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ABSTRACT
We report on the design and characterization of an air-bearing suspension that has been constructed to highlight the properties of torsion
balances with fibers of zero length. A float is levitated on this suspension, and its rotational and translational motion in the horizontal plane
of the laboratory is controlled using magnetic actuators. We demonstrate the in situ electromagnetic tuning of the float’s center-of-buoyancy
to an accuracy of ±0.3 mm, which was limited by the noise in the air bearing. The rotational stiffness of the float, which is approximately
zero by design, was also measured. We compare the observed behavior of the float with the predictions of a detailed model of the statics of
the float–actuator system. Finally, we briefly discuss the application of these ideas and results to the construction of sensitive devices for the
measurement of weak forces with short ranges.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142373., s

I. INTRODUCTION

Torsion balances have a long history in experimental science,
stretching back to the time of Cavendish.1 In modern physics, tor-
sion balances are used extensively in tests of the inverse square law
of gravity,2,3 Casimir force measurements,4 and tests of the weak
equivalence principle.5 The advantage of the torsion balance is that
well-manufactured fibers have very low rotational stiffness giving a
high sensitivity, and well-designed balances can be made such that,
to some degree, tilt or horizontal acceleration due to seismic noise
will not couple to rotational motion of the suspended mass (or bob).6

Despite these advantages, the traditional torsion balance design has
some limitations, particularly when it is employed to detect forces
within sub-millimeter ranges. Due to the vertical distance of the
center-of-mass from the point of attachment, horizontal accelera-
tions, due to micro-seismic motion, for example, can couple strongly
to the simple pendulum mode. This makes control of the torsion bob
difficult. At some level, there will always be some coupling of tilt to
rotational motion.7 Issues also face low-frequency torsion pendulum
experiments where ground vibration and other sources of Newto-
nian noise become increasingly problematic.8,9 Tilt-rotational mode
coupling is also a concern for seismic inertial sensors.10 In addition
to weak force measurements, the co-location of the center-of-mass

and center-of-buoyancy of a suspended mass is a crucial feature
of horizontal accelerometers and tiltmeters.11,12 This is currently
achieved only by the adjustment of small masses such as lockable
screws.

The goal then is to create a device that shares the advantages of
the torsion balance but is not limited by the drawbacks mentioned
above, where necessary adjustments to the center-of-buoyancy can
be achieved accurately and remotely irrespective of the device’s envi-
ronment. In Ref. 13, we showed how the stiffness of the actuators
acting on a levitated object (referred to as a float) could be tuned
in situ in such a way that the center-of-buoyancy of the levitation sys-
tem could be altered to lie at the center-of-mass of the float and that
the rotational stiffness could be tuned, ideally, to zero. This could
all be achieved while simultaneously controlling the translational
degrees of freedom. The center-of-mass is the point where iner-
tial forces act, whereas the center-of-buoyancy is the location of the
resultant of the forces that are applied to levitate the float and con-
trol its position. In the general case, the center-of-mass will not lie at
the center-of-buoyancy due to manufacturing imperfections and so
horizontal accelerations and tilts will couple to the rotational mode
of the device. The classical torsion balance has an in-built low sen-
sitivity to tilt and horizontal acceleration as the center-of-buoyancy
of the torsion bob can lie to a good approximation on the rotational
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axis. In Ref. 13, we presented some initial results of measurements
of the tuning of the period of oscillation of a float suspended by per-
fect diamagnetism (superconductivity). In this paper, we focus on
the demonstration of the precise tuning of the center-of-buoyancy
of a float.

We have constructed an air suspension, referred to here as the
air bearing,14 which levitates the float. The float is then controlled
in the horizontal plane of the laboratory by magnetic actuators that
consist of coil–magnet pairs. By changing the currents in the coils,
we can tune the center-of-buoyancy of the float. We present mea-
surements that support this concept, suggesting that torsion bal-
ances with fibers of zero length can indeed be tuned in situ to be
rotationally decoupled from ground tilt and horizontal accelera-
tions. The actuators were designed such that the rotational stiffness
of the float was nominally zero. Without further tuning, the magni-
tude of the rotational stiffness was experimentally found to be lower
than that of the torsion balance used in a recent determination of
Newton’s constant of gravitation.15

II. THEORY
In our previous publication, we derived expressions for the

rotational stiffness and center-of-buoyancy shift for superconduct-
ing and electrostatic suspensions.13 Here, we give the corresponding
expressions for a system that uses electromagnetic actuators.

Consider Fig. 1, where a magnet with dipole moment, m, lies
in a magnetic field produced by a coil with current I. The magnetic
field on the axis of a coil of negligible cross section can be described
by the following16 equation:

Bζ = μ0R2I

2(R2 + ζ2) 3
2

, (1)

where μ0 is the vacuum permeability constant, R is the radius of the
coil, and ζ is the axial distance between the coil and magnet cen-
ters, as described by the coordinates in Fig. 1. We can integrate this
expression over the dimensions of the real coils to find the field and
its derivatives. If we assume that the magnetic field is uniform over
dimensions of the magnet, we can write its potential energy in terms
of its magnetic dipole moment,

FIG. 1. A schematic diagram of a magnet with a magnetic dipole moment, m, at an
angle, θ + ψ, to a magnetic field, B, produced by a coil with current I. The coil has
a cross-sectional area of 7.2 × 10−5 m2.

U = −m⃗ ⋅ B⃗ = −mBζ cos(θ + ψ), (2)

where θ is a fixed angle between the dipole moment and the ζ-axis
and ψ is a small angle whose mean is zero, as indicated in Fig. 1. We
ignore changes in the axial force due to small radial displacements
and rotations of the magnet. For ψ = 0, the force on the magnetic
moment is given by

F = −∂U
∂ζ
= m∂Bζ

∂ζ
cos θ. (3)

Taking the magnetic field to be a maximum at the center of the coil,
∂Bζ /∂ζ is negative, so for a magnetic moment that is aligned with
the field, the force will be attractive and reach a maximum nega-
tive value at some axial distance. The stiffness in the ζ direction is
given by

kζζ = −∂F
∂ζ
= −m∂2Bζ

∂ζ2 cos θ. (4)

In order for this stiffness to be positive, leading to a passively stable
system, we need the product of the cosine term and ∂2Bζ /∂ζ2 to be
negative. At the peak force, ∂2Bζ /∂ζ2 is zero, so, in principle, we can
choose the sign of the linear stiffness by selecting the axial location
of the magnet. If the magnet is closer to the coil than the location
of the peak force (where ∂2Bζ /∂ζ2 < 0) and θ = 0, we can achieve
a stable system. Equally we can achieve a stable system by selecting
a position of the magnet that is further away from the coil than the
peak force position and θ = π. Now, consider the angular stiffness
given as, again in the case where ψ = 0,

kθθ = ∂2U
∂θ2 = mBζ cos θ. (5)

Clearly, here the choice of θ will also determine the stability of the
system. We will see below, where we consider the stiffness of the
whole float given by the actuators that control the float, that it is
advantageous to make the angular stiffness negative and we there-
fore select θ = π. If we desire a system that is stable for linear motion,
according to Eq. (4), we therefore need to position the magnets fur-
ther from the coils than the position of maximum force. This, is
turn, implies that the force between the magnet and coil is repulsive.
We should note that any unstable system can be servo-controlled;
however, in practice, servo control is more easily achieved with an
intrinsically stable system.

Now, we consider our experimental setup with 8 such coil–
magnet pairs arranged around the float, as shown in Fig. 2 (with
a new global coordinate system). We can now define the poten-
tial energy of a single magnet/coil pair in terms of the coordinates
and angles given in Fig. 2, say, for magnet 5 and coil e. We define
the separation of the magnet from its opposing coil that is due to
the rotation of the float, ψ, as f (ψ). The separation due to its sim-
ple translation is defined as y, which is along the y-axis in Fig. 2.
Figure 3 highlights the changing separation of this magnet and coil
and the relevant geometric terms. We can therefore define

ζ = f (ψ) + y (6)

for this magnet/coil pair, and it can be easily shown from Fig. 3 that

f (ψ) = b − a cosψ + x0 sinψ. (7)

The potential energy of the magnet/coil pair can then be written as
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FIG. 2. A plan view schematic drawing showing the float, coils 1–8, and magnets
A–H. New global coordinates centered on the float are defined: the x and y axes in
the horizontal plane and the z-axis normal to this plane, with rotation around these
axes.

U = −mB( f (ψ) + y) cos(θ + ψ), (8)

where we have dropped the subscript ζ on the magnetic field. This
can be applied to any magnet/coil pair with a suitable change in
coordinates. We have used a similar nomenclature as in Ref. 13 and,
on comparing Eq. (6) with Eq. (16) for g(ψ) in Ref. 13, we note
that the magnetic/coil actuators are qualitatively different from the
superconducting and electrostatic actuators previously discussed.

FIG. 3. A diagram highlighting the geometry of the changing separation between
magnet 5 and coil e (from Fig. 2) as described in Eq. (7). As the float rotates
around its geometric center from position 1 to position 2, the separation between
the magnet and coil, f (ψ), is a function of the amount of rotation, ψ. This is inde-
pendent of any separation change due to simple translation, y, along the y-axis, as
described in Eq. (6). The amount of rotation shown here is exaggerated for clarity,
and as before, we assume that radial displacements along the x-axis are compar-
atively small and can be ignored. Here, we have used a similar nomenclature as
in Ref. 13.

This is because the points of application of the forces to the float (the
magnets) by the coils now move with the rotation of the float rather
than being defined by the fixed location of the coils. It is convenient
to express the magnetic field as a Taylor series around the equilib-
rium position where we define the equilibrium spacing between the
magnet and coil as g0. The magnetic field can then be written as

B=B0 +(dB
dζ
)
g0

⋅ ( f (ψ)+ y − g0)+
1
2
(d

2B
dζ2 )

g0

⋅ ( f (ψ)+ y − g0)2.

(9)
By substituting this into Eq. (8) and setting y = 0, we can find the
contribution to the total rotational stiffness of the float from one (the
ith) coil,

K i
ψψ = d2U

dψ2 = m(
d2B
dζ2 x

2
0 +

dB
dζ

a − B0), (10)

where we have assumed again that the magnet is anti-aligned with
the coil field. The upper case notation for the stiffness constant refers
to the complete float rather than an individual coil/magnet pair [as
compared to Eqs. (4) and (5)]. We can see that in order to cre-
ate a zero stiffness configuration, we require that the quantities in
the bracket sum to zero. Noting that in our configuration, the sec-
ond and third terms are both negative (see the discussion above
regarding the signs of the derivatives of the magnetic field), in prin-
ciple, this is possible. However, we did not pursue this in the work
described here but chose a value of x0 and the positions of the mag-
nets relative to the coils in order to achieve a nominally zero stiffness.
The total rotational stiffness is given as the sum of the terms in
Eq. (10) from all the actuators, which approximately multiplies it
by a factor of eight. In Sec. IV, we compare measurements of float’s
rotational stiffness with this prediction.

We define the nominal center-of-buoyancy (NCB) as the point
in the horizontal plane where the moments of all the forces acting on
the float are zero when the coils carry their nominal currents. If we
consider the x direction, the position of the center-of-buoyancy with
respect to the NCB of the float, xcb, can be modified by changing the
stiffnesses of some actuators relative to others. For example, using
Eq. (12) from Ref. 13, we have

xcb =
Kyψ

Kyy
. (11)

The term in the denominator is the sum of the linear stiffnesses that
are given for each coil by Eq. (4). The term in the numerator is a
cross term from the stiffness matrix describing the static behavior
of the float and in the symmetrical case is zero. We can compute
the individual contributions from each coil/magnet pair to this cross
term with the help of Eqs. (7)–(9) to find

kyψ = x0m
d2B
dy2 . (12)

The change in center-of-buoyancy in the x direction is then

xcb =
Ka
yψ + Kb

yψ + Ke
yψ + K f

yψ

Ka
yy + Kb

yy + Ke
yy + K f

yy

(13)

or

xcb ≈ x0
(Ib + Ie − Ia − If )

4I
, (14)
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where I is the average bias current in the coils labeled a, b, e, and
f in Fig. 2 and clearly xcb is proportional to the difference in the
currents flowing in the respective coils. This implies the theoretical
maximum accuracy to which the center-of-buoyancy can be tuned
in the case presented here depends on the precision with which the
actuators’ strength can be changed, which, in turn, depends on the
current noise of the coil drivers.

When the bearing is tilted by an angle, ξ, from the horizontal
plane, the total torque acting on the float from the actuators can then
be described by the following equation:

Γ = κΔI
4I

+ Mgξ(x0
ΔI
4I

+ xcm), (15)

where the first term in the brackets corresponds to xcb as given in
Eq. (14), M is the mass of the float, g is the acceleration due to grav-
ity, and xcm is the position of the float’s center-of-mass with respect
to the NCB. Here, κ represents the torque due to any asymmetry
of the magnetic actuators and their positions around the float. In
the ideal case, the process we employ for changing the bias currents
to tune the center-of-buoyancy should not apply a torque, but in
any real system, such a term does exist. Any instability in the cur-
rents applied to the float to achieve a center-of-buoyancy tuning will
introduce noise into the actual measurement via the κ parameter, so
clearly it is desirable to reduce its magnitude as much as possible. A
similar expression to Eq. (15) describes the center of mass tuning in
the y direction.

In order to measure the κ parameter and to check how the cur-
rent tuning shifts the center-of-buoyancy, we need to eliminate xcm
from Eq. (15). We do this by adjusting the physical center-of-mass
using balance weights, as described below, until it coincides with the
NCB. Then, dividing by the current ratio, we find

τ = Γ/ΔI
4I
= κ + Mgξx0. (16)

This equation states, if the torque on the float is measured over a
range of tilt angles for a given set of bias currents in the coils, the
torque due to the actuator asymmetry can be calculated at ξ = 0. Fur-
thermore, it predicts a linear response of τ to the tilt angle. This gra-
dient allows the change in center-of-buoyancy described in Eq. (14)
to be experimentally determined. This comparison was verified by
experiment.

III. EXPERIMENTAL SETUP
Our experimental setup consisted of 8 coil–magnet pairs, two

on each side of the square shaped float as shown in Fig. 2. The float
and bearing were made of aluminum alloy. The coils themselves
were based on the OSEM coils that have been developed for LIGO,17

and each consisted of 500 turns of copper wire and had a mean
radius of 18 mm. The magnets used were grade N38 neodymium
iron boron magnets with a magnetic dipole moment of 0.775 N m/T
and were cylindrical with a radius and depth of 5 mm. They were
attached to the float using contact adhesive. The bearing’s flat top
surface consisted of 0.5 mm diameter holes in a 10 mm grid under
the entire bottom surface of the float through which compressed
air was pumped at a constant pressure to provide a lift force to the
float.

Figure 2 shows a schematic drawing of the float, coils, and mag-
nets, with a coordinate system centered on the float. A summary

TABLE I. A summary of the various dimensions of the float, bearing, and magnetic
actuator setup. The dimension label corresponding to the equations in Sec. II is stated
where applicable.

Parameter Length (mm) ± 0.5 mm

Coil–magnet axial distance (ζ) 10.0
Coil’s mean radius (R) 18.0
Coil–magnet radial distance (r) 0.0
Coil’s cross-sectional length 8.0
Coil’s cross-sectional width 9.0
Actuator arm length (x0) 42.0
Magnet radius and depth 5.0
Float side length 115.0
Float depth 10.0
Bearing tilt length 190.0
Photodiode–mirror distance 70.0

of the dimensions of all the relevant components is given in Table I,
where the stated measurement uncertainty is used to propagate
through to the uncertainties on all measured torques and stiff-
nesses in Sec. IV. The rotation of the float was measured with an
optical lever arrangement with a laser reflecting off a small mirror
attached to the center of the float and a position sensitive pho-
todiode. This diode and its associated electronic circuit were then
connected to a computer via an analog-to-digital converter (ADC).
The computer was connected to the coils through a DAC. This
allowed the coil currents to be actively controlled via a proportional-
integral-differential (PID) control loop in LabVIEW software, and
hence, the float was kept stable relative to a reference null posi-
tion on the photodiode. A general diagram of this setup is shown in
Fig. 4.

A photograph of the float, bearing, micrometers, mirror, com-
pressed air input, coils, and magnets is shown in Fig. 5. Figure 6
shows a schematic drawing of how the bearing can be tilted from
the horizontal plane, where this can be done along the float’s x and y
axes in the horizontal plane. Tilt in the y-axis by a known tilt angle,
ξ, is depicted in Fig. 6.

FIG. 4. A general diagram of the full experimental setup.
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FIG. 5. A photograph of the setup. A: float, B: bearing, C: micrometers, D: mirror,
E: compressed air input, F: a coil, and G: a magnet.

FIG. 6. A side-on schematic drawing showing the float, bearing, and the microm-
eter used to tilt the whole apparatus by an amount, ξ, around the x-axis from the
horizontal plane where ξ = 0. The vertical plane is defined as the direction of the
free-fall acceleration due to gravity, g. Positive and negative values of ξ correspond
to raising and lowering the setup from the horizontal plane, respectively. The global
coordinate system defined in Fig. 2 is shown here. The coils have been omitted for
clarity.

IV. RESULTS
The torque acting on the float could be measured from the PID

servo output, whose control loop is shown in Fig. 7. The PID servo
applied a torque, Γ, to the float by adding or subtracting from the
bias currents in the appropriate coils. All eight coils were used for
this purpose, and the bias currents are those described in Eqs. (14)–
(16). The magnitude of this change in current from the bias currents
could then be used in conjunction with Eq. (3) multiplied by the
actuator arm length term, x0, from Table I to give

Γ = −8x0m
∂Bζ
∂ζ

(17)

for eight coils. This measured torque is assumed to be equal to that
described by Eq. (15). The rotational stiffness could be measured by
recording the change in torque, ΔΓ, from Eq. (17) applied by the PID
servo to the float after an offset equivalent to a known angle, Δψ, was
added to the input of the controller. The rotational stiffness would
then be given by

Kψψ = − ΔΓΔψ , (18)

where this rotational stiffness is assumed to be equal to that
described by Eq. (10) once it had been summed over all the coils.
The linear transverse stiffness of the float in the x- and y-axis of the

FIG. 7. A block diagram showing the PID servo control. The PID introduces a
torque, Γ, to the float after a known offset angle, ψ, is added to the controller input.
There will also be additional noise torques, γ, acting on the float.

horizontal plane, as described in Fig. 2, could be calculated using
Eq. (4) summed over the bias currents of the four coils in each
respective axis. As stated in Sec. II, the positioning of the magnets
was chosen to give θ = π.

Before torque measurements could be made, the float’s center-
of-mass displacement from its NCB, xcm from Eq. (15), had to be
made zero. This was done by placing small masses on the float in
precise positions such that when tilting it from the horizontal plane,
the PID servo torque did not change within the limit of the servo
readout noise. Doing this, while keeping the bias currents in all the
coils equal such that ΔI was zero in Eq. (15), implied that xcm was
equal to zero.

The PID servo torque on the float was then measured over a
range of tilt angles from the horizontal plane for a given set of bias
currents. This was done in both the x- and y-axis of the float as
shown in Fig. 2. The measurements in these axes are shown in Figs. 8
and 9, respectively.

The total mass of the float, with the additional small masses
used for minimizing xcm, was 338.66 g. This, along with the value
of x0 of (42.0 ± 0.5) mm from Table I, implied that the expected gra-
dient of the plots from Eq. (16) should be (0.139 ± 0.003) N m/rad.
The gradients from Figs. 8 and 9 are (0.137 ± 0.006) N m/rad and
(0.138 ± 0.006) N m/rad, respectively. With the bias currents used
and Eq. (14), the expected change of the center-of-buoyancy of the
float in both the x- and y-axis was (7.00 ± 0.17) mm. Using the

FIG. 8. The torque, divided by the current ratio term, acting on the float over a
range of tilt angles from the horizontal plane in the x-axis.
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FIG. 9. The torque, divided by the current ratio term, acting on the float over a
range of tilt angles from the horizontal plane in the y-axis.

gradients from Figs. 8 and 9, in conjunction with Eqs. (14) and (16),
the measured changes in the center-of-buoyancy in the x- and y-
axis were calculated to be (6.90 ± 0.32) mm and (6.95 ± 0.32) mm,
respectively. This shows that we had succeeded in tuning the float’s
center-of-buoyancy to an accuracy of ±0.3 mm.

With the bias currents in all coils set to 0.075 mA, and Eq. (10)
summed over all eight coils, the float’s rotational stiffness was cal-
culated to be (−14.73 ± 0.41) μN m/rad. Using Eq. (18), it was
measured to be (−15.11 ± 2.05) μN m/rad. With these bias cur-
rents, the float’s transverse stiffness in each horizontal axis, using
Eq. (4) summed over the four coils in each axis, was calculated to
be (1.11 ± 0.16) N/m. This gave a natural oscillation frequency in
each axis of (0.29 ± 0.04) Hz. All the results are summarized in
Table II.

TABLE II. A summary of the measurement results.

Attribute Result

Plot gradients

Float x-axis (0.137 ± 0.006) N m/rad
Float y-axis (0.138 ± 0.006) N m/rad
Equation (16) prediction (0.139 ± 0.003) N m/rad

Center-of-buoyancy change

Float x-axis (6.90 ± 0.32) mm
Float y-axis (6.95 ± 0.32) mm
Equation (14) prediction (7.00 ± 0.17) mm

Float rotational stiffness

Measurement (−15.11 ± 2.05) μN m/rad
Equation (10) prediction (−14.73 ± 0.41) μN m/rad

Float transverse stiffness and frequencies

Equation (4) x- and y-axis calculation (1.11 ± 0.16) N/m
Oscillation frequency x- and y-axis (0.29 ± 0.04) Hz

V. DISCUSSION
The measurements in Figs. 8 and 9 change linearly with the

tilt angle as expected from Eq. (16). The gradients of these plots
were expected to be 0.139 N m/rad, and the measured gradients all
lie within 1.5% of this value and within their uncertainty ranges.
The calculated and measured changes in the center-of-buoyancy dis-
placement of the float from Figs. 8 and 9 were also within 1.5%
of each other and within each other’s uncertainty ranges. Thus, all
the results are in excellent agreement with the theory. This demon-
strates that it is possible to tune in situ the center-of-buoyancy of a
suspended object and hence also possible to decouple its rotational
motion from ground tilt and horizontal accelerations.

The measured and calculated rotational stiffnesses of the float
were within 2.5% of each other and within their respective uncer-
tainty bounds. The magnitude of these values is an order of magni-
tude lower than the rotational stiffness of a torsion balance used in
a recent determination of Newton’s constant of gravitation, which
had a stiffness of approximately 218 μN m/rad.15 Additional actu-
ators could increase the float’s transverse stiffness from the calcu-
lated values to make the float more transversely stable and also
allow the adjustment of its rotational stiffness. Preliminary mea-
surements with this setup show that this is possible.13 The natural
oscillation frequencies of the float in the transverse plane were cal-
culated. With the float being levitated through an air bearing, it can
be assumed that its motion was highly damped. As such in this case,
there was no risk of the oscillations significantly affecting the float’s
motion.

The design could be improved to allow greater precision in
the placement and adjustment of the different components to give
more accurate results. The noise from the electronics of the posi-
tional photodiode was measured to be 8.4 × 10−7 N m/

√
Hz,

while the total noise of the air bearing system was measured to be
2.7 × 10−6 N m/

√
Hz. This was the largest contribution to the data

point uncertainties in Figs. 8 and 9. This gave an error on the gra-
dients of these plots, which was then propagated onto the experi-
mental estimation of xcb from Eq. (14). No attempt was made to put
the device in a protective enclosure or shield the photodiode from
environmental light sources. As such the error on xcb of ±0.3 mm
could be reduced by lowering the noise of the air bearing. This
could be done by using a different method of levitation other than
a pressurized-air suspension, such as an electrostatic or a super-
conducting suspension.13 From Eq. (14), the theoretical maximum
accuracy of center-of-buoyancy tuning that could be attained with
the setup presented here, taking into account the current noise from
the coil drivers of the magnetic actuators averaged over a second,
is ±1.6 × 10−8 m. This corresponds to a possible improvement in
accuracy of a factor of over 18 000.

VI. CONCLUSION
An air bearing suspension that levitates a float, with its motion

in the horizontal plane of the laboratory controlled using magnetic
actuators, was constructed. The observed behavior of the float was
compared to the predictions of a detailed model of the statics of the
float–actuator system, and they were found to be consistent. The
results from Figs. 8 and 9 demonstrate the in situ electromagnetic
tuning of the float’s center-of-buoyancy to an accuracy of ±0.3 mm.
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This result implies that it is practical to decouple the rotational mode
of a suspended object from tilt and horizontal accelerations due to
seismic noise, by tuning its center-of-buoyancy to lie at its nominal
center-of-buoyancy (NCB).

This result paves the way for other, more sensitive, experiments
to be designed with a view to performing weak-force measurements
at sub-mm ranges. Work is ongoing on a superconducting torsion
balance.13,18 The aim here is to develop an instrument that exhibits
the same advantages as the air bearing where it can be tuned in situ
to be rotationally decoupled from ground tilt, in addition to allow-
ing the in situ tuning of its rotational stiffness. This combined with a
transverse stiffness provided by the superconducting magnetic actu-
ators should allow measurements of the inverse square law of gravity
down to mass separations of the order of 10 μm. The Newtonian
torque signal, given a day’s integration, requires a fundamental noise
level of less than 1 × 10−14 N m/

√
Hz. Given a typical seismic noise

acceleration spectral density of 5 × 10−7m/s2√Hz and a suspended
mass of 338.66 g, we would need to match the center-of-buoyancy
and mass to an accuracy of about 1 × 10−7 m. So an improve-
ment in tuning accuracy of a factor of around a thousand would be
required, compared with what is achieved here. The uncertainty on
the matching of the center-of-mass and center-of-buoyancy is lim-
ited by the overall noise in the air bearing system, so this goal may
be achievable with a superconducting or other type of suspension.
We should also mention that a possible downside of this technique
is the way that the actuation system can introduce noise into the
measurement through its asymmetries [the κ parameter introduced
in Eq. (15)]. Any strategy of reducing this factor would include
making such asymmetries as small as possible in the first instance,
thus ensuring that the actuation torques themselves are as small as
possible.
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