derived from magnetic resonance imaging
of healthy subjects and an additional generic dataset from
the literature. Predicted muscle activation and joint reac-
tion force were compared with electromyography and litera-
ture data. Regressions based on gender and anthropometry
were used to identify the use of atlas. Results: Primary pre-
dictors of differences for the joint reaction force predictions
were mass difference for the ankle (p < 0.001) and length dif-
ference for the knee and hip (p � 0.017). Gender difference
accounted for an additional 3% of the variance (p � 0.039).
Joint reaction force differences at the ankle, knee, and hip
were reduced by between 50% and 67% (p = 0.005) when
using a musculoskeletal model with the same gender and
similar anthropometry in comparison with a generic model.
Conclusion: Linear scaling with gender and anthropomet-
ric similarity can improve joint reaction force predictions
in comparison with a scaled generic model. Significance:
The presented scaling approach and atlas can improve the
fidelity and utility of musculoskeletal models for subject-
specific applications.

Index Terms—Anatomical atlas, musculoskeletal model,
scaling, anthropometry, magnetic resonance imaging.
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I. INTRODUCTION

COMPUTATIONAL modelling and simulation of the mus-
culoskeletal system can be used to address biomechanical

questions, including those that require information that is not
amenable to direct measurement, such as muscle forces and ar-
ticular, or joint, loading. This type of information is essential
for clinical applications, including: designing assistive devices
[1], planning rehabilitative treatments [2], [3], analysing pathol-
ogy such as osteoarthritis [4], designing implants [5], and the
prevention of injuries [6].

The quantification of muscle forces and articular loading re-
quires a detailed description of musculoskeletal geometry in the
musculoskeletal model that is used to mathematically model
the skeletal bones, joint articulations and musculotendon actu-
ators. The lower limb model created by Delp et al. has been
used extensively, and its underlying dataset is an amalgamation
of two classic studies using measurements of five cadaver sub-
jects [7] that has since been altered and refined [8], [9]. This
generic model is used to investigate the general features of mus-
culoskeletal design [8] and has been extended to include large
numbers of additional subject measurements, such as incorpo-
rating variations in muscle volume and length [10], [11]. Klein
Horsman et al. [12] published the first complete dataset that
was based on the geometrical measurement of a single cadav-
eric specimen (male, age 77 years, mass 105 kg, height 1.74 m),
and others have followed this approach (Carbone et al. [13];
male cadaver, age 85 years, mass 45 kg).

Linear scaling of generic models is the most time and cost ef-
ficient way in the clinical setting of representing an individual’s
musculoskeletal geometry [14]–[16]. In this approach simple
measurements of anthropometry such as body mass and limb
lengths are used to scale the documented generic dataset to the
individual subject [16], [17]. However, the generic models cur-
rently available (presented in Table I) do not enable gender and
inter-individual anatomical variations to be accounted for [18],
[19]. Such variations in human anatomy cannot be extrapolated
comfortably from a single model and substantial errors have
been reported when generic models are used, through scaling,
to represent individual subjects [20]–[23].

Three-dimensional reconstructions of high-resolution mag-
netic resonance imaging (MRI) can accurately reproduce bone
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TABLE I
SINGLE COMPLETE SUBJECT LOWER LIMB MUSCULOSKELETAL GENERIC MODELS USED IN THE LITERATURE

aLimb length is calculated as the sum of femur and tibia lengths of the right leg: femur length is measured as the distance from the
trochanter major to the mid point of the femoral epicondyles; tibia length is measured as the distance from the mid point of the femoral
epicondyles to the medial malleolus.

and muscle geometry [24] and accurately quantifies moment
arm and muscle length [25]. Thus, MRI can be used to gen-
erate an anatomical dataset of in vivo subjects; such subject-
specific models improve musculoskeletal modelling accuracy
when compared to generic scaling [26], [27]. However, creat-
ing such a dataset for every subject for which musculoskele-
tal modelling is used is time and technology intensive, and
thus is not in widely clinical use. The hypothesis of this study
is that linear scaling to a musculoskeletal model with gender
and anthropometric similarity to the individual subject produce
similar results to the ones that can be obtained from a subject-
specific model. This hypothesis is tested through: first, develop-
ing a lower limb musculoskeletal anatomical database, or atlas,
consisting of datasets derived from MRI and a generic dataset
from the literature; secondly, quantifying the discrepancies from
scaled models where the outputs from the personalised, subject-
specific musculoskeletal model are considered as a reference
[28]–[30]; and finally, establishing any relationship between
discrepancies of scaled models and the discrepancies from the
underlying datasets to the modelled subject to define the use of
the atlas in situations where it is impractical to create a subject-
specific model to quantify joint reaction forces.

II. METHODS

This study was approved by the NHS Research Ethics Com-
mittee and the Imperial College Research Ethics Committee.
Written informed consent was obtained from all ten healthy
subjects, covering a wide range of body heights, all with no
lower limb musculoskeletal conditions (Table II).

A. MRI-Based Musculoskeletal Atlas

MRIs of each subject were acquired. T1 weighted axial spin
echo scans were performed with the subjects lying supine
with extended knees using a 3.0 T MRI scanner (MAG-
NETROM Verio, Siemens, Germany). Six axial image series
were taken contiguously from the fifth lumbar vertebra to the
distal end of the limb with the following settings: field of
view 450 × 450 mm2, acquisition matrix = 320 × 320, ax-
ial plane resolution 1.406 mm ×1.406 mm, slice thickness 1
mm. The total acquisition time per subject was approximately
40 minutes.

Each series of axial images was automatically registered,
providing a field of view of the entire lower limbs. 3D
bone surfaces of the pelvis and the right femur, tibia/fibula,
patella and foot (calcaneus, talus and navicular bones for all

TABLE II
PARTICIPANT CHARACTERISTICS

a.Height percentile is calculated based on British adults [31].
b.Limb length is calculated as the sum of femur and tibia lengths of the right leg: femur
length is measured as the distance from the major trochanter to the mid point of the
femoral epicondyles; tibia length is measured as the distance from the mid point of the
femoral epicondyles to the medial malleolus.

subjects, and metatarsal bones for six subjects) were recon-
structed based on manual segmentation of bone contours in the
axial images.

Twenty-one anatomical landmarks were manually digitised
on the bone surface. The landmarks were used to construct the
local coordinate systems of the lower limb, as described by the
Standardisation and Terminology committee of the International
Society of Biomechanics [32]. Tibiofemoral contact points were
digitised as the most distal ends of the medial and/lateral femoral
condyles.

The joint parameters were identified by manually fitting ge-
ometrical objects to the articular surfaces. The following joint
parameters were identified: hip joint centre (centre of a sphere
fitted to the femoral head, Fig. 1a); knee joint centre (midpoint
of the central axis of a cylinder fitted to the boundaries of both
femoral condyles, Fig. 1b); and ankle joint centre (centre of a
sphere fitted to the talar dome, Fig. 1c). The fitting error, the root
mean squared distance between a set of 50 digitised points on
the articular surface to the surface of the fitted object, was 0.7
(± standard deviation 0.3) mm, 1.7 (±0.6) mm, and 1.8 (±1.0)
mm for the hip, knee and ankle joints, respectively. The fitting
error in each dataset is reported in the supplementary datasets.
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Fig. 1. Lower limb anatomy geometry for a representative subject. (a) Hip centre; (b) Knee centre and knee axis; (c) Ankle centre; (d) Muscle
element lines-of-action (in pink) and patella ligament (in blue). Wrapping objects (in green) were defined for iliopsoas and gastrocnemius.

Muscle and ligament lines-of-action were described by the
origin, via and insertion points. Following the topology of the
generic dataset of Klein Horsman et al. [12], which has been
implemented in this atlas, lines-of-action of 163 muscle el-
ements and the patella ligament were measured in the MR

images (Fig. 1d), where the origins of psoas were estimated
based on the measured length of the fifth lumbar vertebra and
the intervertebral disc. For gastrocnemius and iliopsoas that are
free to glide over the underlying bone of the femoral condyles
and pubis of the pelvis, two wrapping cylinders were defined in
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the generic dataset. These cylinders were manually identified in
MR images based on the curved muscle lines-of-action of gas-
trocnemius and iliopsoas and the segmented bone surface. The
fitting error, the root mean squared distance between a set of 50
points digitised on the posterior surface of the femoral condyles
and the superior surface of the pubic ramus to the cylindrical
surface, was 1.5 (±0.2) mm and 1.3 (±0.2) mm, respectively.
The fitting error in each dataset is reported in the supplementary
datasets.

Segmentation and digitisation of MR images were performed
using Mimics (Mimics 17.0, Materialise, Belgium) by two ex-
perienced operators. On completion, one operator reviewed and
refined all segmentation and digitisation to ensure consistency
across the atlas. The intra- and inter-operator reliability in digi-
tisation of the anatomical landmarks and tibiofemoral contact
points was tested for a subset of six subjects (three male, three
female). The intraclass correlation coefficient (ICC, two-way
mixed effects, absolute agreement) was higher than 0.99 and
the intra- and inter-operator differences are reported in supple-
mentary Fig. A1.

As shown in the literature, the whole lower limb muscle vol-
ume is correlated with the subject’s height-mass product and the
distribution of each individual muscle volume is well preserved
across a group of healthy young subjects [11]. According to the
equation in [11] the whole lower limb muscle volume (Vlm ) of
each subject was calculated:

Vlm = 47 × m × h + 1285 (1)

where m is subject mass in kg and h is subject height in metres.
The muscle volume (Vm ) was proportional to the whole lower

limb muscle volume and the muscle length (Lm ) was propor-
tional to the lower limb length, according to the mean value
from the literature [11]. Muscle physiological cross-sectional
area (PCSA) was calculated as:

PCSA =
Vm cosθ

Lm × Lf

Lm
× 2.7

Ls

(2)

where θ is the pennation angle; Lf

Lm
is fibre length to muscle

length ratio [10]; and 2.7
Ls

is the ratio of optimal sarcomere
length to the sarcomere length in μm [33].

Muscle parameters of a representative subject are presented
in Table III. Ten MR-based anatomical datasets (including co-
ordinates of bony landmarks, joint centres/axes, contact points,
lines-of-action of muscles and ligament, wrapping object param-
eters and muscle parameters) are available in the supplementary
datasets.

B. Gait Data Collection

Within six months (mean ± standard deviation [range]: 3.1
± 2.3 [0.1–6.0] months) from MR imaging acquisition, gait
data from the same subjects were acquired using a 10-camera
VICON motion analysis system (Oxford Metrics Group, UK)
with two force plates (Kistler Type 9286B, Kistler Instrumente
AG, Winterthur, Switzerland). The marker set comprised
anatomical landmarks of the whole lower limbs (markers on the
anterior/posterior superior iliac spine, medial/lateral femoral

epicondyles, medial/lateral malleolus, the second/fifth
metatarsal and the heel) as well as clusters of three markers
each for the thighs and shanks [34]. Subjects were instructed to
perform six level walking trials at a self-selected comfortable
speed (1.25 ± 0.15 [1.03–1.41] m/s). The final three trials
were selected for analysis. Surface electromyography (EMG;
Myon 320, Myon AG., Switzerland) during gait was recorded
at 1000 Hz from eight muscles: gluteus medius, rectus femoris,
vastus lateralis, vastus medialis, biceps femoris long head (LH),
semitendinosus, soleus and tibialis anterior. The electrodes
were aligned parallel to the muscle fibres over the muscle
belly, as described in the literature [35], [36]. Prior to electrode
placement, the skin was shaved and cleaned with alcohol wipes.
Recorded EMG signals were corrected for offset, high-pass
filtered at 30 Hz using a zero phase-lag, four order Butterworth
filter and rectified. The rectified signals were then low-pass
filtered at 10 Hz [37].

C. Lower Limb Musculoskeletal Model

A lower limb musculoskeletal model FreeBody V2.1 was
used to quantify forces during gait [38], [39]. It consists of four
rigid segments (foot, shank, thigh and pelvis), articulated by
ankle, knee and hip joints, actuated by 163 lower limb muscle
elements and the patellar ligament. The ankle and knee joints
each possess six degrees of freedom (DOFs, a combination of
3DOFs planar joint and 3DOFs spherical joint), and, in this use
of the model, the hip joint possesses three rotational DOFs (a
spherical joint). The position and orientation of each rigid seg-
ment was constructed based on the measured kinematics using
the method in [40], with a constraint to the hip joint [39]. The net
joint force and moment was calculated using wrench notation
in the inverse dynamic method [41]. Afterwards, muscle forces
and resultant articulated contact forces across the ankle, knee
and hip joints were calculated using a one-step static optimisa-
tion [42] by minimising the sum of cubed muscle activations
[43]. The optimisation model is formulated, as below (3):

min
163∑

m=1

(
fm

fmaxm

)3

subject to :
⎡

⎢⎢⎢⎢⎢⎢⎣

L∑

l=1

fl · nli −
K∑

k=1

fk · nk(i−1) + J i − J i−1

L∑

l=1

fl · nli × rli −
K∑

k=1

fk · nk(i−1) × rk(i−1)

− d̃i × J i−1

⎤

⎥⎥⎥⎥⎥⎥⎦

=

[
MiE3×3 03×3

Mi c̃i I i

][
αi − g

θ̈i

]
+

[
03×1

θ̇i × Ii θ̇i

]

0 ≤ fm ≤ fmaxm
,m = 1, . . . , 163

(3)

where fm is the muscle force of muscle element m (m =
1, . . . ,163) and fmaxm

is the maximum muscle force of muscle
element m, i is the segment number (numbering from distal to
proximal), L is the number of the proximal muscle element at
the segment i, K is the number of the distal muscle element
at the segment i, ni the line of action of the proximal muscle
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TABLE III
MUSCLE PARAMETERS OF A REPRESENTATIVE SUBJECT (F1)

Fibre length to muscle length ratio (
L f
L m

), pennation angle (θ), and sarcomere length (Ls ) were taken from [10]. For muscles which were not measured in [10] their
fibre length to muscle length ratio was set as 1, pennation angle was set as 0° and sarcomere length was set as 2.7 μm.
a.Muscle volume was only available for the combined extensor digitorum longus and extensor hallucis longus in [11]. Volume proportion in [12] was used to divide the
two muscles.
b.Muscle volume was only available for the combined gemellus inferior and gemellus superior in [11]. Volume proportion in [12] was used to divide the two muscles.
c.Muscle volume was only available for the combined peroneus longus and peroneus brevis in [11]. Volume proportion in [12] was used to divide the two muscle.
d.Muscle was not included in [11]. Its PCSA was obtained from [12].

element, ni−1 the line of action of the distal muscle element,
ri the moment arm of the proximal muscle element, ri−1 the
moment arm of the distal muscle element, J i the proximal joint
reaction force, J i−1 the distal joint reaction force, I i the inertia
tensor, θ̈i the angular acceleration about COM, θ̇i the angular
velocity about the COM, ai the linear acceleration of COM, g
the gravitational acceleration, Mi the segment mass, E3×3 the
identity matrix, ci the vector from the proximal joint to the seg-
ment COM and di is the vector from the proximal to the distal
joint, c̃i and d̃i are the skew sysmetirc matrix of ci and di ,
respectively.

For each individual subject, eleven lower limb musculoskele-
tal models were created: one using the subject-specific MR-
based dataset and the others through linear scaling of the generic
and the remaining nine MR-based datasets. In the scaled mod-
els, scaling factors were the ratios of the intersegmental length
and width measured of the subject to intersegmental length and
width in the underlying dataset. The following anatomical pa-
rameters scaled using this methodology were: lines-of-action
of muscles/ligament, muscle wrapping parameters, joint centres
and contact points [39]. Segment inertia parameters were deter-
mined based on the subject’s height, mass and gender, using the
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regression equations in De Leva [44], which were identical in
the eleven models. Maximum muscle force of each muscle ele-
ment was calculated as the maximum muscle stress (60 N/cm2)
[9] multiplied by the PCSA of each muscle element. In total,
330 simulations (10 subjects × 11 anatomical datasets × 3 gait
trials) were analysed in the study.

D. Data Analysis and Statistics

Predicted muscle force, muscle activation and joint reaction
force from models were expressed at a gait cycle percentage
from 0% (right heel strike) to 100% (the consecutive right
heel strike) at 1% intervals and averaged over three trials. The
subject-specific (reference) model was evaluated: first, as a ver-
ification of the model the predicted muscle activation was com-
pared to the experimental EMG of this subject. The magnitude
(M), phase (P) and combined (C) errors were quantified using
the Sprague and Geers metric [45], where a combined error of
less than 0.40 is the best validation for similar work in the lit-
erature [28]; secondly, the predicted knee and hip joint reaction
force was compared to the measured data in the literature [46],
[47]. The measured knee joint reaction force was from eight
subjects with instrumented knee implants [46]; the measured
hip joint reaction force was from ten subjects with instrumented
hip implants [47].

Differences between the scaled and subject-specific model
outputs were quantified using the root mean square difference
(RMSD) and normalised by the mean force from the subject-
specific model (3):

RMSDd =

√∑100
i=0 (F i

s − F i
d)

2

100

/
F S × 100 (%) (4)

where Fs is the predicted force from the subject-specific model;
Fd is the predicted force using the dth scaled model; and Fs is
the mean force during gait from the subject-specific model.

Pearson correlation and multiple linear regression analyses
were used to identify the model in the atlas that produced the
closest joint reaction forces to the ones from a subject-specific
model. The following anthropometric measurements were in-
vestigated: height, mass, body mass index (BMI), limb length,
pelvis width, femur length, tibia length, and the limb length
to pelvis width ratio. Multiple regressions to the discrepancies
in joint reaction forces were identified based on stepwise for-
ward regression (pin = 0.05, pout = 0.1). The appropriateness
of the final regression was checked by inspecting the normal
probability plot of the regression standardised residual and the
scatterplot of the standardised residual.

A Wilcoxon Signed Rank test was performed to test the hy-
pothesis that scaling of the model (the ten remaining underlying
datasets in the atlas) with gender and anthropometric similar-
ity as identified by the regression, produced minor discrepan-
cies of joint reaction force predictions from the subject-specific
model, than scaling of a single generic model. The appropri-
ate use of the atlas was tested through the gait data in the “6th
Grand Challenge Competition to Predict In Vivo Knee Loads”
from one subject (DM, male, height: 172 cm, mass: 70 kg)

Fig. 2. Predicted muscle activations (solid line) from the subject-
specific model compared to the experimental EMG data (grey area) in
a representative subject (F1). EMG data were individually normalised to
the maximum recorded signal of each muscle during gait and predicted
muscle activations were defined to be between 0 (fully deactivated) and
1 (fully activated) in terms of the peak value predicted during gait. Mag-
nitude (M), phase (P) and combined (C) errors from predicted muscle
activations are quantified using Sprague and Geers metric. See supple-
mentary Fig. A2 for the results of the other nine subjects.

[48]. The subject-specific model of DM from Ding et al. [39]
was implemented in Freebody V2.1 and is freely available at
http://www.msksoftware.org.uk/software/freebody. All statisti-
cal procedures were performed using IBM SPSS with an alpha
level of 0.05 (Version 24.0, IBM Corp., USA).

III. RESULTS

Subject-specific modelling of muscle activation showed con-
sistency with the EMG signals (Fig. 2 for a representative sub-
ject and see supplementary Fig. A2 for the other nine sub-
jects). Across all subjects, the quantitative evaluation of pre-
dicted muscle activations to EMG data using Sprague and Geers
metric is shown in Table IV, with phase errors ranging from
0.17 (soleus, standard deviation, SD = 0.06) to 0.32 (rectus
femoris, SD = 0.03) and combined errors ranging from 0.26
(soleus, SD = 0.09) to 0.44 (rectus femoris, SD = 0.12) from
the subject-specific models. The predicted muscle activations
from ten scaled models to each subject are shown in Supple-
mentary Fig. A3 with quantitative magnitude (M), phase (P)
and combined (C) errors expressed as mean ± standard devi-
ation [range]. When compared to the errors from the subject-
specific model, the mean phase errors from the scaled models
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TABLE IV
ABSOLUTE VALUES OF MAGNITUDE (M), PHASE (P) AND COMBINED (C) ERRORS BETWEEN PREDICTED MUSCLE ACTIVATIONS FROM MODELS
(SUBJECT-SPECIFIC AND SCALED MODELS) TO MEASURED EMG DATA, REPORTED AS MEAN (STANDARD DEVIATION) FOR ALL TEN SUBJECTS

a.p value is from the Wilcoxon Signed Rank test by comparing the error from the subject-specific model with the mean error from ten scaled models (α = 0.05).

were greater (p � 0.013) for gluteus medius, vastus lateralis,
vastus medialis, semitendinosus, soleus and tibialis anterior.

Joint reaction forces predicted from the subject-specific mod-
els are shown in Fig. 3 while mean and maximum values from
each subject-specific model are summarised in Supplementary
Table A.I. When compared to the measured forces in the liter-
ature, differences in mean and maximum joint reaction forces
are 23% and 26% at the knee, 33% and 47% at the hip.

The maximum RMSDs, expressed as the percentage of mean
force from the subject-specific model, are shown in Fig. 4. Dif-
ferences are greater for the muscle forces than the joint forces:
in the ankle planar flexors, maximum RMSDs were found to
be 336% at flexor hallucis longus and 271% at flexor digitorum
longus; in the ankle dorsiflexors, 325% and 301% at tibialis an-
terior and extensor digitorum longus, respectively; in the knee
extensors 465% at vastus lateralis; and in the hip adductors,
448% at gracilis. The differences in joint reaction forces were
greatest at the knee joint with a maximum RMSD of 61%, fol-
lowed by the ankle joint with 48% and hip joint with 30%. The
maximum RMSD of the sum of joint reaction forces (ankle,
knee and hip) was 26% from the scaled model, in comparison
with the sum of these from the subject-specific model.

A significant moderate to strong correlation (R > 0.30, p <
0.05) was found between the discrepancies in the joint reaction
force predictions and the discrepancies in gender and anthro-
pometric measurements of the underlying anatomical datasets
(apart from the pelvis width, see Table V).

The final multiple regression found the significant predictors
to the difference in the joint reaction force predictions, which
are, for the different predictions of the ankle joint forces: the dif-
ferences in gender (regression coefficient, B = 7.66, p = 0.005)
and mass (B = 0.49, p < 0.001); for the different predictions of
knee joint forces: differences in gender (B = 7.75, p = 0.013),
mass (B = 0.38, p = 0.001), limb length (B = 1.00, p = 0.017),
and the limb length to pelvis width ratio (B = 37.22, p = 0.011);
for the different predictions of hip joint forces: differences in
gender (B = 2.64, p = 0.039), mass (B = 0.10, p = 0.033) and
limb length (B = 0.38, p < 0.001); and for the different pre-
dictions of the sum of these: differences in gender (B = 25.24,
p = 0.003), mass (B = 0.99, p = 0.001) and limb length (B =
2.23, p = 0.046) (Fig. 5 and Table VI). The regression models
accounted for 49%, 61%, 36% and 40% of the variances of the

differences at the ankle, knee, hip joint force predictions, and
the sum of these, respectively (Table VI).

In comparison with the RMSDs produced by scaling of the
generic model, scaling of the musculoskeletal model with gen-
der and anthropometric similarity as identified by the regression
significantly reduced the RMSDs in joint reaction forces of an-
kle, knee, hip and their sum (p = 0.005, Table VII).

Based on the regression to the knee joint force prediction,
the closest scaled model in the atlas was identified for subject
DM in the “6th Grand Challenge Competition to Predict In Vivo
Knee Loads.” It produced similar values as the subject-specific
model for RMSE and R2 when compared to the measured knee
joint reaction force, as shown in Fig. 6 for two representative
gait cycles. The RMSE from the closest model was lower than
the RMSEs from all other ten models in the atlas.

IV. DISCUSSION

Use of a single, scaled generic musculoskeletal model is un-
able to account for wide inter-individual variability in lower
limb anatomy [27]–[29]. This study for the first time has
demonstrated that the discrepancies from the scaled models are
significantly correlated with the discrepancies in gender and
anthropometric measurements of the underlying anatomical
datasets when compared to a subject-specific model. The dis-
crepancy in mass was the primary anthropometric predictor of
the discrepancy in the ankle joint force prediction and the dis-
crepancy of limb length was the primary anthropometric predic-
tor of the discrepancies in knee and hip joint force predictions.
After mass and limb length, the limb length to pelvis width ratio
was found to be the third significant predictor: it accounted for
an additional 3% of the variance of discrepancies at the knee.
Therefore, these anthropometric measures should be taken into
account and varied when creating a comprehensive lower limb
anatomical atlas.

The differences in predicting the knee and hip joint forces are
expected as there are known gender differences in pelvic shape
[18], [49] and there is some evidence of gender differences at
the distal femur [50]. Such differences are not accounted for
by scaling of one unique gender model. These differences may
promulgate throughout the whole lower limb force predictions
through the action of biarticular muscles [51]. Our study has
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Fig. 3. Mean joint reaction force (solid line) and standard deviation (shaded area), expressed in bodyweight (BW), from ten subject-specific models
at the ankle, knee and hip joint. Mean and maximum joint reaction force for each subject-specific model is reported in Supplementary Table A.I.

Fig. 4. RMSDs in muscle and joint reaction forces: (a) maximum RMSDs and standard deviations in muscle forces crossing the ankle, knee and
hip joints, (b) maximum RMSDs and standard deviations in ankle, knee and hip joints, and the sum of these. RMSDs are expressed as a percentage
of mean force from the subject-specific model.

TABLE V
CORRELATION BETWEEN ROOT MEAN SQUARE DIFFERENCE (RMSD) IN JOINT REACTION FORCES FROM SCALED MODELS

AND THE DISCREPANCIES FROM THE UNDERLYING DATASETS TO THE MODELED SUBJECT

The values in italics are statistically significant.
a.RMSDs in ankle, knee and hip joints, and the sum of these, are expressed as the percentage of mean force from the subject-specific
model.
b.Difference in gender is defined as 1 or 0.
c.Difference in anthropometry measurements is expressed as a percentage difference from the underlying dataset to the subject; pelvis
width is defined as the distance between right and left anterior superior iliac spine; the limb length to pelvis width ratio (ratio) is defined
as limb length divided by pelvis width.

shown that these gender differences do not dominate differ-
ences in joint reaction force predictions, when compared to an-
thropometry, but do improve the fit of the regression of RMSDs
by 5% at the ankle (p = 0.005), 3% at the knee (p = 0.013), 2%
at the hip (p = 0.039) and 6% for their sum (p = 0.009).

Linear scaling of a dataset with same gender and similar
anthropometry to the subject reduced discrepancies when com-
pared to scaling of a generic dataset: discrepancies were reduced

at the ankle joint from 44% to 16%, a 64% reduction (p = 0.005);
at the knee joint from 48% to 16%, a 67% reduction (p = 0.005);
and at the hip joint from 34% to 17%, a 50% reduction (p =
0.005). The reduction was most evident for subjects with lower
body mass, for example, subject M5 showed a reduction of
89% at the ankle joint and 77% at the hip joint. As a demon-
stration of the use of the atlas, scaling of the closest model to
one subject in the literature with an instrumented knee implant
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Fig. 5. Significant anthropometric predictors of root mean square difference (RMSD) in joint forces at (a) the ankle, (b) the knee, (c) the hip and
(d) the sum of all joints. Difference in anthropometric measurements is expressed as a percentage difference from the underlying dataset to the
subject. R and p values are from the Pearson correlation analysis.

produced knee joint forces consistent with the measured knee
joint forces (R2 � 0.78). The RMSE from the scaled closest
model was comparable to the best ones that can be obtained
from the subject-specific model. The results support our hy-
pothesis. It is worth noting that the subject-specific model of
DM predicted lower later-stance knee forces than the scaled
closest model. This may be attributed the geometry differences

between the artificial knee and the natural knee [52], [53]. Pre-
vious studies have found that muscle architecture scales with
subject morphology, such as body mass and limb length [11].
The results of our study, however, suggest that the muscle at-
tachments may not scale with these morphological parameters,
highlighting the importance of having an anatomical atlas that
far closer represents the subjects.
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TABLE VI
IDENTIFIED MULTIPLE REGRESSION MODELS TO QUANTIFY ROOT MEAN SQUARE DIFFERENCE (RMSD) IN JOINT REACTION FORCES

a.RMSDs from the scaled modes in joint reaction forces at the ankle, knee, hip and their sum are expressed as the percentage of mean force from the subject-specific
model.
b.B indicates regression coefficient; CI indicates confidence interval.
c.Difference in gender is defined as 1 or 0.
d.Difference in mass (Δmass), limb length (ΔLL) and limb length to pelvis width ratio (Δ ratio) is expressed as percentage difference from the underlying dataset to the
modelled subject.

There are methodological differences between the generic
and MR-based datasets which may affect the consistency of
the atlas. First, joint centres and axes were measured using the
functional method in [12] and measured based on joint geometry
from the MR images. Additionally, the foot was maintained in
plantar flexion position during the cadaveric measurement [12]
and was in a more neutral position in the MR scanners. The
MRI-based anatomical datasets showed a good consistency as
indicated by the high coefficient of determination value of over
0.96 in joint reaction forces (Table VII).

Scaling using the closest anatomical model still produced a
discrepancy of 16% in joint reaction force predictions, when
compared to the subject-specific model. This discrepancy cor-
responds to a 0.37 BW difference for hip joint force during gait.
In addition, the final regression model for the hip joint only
accounted for approximately 33% of variance (adjusted R2 =
0.333) of the discrepancy. This indicates that the linear scaling

based on the gender and anthropometric similarity may not be
adequate, especially for the hip joint force prediction. Recent
studies have demonstrated a better estimation of muscle attach-
ment sites by applying a morphing technique to the bone sur-
face when compared to linear scaling [54], [55]. This technique
could in future be applied to generate a larger, population-based
dataset of subject-specific musculoskeletal models.

To facilitate the development of subject-specific muscu-
loskeletal models, the entire anatomical atlas is accessible at
http://www.msksoftware.org.uk, including segmented bone sur-
faces (STL files), bony landmark coordinates, joint centres, con-
tact points, lines-of-action of muscles and ligaments, wrapping
object parameters and muscle parameters. Subject-specific mus-
culoskeletal models from the atlas implemented in FreeBody are
available in the same repository. The fidelity of subject-specific
musculoskeletal models was evaluated by comparing the pre-
dicted muscle activation against the experimental EMG of the
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TABLE VII
A COMPARISON OF ROOT MEAN SQUARE DIFFERENCE (RMSD) AND COEFFICIENT OF DETERMINATION (R2) IN JOINT REACTION FORCES

PRODUCED BY THE SCALED GENERIC MODEL AND THE SCALED CLOSEST MODEL

M and F designate male and female.
a.The closest musculoskeletal model for scaling (scaled-closest) is derived from the multiple regression model with the minimum RMSD
(minf (RMSDd )) in joint reaction forces: for the ankle, minf (RMSDd ) = min (11.06 + 0.49 × Δmassd + 7.66 × Δgenderd ); for
the knee, min f (RMSDd ) = min (5.32 + 1.00 × ΔLLd + 0.38 × Δmassd + 37.22 × Δratiod + 7.75 × Δgenderd ); for the hip,
min f (RMSDd ) = min (9.60 + 0.38 × ΔLLd + 0.10 × Δmassd + 2.64 × Δgenderd ); and for their sum, min f (RMSDd ) =
min (7.40 + 0.16 × Δmassd + 4.03 × Δgenderd + 0.16 × Δratiod ), where: Δgenderd indicates the difference in gender between
the subject and the model (d), which is 1 when gender is different else is 0; Δmassd , ΔLLd and Δratiod indicate the percentage difference
in mass, limb length (LL) and the limb length to pelvis width ratio from the underlying dataset (d) to the modelled subject.
b.p value is from the Wilcoxon Signed Rank test between RMSDs from scaled-generic and scaled-closest models (α = 0.05).
c.RMSDs of the sum of joint reaction forces of ankle, knee and hip; R2 is the mean R2 in joint reaction forces of ankle, knee and hip.

Fig. 6. Predicted knee joint reaction force, expressed in body weight (BW), using eleven models in the atlas compared to the experimental
measurement (solid line) and the subject-specific prediction (dashed line) in two representative gait cycles: (a) DM_ngait1 and (b) DM_bouncy5.
The subject-specific model of DM from Ding et al. [39] is freely available at http://www.msksoftware.org.uk/software/freebody. The scaled-closest
model is identified based on the regression; the scaled-others are presented as mean (dotted line) and standard deviations (shaded area). The root
mean square error (RMSE) and coefficient of determination (R2) are calculated by comparing the difference between the model prediction with the
experimental measurement. The RMSE and R2 from the scaled-others models are expressed as mean ± standard deviation [range].

same subject, and secondly, by comparing the calculated joint
reaction forces against the instrumented implant measurements
from other subjects in the literature. EMG patterns from eight
muscles were comparable with the literature [56], [57] and the
errors between muscle activations and EMG were comparable
with other validation studies [28], [39]. Considerable differ-
ences were found between the higher calculated joint reaction
forces with the measured joint reaction forces in the literature.

This can be partially explained by the discrepancy between the
artificial joint and the natural joint and subsequently, the dis-
crepancy introduced in gait: a slightly higher walking speed
and greater ground reaction force were found from our young
healthy subjects and so a higher joint reaction force is expected.
We acknowledge that improvements to the musculoskeletal ge-
ometry alone may not be sufficient to minimise the disagreement
between model outcomes and true physiological loading in the
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musculoskeletal system. Other improvements in the literature
focusing on taking greater account of realistic neuromuscular
strategies have enabled better estimation of muscle activation
and joint reaction force. These improvements include EMG-
driven musculoskeletal models [58]–[60] and subject-specific
synergy controls [61], [62].

There are some limitations to this study. First the muscle
parameters including fibre length to muscle length ratio ( Lf

Lm
),

pennation angle (θ), and sarcomere length (Ls) were obtained
from studies of elderly cadavers [10], [12]. Until now, there is no
complete and comprehensive dataset measuring these parame-
ters in vivo and it is known that uncertainty in these parameters
can affect muscle force predictions significantly [63], [64]; they
cannot be obtained from MRI. Second, MR images were ac-
quired in the standardised position of subjects lying in the MR
scanner, resulting in a muscle moment arm definition for that
position only; the variation in muscle moment arm during dy-
namic and loaded conditions was not taken into account. Some
studies have recently demonstrated the feasibility for physiolog-
ical measurements of muscle moment arms over a range of joint
motion [65], [66] and using this approach will provide a better
representation of the musculoskeletal geometry during func-
tional activities. Third, in our optimisation model, each muscle
element was modelled with a constant strength and it was in-
dependent of any contraction dynamics associated with muscle
length and velocity. For muscles that covered a large muscle
attachment site, their strength was evenly distributed across the
separate elements and the effect of this muscle decomposition
was not corrected in the cost function in either the subject-
specific model or the scaled model. Decomposition and muscle
dynamics have been shown to affect the prediction of muscle
forces [28], [67]. Finally, the errors quantified in the study were
from healthy subjects during gait only and thus the effect of
extrapolating these results to other activities and pathological
subject should be investigated.

V. CONCLUSION

This study tested the hypothesis that linear scaling to a mus-
culoskeletal model with gender and anthropometric similarity
to the individual subject can produce similar results to the ones
that can be obtained from a subject-specific model. A lower
limb musculoskeletal anatomical atlas, consisting of datasets
derived from MRI and a generic dataset from the literature, was
developed; the discrepancies from scaled models were quanti-
fied where joint reaction forces from the personalised, subject-
specific musculoskeletal models are considered as references;
and finally, the use of the atlas was identified based on gender and
anthropometric similarity. This method produced the lowest dis-
crepancies when compared to the other linearly scaled models,
thus supporting our hypothesis. Discrepancies of 16% in joint re-
action force calculations remain, indicating that there is potential
for further improvements. We have provided a new anatomical
atlas that is publically available to accelerate the development
and adoption of subject-specific musculoskeletal models.
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