
 
 

University of Birmingham

Physical fitness in community-dwelling older adults
is linked to dietary intake, gut microbiota, and
metabolomic signatures
Castro-Mejía, Josué L; Khakimov, Bekzod; Krych, Łukasz; Bülow, Jacob; Bechshøft, Rasmus
L; Højfeldt, Grith; Mertz, Kenneth H; Garne, Eva Stahl; Schacht, Simon R; Ahmad, Hajar F;
Kot, Witold; Hansen, Lars H; Perez-Cueto, Federico J A; Lind, Mads V; Lassen, Aske J;
Tetens, Inge; Jensen, Tenna; Reitelseder, Søren; Jespersen, Astrid P; Holm, Lars
DOI:
10.1111/acel.13105

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Castro-Mejía, JL, Khakimov, B, Krych, Ł, Bülow, J, Bechshøft, RL, Højfeldt, G, Mertz, KH, Garne, ES, Schacht,
SR, Ahmad, HF, Kot, W, Hansen, LH, Perez-Cueto, FJA, Lind, MV, Lassen, AJ, Tetens, I, Jensen, T,
Reitelseder, S, Jespersen, AP, Holm, L, Engelsen, SB & Nielsen, DS 2020, 'Physical fitness in community-
dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures', Aging Cell, vol. 19,
no. 3, e13105. https://doi.org/10.1111/acel.13105

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1111/acel.13105
https://doi.org/10.1111/acel.13105
https://birmingham.elsevierpure.com/en/publications/d41e6e54-5b88-4092-9ec3-7c0c780aaaeb


Aging Cell. 2020;00:e13105.	 ﻿	   |  1 of 13
https://doi.org/10.1111/acel.13105

wileyonlinelibrary.com/journal/acel

 

Received: 16 August 2019  |  Revised: 28 November 2019  |  Accepted: 30 December 2019
DOI: 10.1111/acel.13105  

O R I G I N A L  A R T I C L E

Physical fitness in community-dwelling older adults is linked to 
dietary intake, gut microbiota, and metabolomic signatures

Josué L. Castro-Mejía1  |   Bekzod Khakimov1  |   Łukasz Krych1  |   Jacob Bülow2 |   
Rasmus L. Bechshøft2,3 |   Grith Højfeldt2 |   Kenneth H. Mertz2 |   Eva Stahl Garne1,3 |   
Simon R. Schacht4  |   Hajar F. Ahmad1,5 |   Witold Kot6  |   Lars H. Hansen6  |   
Federico J. A. Perez-Cueto1  |   Mads V. Lind4  |   Aske J. Lassen7 |   Inge Tetens4  |   
Tenna Jensen7  |   Søren Reitelseder2,3 |   Astrid P. Jespersen7 |   Lars Holm2,3,8  |   
Søren B. Engelsen1  |   Dennis S. Nielsen1

1Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
2Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen NV, Denmark
3Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
4Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
5Faculty of Industrial Science and Technology, Industrial Biotechnology Program, Universiti Malaysia Pahang, Pahang, Malaysia
6Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
7Copenhagen Center for Health Research in the Humanities, The SAXO Institute, University of Copenhagen, Copenhagen SV, Denmark
8School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Correspondence
Josué L. Castro-Mejía and Dennis S. Nielsen, 
Department of Food Science, University 
of Copenhagen, 1958 Frederiksberg C, 
Denmark.
Emails: jcame@food.ku.dk (J.L.C.);  
dn@food.ku.dk (D.S.N.)

Funding information
University of Copenhagen; Innovation 
Foundation Denmark, Grant/Award 
Number: 4105-00015B

Abstract
When humans age, changes in body composition arise along with lifestyle-associated 
disorders influencing fitness and physical decline. Here we provide a comprehensive 
view of dietary intake, physical activity, gut microbiota (GM), and host metabolome 
in relation to physical fitness of 207 community-dwelling subjects aged +65 years. 
Stratification on anthropometric/body composition/physical performance measure-
ments (ABPm) variables identified two phenotypes (high/low-fitness) clearly linked 
to dietary intake, physical activity, GM, and host metabolome patterns. Strikingly, 
despite a higher energy intake high-fitness subjects were characterized by leaner 
bodies and lower fasting proinsulin-C-peptide/blood glucose levels in a mechanism 
likely driven by higher dietary fiber intake, physical activity and increased abundance 
of Bifidobacteriales and Clostridiales species in GM and associated metabolites (i.e., 
enterolactone). These factors explained 50.1% of the individual variation in physical 
fitness. We propose that targeting dietary strategies for modulation of GM and host 
metabolome interactions may allow establishing therapeutic approaches to delay 
and possibly revert comorbidities of aging.
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1  | INTRODUC TION

Throughout the course of aging, physical impairment and changes in 
body composition may arise along with a number of lifestyle-associated 
disorders influencing physical decline and ultimately frailty (Holm et al., 
2014; Xue, 2011). Aging inevitably occurs in all organisms with genet-
ics, epigenetics, and environmental exposures (e.g., diet, physical activ-
ity) being modulators of the bodily deterioration caused by biological 
age (Khan, Singer, & Vaughan, 2017). A number of guidelines toward 
dietary and daily physical activity recommendations are currently avail-
able; however, adherence remains a significant challenge (Gopinath, 
Russell, Kifley, Flood, & Mitchell, 2016). Further, food perception and 
dietary habits can be strongly altered during the course of life, particu-
larly those traits associated with the loss of appetite (declined senses of 
smell and taste), occurrence of immune-senescence and deterioration 
of the gastrointestinal system (Giezenaar et al., 2016).

During the last decade, the gut microbiota (GM) has been recog-
nized as a signaling hub that integrates dietary habits with genetic and 
immune signals throughout life (Thaiss, Zmora, Levy, & Elinav, 2016). 
Many inflammatory and metabolic disorders, such as obesity, diabetes, 
and inflammatory reactions, are linked with GM dysbiosis (Boulangé, 
Neves, Chilloux, Nicholson, & Dumas, 2016). Among Irish older sub-
jects, frailty has been linked with changing GM signatures (Claesson et 
al., 2012) and age-related insulin resistance has been found to be reg-
ulated by the metabolic activity (e.g., production of short-chain fatty 
acids—SCFA) of a number of Clostridiales species (e.g., Clostridium IV, 
Ruminococcus, Saccharofermentans) and Akkermansia muciniphila (Biagi 
et al., 2010; Bodogai et al., 2018; Kong et al., 2016). Further, low abun-
dance of these bacteria leads to increased leakage of pro-inflammatory 
epitopes from the gut to the bloodstream (due to leaky gut syndrome) 
activating monocytes inflammation and subsequently impair insulin sig-
naling in rodents (Bodogai et al., 2018).

It is well-established, that frail older adults are characterized by 
changed dietary habits and altered GM and metabolic signatures 
relative to nonfrail peers (Claesson et al., 2012; Lustgarten, Price, 
Chalé, & Fielding, 2014), but whether similar signatures can be iden-
tified among nonfrail older adults of different physical capacity has, 
to the best of our knowledge, not been investigated previously. A 
few studies have focused on frail individuals showing that a reduced 
consumption of dietary fiber compromises the GM associated pro-
duction of SCFA required for maintenance of colonic epithelial cells 
and regulation of immune and inflammatory responses (Biagi et al., 
2010; Claesson et al., 2012; Kong et al., 2016). Likewise, GM signa-
tures were found to correspond with frailty indexes in a large co-
hort of older adults, whose GM composition were inherently driven 
by dietary patterns (Claesson et al., 2012). Moreover, metabolites 
related to GM metabolism (e.g., p-cresol sulfate, indoxyl sulfate), 

peroxisome proliferator-activated receptors-alpha activation, and 
insulin resistance likely influence physical function in physically im-
paired older adults (Lustgarten et al., 2014).

Understanding how dietary intake and physical activity in nonfrail 
older adults alter the GM–metabolome axis, and ultimately the phys-
ical fitness and the risk of functional decline, is of great clinical inter-
est for the affected subjects as well as for the society. Furthermore, 
identifying key components of such multifactorial processes may 
open opportunities to therapeutically address and possibly treat and 
prevent the comorbidities of aging (Khan et al., 2017). Based on this 
framework, we characterized dietary intake, daily physical activity, 
GM, and host metabolome in order to be able to explain physical fit-
ness of nonfrail older subjects. To this end, we included 207 individ-
uals (65+ years old, self-supportive and apparently healthy) recruited 
through the Counteracting Age-related Loss of skeletal Muscle mass 
(CALM) study (http://calm.ku.dk) (Bechshøft et al., 2016). Our find-
ings demonstrate that physical fitness and function corresponded 
to signatures of fasting proinsulin and average blood glucose, and 
characterized by clear differences in energy and dietary fiber intake, 
daily physical activity as well as differential abundance of GM mem-
bers and a number of fecal and plasma metabolites.

2  | RESULTS

2.1 | Participants inclusion

Two hundred seven individuals with body mass index (BMI) ranging 
between 18.5 and 37.3 kg/m2 (Table 1) were included in this cross-
sectional study (Bechshøft et al., 2016). Subjects are representatives 
of community-dwelling, self-supportive and apparently healthy older 
adults living in the Danish Capital Region. Detailed inclusion criteria 
have been described previously (Bechshøft et al., 2016). From each 
individual, anthropometric, body-composition and physical perfor-
mance measurements (ABPm), average daily physical activity, die-
tary intake and preferences, GM composition, clinical biomarkers, as 
well as fecal and plasma metabolome data were obtained adding up 
to 1,232 analyzed features per subject (Figure S1a).

2.2 | Stratification of subjects according to physical 
fitness and activity monitoring

Participants were stratified based on noncollinear ABPm variables 
(Table S1; Variance Inflation Factor, VIF < 2, r-coefficient < .5) into 
high- and low-physical fitness phenotypes (level of physical capac-
ity). These included chair-rise test [30 s-test]), BMI, and Dual-energy 

K E Y W O R D S

aging, energy and dietary fiber intake, gut microbiota, host metabolome, physical fitness, 
proinsulin-C-peptide

http://calm.ku.dk
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X-ray Absorptiometry (DXA) scans for body composition (given by 
leg-soft-tissue fat% (LST%)), determined as described previously in 
Bechshøft et al. (2016).

For stratification, hierarchical clustering analysis of principal 
component analysis (HCP-PCA) within sexes was used to determine 
two fitness phenotypes [high (HF) (n  = 116) and low (LF) (n  = 91) 
(Figure 1a,b, Table 2)]. To this end, physical fitness was not defined 
as an outcome, but instead used as a reference to generalize phys-
ical performance within the study participants. All participants 

outperformed the suggested ranges for frailty according to the 
chair-rise test (Guralnik et al., 1994), while LF phenotypes on aver-
age had BMI ranges categorized as overweight (WHO, 2000), as well 
as a greater deposition of fat mass in their legs (Figure 1b, Table 2). 
No significant differences (chi-squared p > .08) in type of medication 
(e.g., blood pressure lowering and statins, see methods) or dietary 
supplements were determined between the two fitness phenotypes.

In relation to daily physical activity, 4-day activity monitoring 
(Dowd, Harrington, & Donnelly, 2012) showed significant differ-
ences (p < .001) between the two phenotypes. Longer standing pe-
riods (Figure 1c; HF mean: 4.6 ± 1.3, LF mean: 4.2 ± 1.5) and a greater 
number of steps per day (Figure 1d; HF mean: 11,129 ± 3,861, LF 
mean: 8,814 ± 3,595) were recorded among HF phenotypes. The 
habitual daily activity for LF phenotypes was found to be within 
recommended ranges (taking approximately 7,000–10,000 steps/
day (Tudor-Locke et al., 2011)), resembling the average of the adult 
Danish population (8,311 ± 3,125  steps/day, age of 18–75 years) 
(Matthiessen, Andersen, Raustorp, Knudsen, & Sørensen, 2015), 
and markedly outperformed by HF subjects (Figure 1d).

2.3 | Dietary food intake in relation to fitness-state

Using 3-day weighted food records (3d-WFR) (Schacht et al., 2019), 
the daily average energy and macronutrients intake were quanti-
fied. On average, the energy intake per person was 24.5 ± 7.4 (range 

TA B L E  1  Description of the study participants

Number of Participants (n) 207

Sex

Men: Women 109:98

Age (y) Mean ± SD 70.2 ± 3.9

BMI (kg m2) Mean ± SD 25.7 ± 3.8

BMI < 25 105

BMI ≥ 25 < 30 75

BMI ≥ 30 27

HbA1c (mmol/mol)

<39 mmol mol−1 (<5.7 ABG – mmol/L)a 167

39–46 mmol mol−1 (5.7–6.4 ABG – mmol/L) 40

aHbA1c values above 47 mmol/mol (6.5 mmol/L average blood glucose—
ABG) is a criterion for diagnosis of T2D (Gardner & Shoback, 2011). 

F I G U R E  1  Stratification of fitness 
phenotypes. (a) Stratification of subjects 
(n = 207) by hierarchical clustering 
analysis of principal components 
analysis (HCA-PCA). Stratification data 
matrix: [obj × vars] = [207 × 3]. HCA-
PCA was performed within sexes and 
based on ABP measurements. HF/P: 
high-fitness (n = 116) and LF/P: low-
fitness phenotypes (n = 91). (b) ABP 
measurements distribution among 
phenotypes and sexes. (c) 4-day activity 
monitoring displaying hours standing 
and steps on daily basis for both 
phenotypes. 4-day activity data matrix: 
[obj × vars] = [196 × 2]
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Functional 
Parameter HF/P LF/P p-valuea Refer. range Ref. age

Women

30 s Chair-
stand test

20.6 ± 5.0 15.7 ± 3.1 <.001 10–16b 65−74 yearsb

BMI 22.4 ± 2.1 28.9 ± 3.3 <.001

LST% 35.2 ± 4.0 42.7 ± 4.6 <.001

Men

Chair-rise 
test

22.9 ± 4.4 18.3 ± 3.9 <.001 12–18b 65−74 yearsb

BMI 24.0 ± 2.2 28.3 ± 3.1 <.001

LST% 20.3 ± 3.4 27.0 ± 3.5 <.001

Abbreviations: HF/P, high-fitness phenotypes; LF, low-fitness phenotypes.
aComparison between phenotypes was performed by two-tailed Student's t test. 
bReference (Guralnik et al., 1994). 

TA B L E  2  Within sex summary of ABP 
measurements used for stratification of 
phenotypes

F I G U R E  2  Dietary intake 
and distribution. (a) Total energy 
consumption per kg-body-weight per 
day (Cal kg body weight−1 day−1). (b) 
Distribution of Calories proportionally 
obtained from macronutrients intake 
in HF and LF phenotypes. (c) Intake of 
carbohydrates by quality and saturated 
free fatty acids (g kg body weight−1 day−1). 
(d) Pearson correlation between dietary 
fiber (g kg body weight−1 day-1)  
and BMI depicted according to 
phenotypes category. (e) Proportion of 
subjects complying with recommended 
carbohydrates distribution ranges. 
The gray areas correspond to 
nonrecommended ranges as suggested by 
the Nordic Nutrition Recommendations. 
(f) Proportion of subjects complying 
with recommended distribution ranges 
of dietary fiber according to the Nordic 
Nutrition Recommendations. Dietary data 
matrix: [obj × vars] = [181 × 11]
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of 11.5–55.2) Cal kg body weight−1 day−1. Protein contributed less of 
the energy intake (18.9% ± 4.1, range 9%–36%) compared to the aver-
age energy intake of fat (36.7% ± 7.3, 22%–64%) and carbohydrates 
(44.4% ± 7.7, 17%–66%) expressed as percentage of total energy intake.

Total energy consumption per kg body weight (Figure 2a) dif-
fered significantly (p < .001) between phenotypes, with an average 
daily intake of 29.3 Cal  kg body weight−1  day−1 in HF phenotypes 
versus. 23.1 Cal kg body weight−1 day−1 in LF phenotypes. The higher 

F I G U R E  3  Dietary intake and fitness phenotypes are linked with species-level GM patterns. (a) Gut microbiota (GM) composition 
determined through Correspondence Analysis of 16S rRNA gene (V3-region) amplicons (summarized zOTUs at species level) determined 
in the stool samples of the study participants. (b) Correspondence Analysis revealed compositional GM differences between fitness 
phenotypes. (c) Constrained Correspondence Analysis (CCA) displays discrimination of phenotypes based on permutational test 
(p = .03, explained variance = 3.2%). (d) Correspondence Analysis of GM composition depicting gradients of total energy consumption 
(Cal kg body weight−1 day−1), intake of (e) starch (g kg body weight−1 day−1) and (f) dietary fiber (g kg body weight−1 day−1), (g) steps per day, 
and (h) BMI. (i) Regularized canonical correlation (rCC) analysis depicting the relationship between gradients of energy consumption, starch 
and dietary fiber intake, steps per day and BMI, and variations in the abundance of GM members. Heatmap displays the correlation of 161 
species with a minimum correlation coefficient of |0.2|r from 1st to 3rd components. Species are depicted based on family-level phylogeny. 
Figure S3 displays taxonomy at species level, as well as correlations per canonical axis and explained variance between GM composition 
and lifestyle covariates derived from rCC analysis. GM profiling was based on 11.3 million reads derived from the 16S rRNA gene V3-region 
with an average of 116,476 (48,872 SD) sequences per subject. Adonis tests were performed on Bray–Curtis distances. GM data matrix: 
[obj × vars] = [184 × 874].
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energy intake among HF subjects was reflected in a larger fraction of 
energy (expressed as % energy) from carbohydrates (p = .01) as com-
pared to that of dietary protein (Figure 2b and Figure S1b). The same 
pattern was also observed across daily average intake (g  kg body 
weight−1 day−1) of dietary fiber (p < .0001), starch (p < .0001), simple 
sugars (p = .0002), and saturated fatty acids (p = .0001) (Figure 2c). 
Moreover, significant (p < .0001) negative correlations between BMI 
with dietary fiber consumption (r = −.52) (Figure 2d) energy intake 
(r = −.52), starch (r = −.35) and simple sugars (r = −.35), as well as posi-
tive associations between chair-stand test and energy intake (r = .25) 
were found (Figure S1c–f). Questionnaires on food choices showed 
that HF subjects to a higher degree than LF subjects consider healthy 
food as an important element of their daily life (Figure S1g).

A considerable proportion of subjects from both phenotypes did 
not comply with the recommended minimum proportion of energy 
obtained from carbohydrates (Figure 2e) and dietary fiber intake 
(Figure 2f) as established by the Nordic Nutrition Recommendations 
(Nordic Council of Ministers, 2012). Yet, the frequency of compliers 
to noncompliers was significantly higher (carbohydrates: p = .006, di-
etary fiber: p = .03) in HF individuals. Furthermore, using the Goldberg 
cutoff (Black, 2000), 46 under-reporters (UR) and two over-report-
ers (OR) of energy intake were identified. Nonetheless, if excluded, 
individuals with higher physical capability (HF phenotype) still had 
a higher energy (p <  .001) and energy from carbohydrates (p <  .06) 
intake as compared to LF subjects (Table S2). Since UR and OR sub-
jects did not change the overall findings, they were not excluded in 
downstream analyses.

2.4 | Characterization of GM and correspondence 
with fitness and diet

The analysis of amplicon-sequencing data generated 10,084 zOTUs 
(sequence variants) summarized over 875 cumulative species (spe-
cies richness) and eight core species (defined as being present in all 
recruited subjects) (Figure S2a) with a relative abundance ranging 
between 18% and 84% (Figure S2b). Between sexes, no significant 
differences in beta-diversity (Figure 3a) and alpha-diversity (Figure 
S2c) were observed. Furthermore, regardless of sex, the study par-
ticipants were characterized by higher relative abundance of, for ex-
ample, Lachnospiraceae spp., Akkermansia spp., Blautia spp., along 

with reduced proportions of Bacteroides spp. (Figure S2d) as com-
pared to the community-dwelling group of older adults recruited for 
the Irish ELDERMET study (Claesson et al., 2012). This may reflect 
differences associated with dietary habits, age [mean age: baseline-
CALM 70  ±  4  years, ELDERMET 78  ±  8  years], and geographical 
location.

A substantial higher alpha-diversity (p = .06, Observed Species) 
was observed (Figure S2c) among HF phenotypes compared to LF 
phenotypes, as well as weak but significant (p < .05) correlations of 
observed species with BMI, energy, and starch intake (Figure S2e–g). 
Correspondence analysis and analysis of variance (Adonis) on Bray–
Curtis (weighted beta-diversity) distance metric calculated from spe-
cies-level abundance showed significant correspondence (p  =  .04) 
and dissimilarities (p =  .01) in GM composition in connection with 
the two physical phenotypes (Figure 3b,c).

Also, GM composition was clearly associated with (p < .05) gra-
dients of energy consumption (Figure 3d), starch (Figure 3e), dietary 
fiber (Figure 3f) steps per day (Figure 3g), and BMI (Figure 3h) re-
flecting fitness phenotypes. Using regularized canonical correlation 
(rCC) analysis associations between those lifestyle covariates (e.g., 
dietary factors and physical activity) with 161 microbial species 
were disclosed (Figure 3i, Figure S3) explaining <5% and 13% of the 
total variance of the microbiota and lifestyle covariates, respectively 
(Figure S3a,b). Increased intake of energy, starch, dietary fiber, as 
well as steps per day correlated positively with the relative abun-
dance of up to 103 of those species (e.g., higher Bifidobacteriales 
abundance) and correlated negatively with BMI (e.g., Proteobacteria 
being signatures for high BMI) (Figure 3i, Figure S3b).

2.5 | Host metabolic state in relation to fitness and 
dietary intake

Untargeted gas chromatography–mass spectrometry (GC-MS) 
metabolomics of human fecal extracts and blood plasma, as well 
as targeted SCFA analysis using GC-MS generated a total of 304 
analytes (181 analytes in the fecal and 123 analytes in the plasma 
metabolome). Nearly half of the metabolites variables were iden-
tified, either at level 1 or level 2 according to the Metabolomics 
Standards Initiatives (Sumner et al., 2007). These metabolites were 
monosaccharides, amino acids, organic acids, sterols and long-, and 

F I G U R E  4  Profiling of host metabolome in relation to dietary intake. (a) Correspondence Analysis on combined fecal, plasma 
metabolomes and clinical biomarkers of the study participants. Significant differences due to sex were determined with constrained 
correspondence analysis (CCA). Inset shows a partial Correspondence Analysis after conditioning for the cofounding effect of 
sex. (b) Correspondence Analysis discriminates compositional differences in metabolomic profiles between fitness phenotypes. (c) 
Correspondence Analysis of metabolites in relation to total energy consumption (Cal kg body weight−1 day−1), intake of (d) dietary fiber 
(g kg body weight−1 day−1), (e) starch (g kg body weight−1 day−1) and (f) simple sugars (g kg body weight−1 day−1), (g) steps per day, (h) hours 
standing, and (i) BMI. (j) Regularized canonical correlation (rCC) analysis showing the relationship between gradients of energy consumption, 
dietary fiber, starch and simple sugar intake, steps per day, hours standing and BMI, with variations in metabolome composition. Heatmap 
displays the correlation of 34 clinical/metabolome variables with a minimum correlation coefficient of |0.2|r from 1st to 4th components. 
Figure S4 shows correlations per canonical axis as well as explained variance between metabolome composition and lifestyle covariates 
derived from rCC analysis. (k) Significantly (t test, p = .02) different relative distributions in enterolactone determined in fecal samples of 
HF and LF phenotypes. (l,m) Range of fecal SCFAs and O/B-CFAs concentrations sorted according to fitness phenotype. Metabolome data 
matrix: [obj × vars] = [184 × 335]
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short-chain fatty acids. In addition, 31 biomarkers for immunological 
function, renal and liver function, as well as glucose and lipid me-
tabolism were acquired through blood clinical profiling.

Correspondence analysis on the combined metabolome blocks 
showed weak discrimination of sexes (Figure 4a) and pronounced 
discrimination between fitness phenotype (Figure 4b) based on 
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their metabolic profile. Variations in metabolome composition cor-
responded clearly (p < .05) with energy intake and consumption of 
dietary fiber, starch, simple sugars (Figure 4c–f), as well as steps 
per day and hours-standing-per-day (Figure 4g,h, including stratify-
ing variables: BMI (Figure 4i), chair stand and LST%, Figure S4a,b). 
Likewise, rCC analysis showed significant associations between 
lifestyle covariates and 34 clinical/metabolic variables (Figure 4j), 
explaining 9% and 15% of the total variance of the metabolome 
and lifestyle covariates, respectively (Figure S4c). The strongest 
associations (>|0.2|r) were observed for 19 clinical biomarkers, 10 
gut metabolites, and five plasma metabolites (Figure 4j). Increased 
intake of energy, starch, dietary fiber (or dietary covariates), as well 
as steps per day correlated positively with mono- and di-saccharides 
and negatively with amino acids (Pro, Ala, Trp), glucose metabolism 
parameters (proinsulin, glucose HbA1c, HbA1c), lipid metabolism 
(triglycerides, vLDL) and renal function (creatinine, inversely to es-
timate glomerular filtration rate (eGFR)) measurements, primary 
bile acids (lithocholic acid), and N-Nitrosotrimethylurea (Figure 4j). 
Moreover, a higher proportion of enterolactone in the fecal metab-
olome of HF subjects were also found (Figure 4k). Remarkably, the 
concentrations of SCFA as well as other/branched-chain fatty acids 
(O/B-CFA) in the fecal samples did not differ according to pheno-
types (p > .13) or dietary intake factors (Figure 4l,m).

2.6 | Dietary intake, gut microbiota, and metabolic 
signatures explain fitness levels independently from 
physical activity

Characterization of subjects after variable selection based on 
Random Forest and backward elimination procedure selected 55 
variables (Figure 5a,b) that discriminate the two phenotypes with a 
high level of accuracy (Figure 5c,d). The features included 25 bac-
terial species belonging to seven bacterial orders (Clostridiales, 
Saccharibacteria, Bacteroidales, PAC001057, Enterobacterales, 
Erysipelotrichales, and Bifidobacteriales), seven dietary components 
(energy, saturated fatty acids, simple sugars, starch and dietary fiber 
intake, and energy derived from proteins and carbohydrates), and 
five clinical biomarkers (alanine transaminase, triglycerides, vLDL, 
fasting proinsulin, average blood glucose/HbA1c). In addition, seven 
plasma metabolites (amino acids and organic acids), ten fecal me-
tabolites (sugar alcohols, amino acids, primary bile acids, and urea) 
and physical activity (steps per day) were also tabbed (Figure 5a).

Discrimination of the two phenotypes based on all the selected 
features (combined datasets) had the highest level of accuracy (22% 
out-of-bag error rate, OOB), followed GM and clinical/metabolome 
features (23% OOB), dietary intake (36% OOB), and physical activ-
ity parameters (46% OOB) (Figure 5d). Through redundancy analy-
sis (RDA), the effect of the selected variables (within blocks) on the 
stratifying variables showed that GM had the largest explanatory 
power (24.7%), followed by dietary intake (17.3%), clinical biomark-
ers (16.8%), gut metabolome (8.8%), plasma metabolome (6.2%), and 
physical activity (5.2%) (Figure 5e). Notably, the cumulative explained 

variance conferred by the pool of selected features reached 50.1%, 
and even after conditioning the effect of physical activity over the 
stratifying variables, the cumulative explained variance reached up 
to 44.9% (Figure 5f).

3  | DISCUSSION

The number of older adults over the age of 65 will increase by more 
than 50% worldwide over the next three decades (NIH, 2011), po-
tentially with huge implications for the health and economy of the 
implicated individuals and society as a whole. With this, understand-
ing the physical mechanisms and lifestyle conditions linked to fit-
ness and independence in older adults becomes a relevant field of 
research.

Despite the homogeneity of the recruited subjects (all nonfrail 
and without serious disease) noticeable significant differences in fit-
ness level was observed and based on noncollinear ABPm variables 
(chair-rise test, BMI and DXA scan-based body composition) result-
ing in two fitness phenotypes (LF and HF) that differed in dietary, 
GM, host metabolome signatures and physical activity.

In regard to the dietary intake, HF subjects were characterized 
by a higher consumption of foods of plant origin as also reflected 
by their higher levels of total carbohydrates (i.e., starch, simple 
sugars) and dietary fiber, accompanied by a higher adherence to 
the recommended intake of carbohydrates and dietary fiber intake 
given by the Nordic Nutrition Recommendations (Nordic Council of 
Ministers, 2012). These differences were observed in spite of the 
methodological limitations of 3d-WFR to capture long-term variabil-
ity (Yang et al., 2010). Furthermore, whether awareness of dietary 
guidelines influenced the selection of dietary choices in the study 
participants remains to be investigated, but it is worth mentioning 
that HF subjects consider healthy food as an important component 
in their life as also described by Schacht et al. (2019). Furthermore, 
the nutrient intake recorded in our study population is highly com-
parable to that reported for a representative sample population 
of older adult community-dwelling Danes as well as for communi-
ty-dwelling Western elderly in general (Schacht et al., 2019). This 
indicates that the food intake generally is comparable in our study 
population compared to elderly community-dwellers in Denmark 
and other Western countries.

The GM community and host metabolome clearly discriminated 
between the HF and LF phenotypes and was largely associated with 
the consumption of total energy, and plant-derived nutrients (such 
as starch and dietary fibers as well as enterolactone, all being higher 
in HF subjects). A number of features (Figure 5a) selected from GM, 
host metabolome, dietary intake, and daily physical activity were 
able to strongly discriminate and explain variation between phe-
notypes, thereby indicating their strong association with physical 
function. Daily physical activity showed the lowest power toward 
phenotypic differentiation (in spite of the high validity of the method 
for activity monitoring (Dowd et al., 2012)) and explaining only 5% 
of the phenotypic variance. Albeit conditioning for physical activity, 
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the remaining set of selected features explained up to 45% of the 
total variance of the stratifying variables. In particular, dietary intake 
(17% of explained variance), GM composition (24%), and host metab-
olome (25%) signatures are important drivers of phenotypic differ-
entiation (Figure 5) and also described in animal models (Fujisaka et 
al., 2018). Accordingly, HF subjects showed a higher proportion of 

GM members commonly known for their protective roles, such as 
Bifidobacterium adolescentis and Christensenella species (Goodrich et 
al., 2014), and whose abundance corresponded negatively with glu-
cose and lipid metabolism biomarkers (proinsulin, HbA1c, vLDL, tri-
glycerides). Contrarily, LF phenotypes had increased levels of these 
biomarkers and a higher relative abundance of pro-inflammatory 

F I G U R E  5  Signatures discriminating physical phenotypes. (a) Heatmap displaying mean centered normalized abundance of 55 features 
selected using Random Forest toward discrimination of phenotypes and (b) their importance as determined on the basis of Mean Decrease 
in Accuracy. (c) Multidimensional scaling plot discriminates subjects' phenotype based on the selected features. (d) ROC curves and out-
of-bag error rate (OOB) for Random Forest classifier based on the selected variables, for combined datasets (all selected features), GM and 
metabolome, dietary intake, and physical activity. (e) Captured variance for fitness variables (BMI, chair stand, and LST%) as a function of 
selected features through redundancy analysis (RDA). Individual Explained Variance displays the size effect of a given dataset, CE variance 
represents the cumulative explained variance and CE variance | physical activity shows the accumulative explained variance conditioned by 
physical activity. Pie charts summarize the total proportion of explained variance before and after conditioning for physical activity. Data 
matrix: [obj × vars] = [181 × 56]
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microbial members in the gut, as for example Enterobacterales (Fei 
& Zhao, 2013; Khan, Nieuwdorp, & Bäckhed, 2014). Similar obser-
vations have been reported in another cohort of Danish adults (with 
an age range of 20–65 years), where a reduced abundance of several 
members of Christensenellaceae and Ruminococcaceae families cor-
responded with increased levels of proinsulin, HbA1c, triglycerides, 
and C-reactive protein (Allin et al., 2018).

Short-chain fatty acids derived from GM activity have been 
identified as signaling molecules responsible for maintenance of 
the integrity of colonic epithelium, glucose homeostasis, lipid me-
tabolism, and appetite regulation (Morrison, Preston, Morrison, & 
Preston, 2016). Claesson et al. (2012) reported higher SCFA con-
centrations (acetate, butyrate, and propionate) in the fecal metab-
olome of older adults living as community-dwellers compared to 
frail individuals living in residential care. Moreover, decreasing con-
centrations of these SCFAs were associated with advanced levels 
of frailty given by diet and specific transitions in GM composition 
(Claesson et al., 2012). However, in the present study no correla-
tions between fecal SCFA and O/B-CFA concentrations with nei-
ther macronutrient distribution or fitness phenotype were found. 
This suggests that levels of physical function amidst healthy older 
adults may not be primarily dependent upon changes in the pro-
duction of these compounds. Instead, this could be due to signals 
of glucose metabolism deterioration as reflected by significantly 
(p  <  .001) higher proinsulin levels and higher average blood glu-
cose (determined by HbA1c-levels) in the LF phenotypes (1/116 
HF and 20/91 LF subjects had higher than normal ranges of pro-
insulin (chi-squared p < .001), 10/116 HF and 30/91 LF had higher 
ranges than those recommended for HbA1c (Gardner & Shoback, 
2011) (chi-squared p < .001), see Table S3). High concentrations of 
proinsulin indicate high-insulin secretion and hence diminished pe-
ripheral insulin sensitivity resulting in a number of metabolic con-
ditions, compromising muscle strength and physical performance 
(Segerström et al., 2011). Proinsulin was the most important feature 
of phenotype discrimination and corresponded inversely with the 
abundance of Bifidobacterium adolescentis and several species of 
Christensenella, and Ruminococcaceae (Figure 5a), strongly indicat-
ing that GM-proinsulin interactions could be mediators of fitness 
phenotype. Bifidobacterium species (including B. adolescentis) have 
previously been described as promoters of adiponectin and de-
creasing expression of interleukin-6, both playing prominent roles 
in metabolic derangements associated with glucose regulation and 
fatty acid oxidation (Aoki et al., 2017; Straub & Scherer, 2019; Su 
et al., 2015). Christensenella minuta (another Clostridiales member) 
is enriched in individuals with low BMI and has been demonstrated 
to reduce weight gain and adiposity in mice (Goodrich et al., 2014). 
Furthermore, while playing a protective role against inflamma-
tion, some Clostridiales members act as promoters of regulatory 
T cells by interacting with toll-like receptors 2 (TLR2) on intesti-
nal epithelial cells (Kashiwagi et al., 2015). Contrarily, species of 
Enterobacterales have been consistently linked with insulin resis-
tance and inflammatory responses (Fei & Zhao, 2013; Khan et al., 
2014), and by means of cell epitopes (i.e., LPS) they interact with 

TLRs triggering pathogen recognition, low-grade inflammation 
(Franceschi & Campisi, 2014) and fat accumulation in adipose tissue 
that ultimately influence muscle strength (Boulangé et al., 2016).

In summary, our findings suggest that dietary patterns underlie 
mechanisms of physical phenotype differentiation among well-func-
tioning community-dwelling older adults, particularly as a driver 
of GM and glucose metabolism interactions. We are aware of the 
cross-sectional nature of the study and the possibility of reverse 
causation effects that may limit any possible attempt to determine 
causal features governing physical fitness as outcome. However, in 
spite of this we identify lifestyle, microbiome, metabolic, and daily 
physical activity signatures able to largely explain physical fitness, 
while revealing factors that could be considered as therapeutic tar-
gets in future interventions. More specifically, our study emphasizes 
the central role of diet toward the onset of physical deterioration 
and its implications prior to clinical manifestations of frailty, for ex-
ample, muscle composition and diminished strength (Xue, 2011). 
Many of the dietary, GM, and metabolomic signatures seen in frail 
older adults (Bodogai et al., 2018; Claesson et al., 2012; Kong et 
al., 2016; Lustgarten et al., 2014) are already evident in the non-
frail, community-dwelling older adults of low-fitness of this study, 
pointing at the importance of early intervention strategies, also in 
this age group. Thus, in view of these findings, developing strategies 
to improve awareness and adherence to dietary recommendations 
(complying with dietary reference intakes or even with personalized 
nutrition (Zeevi et al., 2015)), targeting the regulation of GM and 
host metabolome interactions, can open opportunities to delay the 
comorbidities of aging.

4  | E XPERIMENTAL PROCEDURES

4.1 | Study participants

Two hundred and seven subjects (65+ years of age) were selected 
at baseline of the CALM intervention project following previously 
described criteria (Bechshøft et al., 2016). Participants were not 
allowed to take part in any organized sports or resistance training 
more than once a week, did not suffer from defined metabolic-, tis-
sue-, or gastrointestinal disorders, nor were prescribed antibiotics 
3  months prior sample collection and enrollment. Medication re-
cords of participants were documented and summarized over blood 
pressure lowering, statins, proton-pump inhibitors, antihistamine, 
anti-inflammatory medications, and dietary supplements (including 
fish oil, vitamins, and calcium).

4.2 | Ethics approval and consent to participate

Procedures of the CALM project (Clinical Trials NCT02115698) 
were approved by the Danish Regional Ethical Committees of the 
Capital Region (J-nr. H-4-2013-070) and performed according to the 
Declaration of Helsinki II and the experimental designed followed 
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as previously described (Bechshøft et al., 2016). Upon inclusion, all 
subjects gave their written informed consent to participate also in 
accordance with the Declaration of Helsinki II.

4.3 | Samples and metadata collection

At baseline, study participants completed a 3-day weighted food 
record where total food and beverage intake were registered for 
3-consecutive days (Wednesday to Friday). The dietary information 
collected in these food records was then typed into the electronic 
dietary assessment tool, VITAKOST™ (MADLOG APS), which uses 
the Danish Food Composition Databank (version 7.01) to estimate 
individual energy and macronutrient intake.

Fecal and blood plasma samples were collected and handled ac-
cording to the following procedures: (a) fecal samples were kept at 
4°C for maximum 48  hr after voidance and stored at −60°C until 
further use; (b) overnight-fasted-state (OFS) plasma samples were 
collected and deposited in heparin, centrifuged at 3,000 g for 10 min 
at 4°C, and then stored at −60°C.

For screening of blood biomarkers, the following tests were per-
formed: complete blood count (CBC), proinsulin-C-peptide (P-CP), 
glycosylated hemoglobin (HbA1c), coagulation factor, estimate glo-
merular filtration rate (eGFR), thyroid-stimulating hormone (TSH), and 
iron–ferritin test determined as previously described (Bechshøft et 
al., 2016). On average biohumoral measurements showed an interse-
rial uncertainty range of 3%–15%. For anthropometric and functional 
capacities, height (cm) and body weight (kg) in OFS were measured. 
Average fast-pace gait speed was measured on an indoor 400 m hor-
izontal track. Number of chair stands in 30 s from a standard table 
chair was recorded. Relative leg-soft-tissue fat% (LST%) was deter-
mined as an estimate of leg-soft-tissue fat-free and fat mass based on 
a dual-energy X-ray absorptiometry (DXA) scan (Lunar iDXA Forma 
with enCORE Software Platform version 15, GE Medical Systems 
Ultrasound & Primary Care Diagnostics) performed on participants 
following standardization of subject presentation and positioning on 
the scanning bed, as well as manipulation of the automatic segmen-
tation of regional areas of the scan results (Nana, Slater, Stewart, & 
Burke, 2015).

4.4 | Quantitative questionnaires on food habits

Quantitative questionnaires contained information on food habits, 
perceptions and preferences, as well as information about lifestyle 
changes and dietary habits over the life course (Bechshøft et al., 2016).

4.5 | GM and metabolomics

Procedures for profiling and process GM and metabolomics data are 
described in Supplementary Methods.

4.6 | Statistical analyses

Stratification of individuals was based on ABP measurements using 
the variables described in Table S1. Collinear variables were initially 
removed, leaving chair stand [30 s-test]), DXA scans (leg-soft-tissue 
fat% determined in both legs) and BMI as features with a variance 
inflation factor (VIF) < 2 and r-coefficient < .5. Subjects were divided 
according to sex, and a hierarchical clustering analysis of principal 
component analysis (Husson, Josse, Lê, & Mazet, 2019) was per-
formed on the selected variables (100 iterations).

For univariate data analyses, pairwise comparisons were carried 
out with unpaired two-tailed Student's t test, Pearson's coefficient 
was used for determining correlations and chi-square test for eval-
uating groups distributions. For multivariate data analyses, the in-
fluence of covariates (e.g., dietary components and BMI) on data 
blocks (GM and metabolome) were assessed with (Constrained-) 
Correspondence Analysis with permutation tests (1,000 permuta-
tions), as well as analysis of variance using distance matrices (Adonis 
test, 999 permutations) on Bray–Curtis distances (implemented in 
the Vegan R package (Oksanen et al., 2019)).

Correlation of covariates with the same datasets were determined 
with regularized canonical correlation (rCC) analysis using the mixOm-
ics R package (González, Cao, Davis, & Déjean, 2012). Regularized ca-
nonical correlation was crossed-validated (leave-one-out approach) 
with grids (lambda 1 and 2) of 0.05–1.0 and a length of 20.

Feature selection for combined datasets was performed with 
Random Forest. Dataset was randomly divided 200× (200 subsets) 
into training (70%) and test sets (30%), keeping this proportion 
over the number of subjects within each fitness group for every 
split. For a given training set, the party R package (Hothorn, 
Hornik, Strobl, & Zeileis, 2019) was run for feature selection using 
unbiased-trees (cforest_unbiased with 6,000 trees) and AUC-
based variable (varimpAUC with 100 permutations), and subse-
quently, the selected variables were used to predict (6,000 trees 
with 1,000 permutations) their corresponding test set using ran-
domForest R package (Liaw, 2018). The features derived from the 
subset with a prediction rate within 1 SD above the mean predic-
tion (based on the 200 subsets) were selected and subsequently 
subjected to sequential rounds of feature selection (following the 
same tuning of unbiased-trees and AUC-based variable) until pre-
diction could no longer improve. Variation partitioning of strat-
ifying variables (BMI, CS, and LST%) based on selected features 
derived from the different datasets (i.e., GM, diet, host metabo-
lome, physical activity) was performed using redundancy analysis 
(RDA) (Oksanen et al., 2019). All statistical analyses were per-
formed in R versions ≤3.6.0.
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