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Abstract 6 

The Linear Joule Engine Generator (LJEG) incorporates the Joule Engine technology and the 7 

permanent magnet linear alternator design, which is a promising power generation device for the 8 

applications of range extenders for electric vehicles, Combined Heat and Power (CHP) systems, or as 9 

a stand-alone power unit. It combines the advantages from both a Joule Engine and a linear alternator, 10 

i.e. high efficiency, compact in size, and flexible to renewable energy integration, etc. In this paper, 11 

the background and recent developments of the LJEGs are summarised. A detailed 0-dimentional 12 

numerical model is described for the evaluation of the system dynamics and thermodynamic 13 

characteristics. Model validation is conducted using the test data obtained from both a reciprocating 14 

Joule Engine and a LJEG prototype, which proved to be in good agreement with the simulation results. 15 

The fundamental operational characteristics of the system were then explained using the validated 16 

numerical model. It was found that the piston displacement profile has certain similarity with a 17 

sinusoidal wave function with an amplitude of 51.0 mm and a frequency of 13 Hz. The electric power 18 

output from the linear alternator can reach 4.4kWe. The engine thermal efficiency can reach above 19 

34%, with an electric generating efficiency of 30%. 20 

Keywords: Linear Joule-cycle Engine; linear expander; linear alternator; numerical model; model 21 

validation. 22 
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Nomenclature 

𝐴𝑐𝑜𝑚 (m3) compressor piston area  𝑝𝑐𝑜𝑚_𝑖𝑛 (Pa) intake gas pressure of compressor 

𝐴𝑒𝑥𝑝 (m3) expander piston area  𝑃𝑒 (W) electric power output of alternator 

𝐴𝑒𝑥𝑝_𝑠𝑢𝑟𝑓 (m2) surface are in contact with gas  𝑃𝑒𝑥 (W) indicated power of the linear expander 

 𝐴𝑑 (m2) reference area of the flow 𝑄̇ℎ𝑡 (J/s) heat flow rate between cylinder wall and gas 

𝐶𝑑 (-) discharge coefficient 𝑝𝑑 (Pa) downstream air pressure  

𝐶𝑒 (N/(m·s-1)) load constant of alternator 𝑝𝑒𝑥𝑝(pa) pressure in linear expander  

𝐶𝑘 (-) kinetic friction coefficient  𝑝exp_𝑙 (Pa) pressure from left chamber of expander 

 𝐶𝑠 (-) static friction coefficient  𝑝exp_𝑟 (Pa) pressure from right expander 

𝑚̇𝑓𝑙𝑜𝑤 (kg/s) mass flow rate through valve 𝑝𝑒𝑥𝑝_𝑖𝑛 (Pa) intake gas pressure of linear expander 

𝑚̇𝑒𝑥𝑝𝑖 (m/s) mass flow rate in/out of the valve  𝑅 (Ω) resistance of the circuit 

𝐹𝑒𝑥𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (N) pressure force from linear expander 𝑅𝑆 (Ω) internal resistance 

𝐹𝑒𝑥𝑝_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) pressure force from left expander 𝑅𝐿 (Ω) resistance of the external load 

𝐹𝑒𝑥𝑝_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) pressure force from right expander 𝑇𝑢(K) temperature of upstream  

𝐹𝑐𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) pressure force from linear compressor 𝑇𝑤 (K) average surface temperature of cylinder wall 

𝐹𝑐𝑜𝑚_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (N) pressure force from left compressor 𝑣 (m/s) piston velocity 

𝐹𝑐𝑜𝑚_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (N) pressure force from right compressor 𝑣𝑝 (m/s) average piston speed  

𝐹𝑒⃗⃗  ⃗ (N) resistance force from alternator 𝑉 (m3) instantaneous cylinder volume 

𝐹𝑓⃗⃗  ⃗ (N) frictional force 𝑉𝑐𝑜𝑚(m3) working volume of linear compressor  

𝑖(A) current in the circuit 𝑉𝑒𝑥𝑝 (m3) working volume of linear expander  

𝑝𝑐𝑜𝑚 (Pa) pressure in the compressor 𝑥 (m) piston displacement 

𝑝com_𝑙 (Pa) pressure from left of compressor 𝛾 (-) heat capacity ratio 

𝑝com_𝑟 (Pa) pressure from right compressor ε (V) electromotive voltage 

 25 

1. Introduction 26 

The Linear Joule Engine Generator (LJEG) is derived from the Joule Engine technology and 27 

incorporates a permanent magnet in a linear alternator design. The Joule Engine technology uses a free 28 

piston configuration with a potential high efficiency due to its mechanical simplicity and minimal 29 
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frictional loss, in addition it employs an external (out-of-cylinder) heat addition method to adapt to 30 

various renewable energy sources [1-3]. The permanent magnet linear alternator is reported to be 31 

compact in size, and efficient in electricity generation [4-7]. The LJEG takes advantages of both a 32 

Joule Engine and the Linear Engine Generator, and it provides an alternative high-efficiency, 33 

renewable energy adaptive, prime mover for transportation and power generation applications. At the 34 

same time, it offers flexibility at a time when it is expected to see a major increase in the low-35 

carbon/carbon-free fuel variety, e.g. biogas, biofuels, hydrogen and ammonia, in these sectors towards 36 

2050. 37 

1.1 Joule Engine technology 38 

The Joule cycle (or Brayton Cycle) is widely employed in gas turbines, where air intake is compressed, 39 

before fuel is burnt under constant pressure, and then, the exhaust gas expands out to ambient pressure. 40 

Typically the compression and expansion processes are performed by turbomachinery [8]. In theory it 41 

has isobaric heat addition and heat rejection processes, and isentropic compression and expansion. The 42 

reciprocating Joule Engine technology applies split a reciprocating compressor and expander to 43 

improve its efficiency, which was proposed as an engine for application in the micro CHP systems [1, 44 

3, 9].  45 

Moss et al. estimated the performance of a Joule Engine in small size (1-10 kW) with a simple 46 

simulation model in Matlab [1]. M. Alaphilippe, et al. provided a theoretical investigation on the 47 

coupling of a two-stage parabolic trough solar concentrator with a hot air Joule Engine [10]. The 48 

preliminary results were reported to be promising of coupling a simple parabolic though and a Joule 49 

Engine. Wojewoda and Kazimierski provided investigation on operation of an externally heated valve 50 

Joule Engine [11]. A numerical model was presented, and the heat exchanger operation was further 51 

investigated. M. Creyx, et al. developed a numerical model of an open cycle Joule Engine, which was 52 

focused on the thermodynamic aspects [12]. The reported system thermodynamic efficiency was 37% 53 
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after some optimisation work. Bell and Partridge presented a first-order model of a Joule Engine, and 54 

the model included  combustion, clearance volume, gas leakage, pressure drop, and friction [2]. 55 

Another system was reported by the researchers at Plymouth University, the system power output and 56 

efficiency were simulated, indicating an engine thermal efficiency of up to 33% [2]. The model 57 

validation was performed using the testing results of both a demonstration engine and a prototype 58 

engine [13]. 59 

1.2 Linear Engine Generator technology 60 

The Linear Engine Generator is linear ‘crank-less’ power device that couples a linear internal 61 

combustion engine with a linear electric generator, it uses conventional diesel or Otto cycles [4, 14, 62 

15]. The piston of the engine is connected with the translator of the generator. Combustion takes place 63 

in the engine cylinder, and the high pressure gas during the expansion process is used to drive the 64 

piston and the translator, and the linear generator produces electricity [16]. There have been different 65 

prototypes reported by different research groups [17-23]. Sucessful implementations of single cylinder 66 

Linear Engine Generators have been reported by Toyota Central R&D Labs Inc. and the German 67 

Aerospace Centre (DLR), which were both composed of a single cylinder engine, a linear electric 68 

generator, and a gas spring rebound chamber [23-26]. For the prototype developed at DLR, it was 69 

operated at 21 Hz, with an electric power output of approximately 10 kW [27]. The TDC achieve was 70 

found to be at 57.5% of the periodic time [28]. For the dual-piston dual-cylinder Linear Engine 71 

Generator, several prototypes have been designed in Beijing Institute of Technology [6, 7]. Both 0/1 72 

dimensional and multi-dimensional simulation were undertaken to predict the dynamic and 73 

thermodynamic performance of the system [29-31]. Successful engine cold start-up has been reported, 74 

and the combustion took place when the cylinder pressure reached the required level for ignition [7, 75 

32, 33]. The piston was controlled to oscillate between two set positions with constant speed [34, 35]. 76 

The predicted system efficiency was around 35%. The potential disturbances to the system were 77 

analysed, and a cascade control strategy was proposed for the piston stable control [36, 37]. 78 
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1.3 Linear Joule Engine Generator development 79 

The Linear Joule Engine Generator concept was first proposed by the authors’ group, initially aiming 80 

for application for micro-scale CHP generation [3]. Simple calculations were undertaken, and the 81 

simulation results suggested that a domestic CHP plant based on the proposed technology could reach 82 

an electric generating efficiency of above 30%. With a heating temperature of around 1100 K and a 83 

compressor outlet pressure of 6 bar, the engine could produce 4.5 kW of mechanical power. Whilst, 84 

through waste heat recovery technology, the total system could reach a promising efficiency of over 85 

90%. Later on, a 3-dimentional diagram of the proposed LJEG system was presented by the authors 86 

[9].  The geometry parameters of the system were optimised in LMS AMESim software, which 87 

provided a solid basis for the manufacturing of the prototype. Meanwhile, Wu et al. presented a 88 

coupled dynamic model of the Linear Joule Engine and the connected permanent magnet linear electric 89 

generator, aiming to provide a better prediction of the system performance. It was estimated that the 90 

LJEG system could generate 1.8 kW electricity, with an engine thermal efficiency of 34% and electric 91 

generating efficiency of 30% [38].  92 

1.4 Aims and methodology 93 

In this research, the background and recent developments of the LJEG are summarised. A more 94 

detailed numerical model of the system will be described, which includes the sub-models for the piston 95 

dynamics, the reactor, the linear expander, the linear compressor, and the linear generator, etc. The 96 

model validation will be performed with the testing data from both a reciprocating Joule Engine, and 97 

a LJEG prototype developed by the authors’ group. The system dynamics and thermodynamics 98 

characters will be identified with the validated model. 99 
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2. System configuration 100 

For an ideal Joule Engine Cycle (as illustrated in Figure 1), it usually consists of four processes, i.e. 101 

adiabatic compression process in the compressor, constant pressure fuel combustion process, adiabatic 102 

expansion process in the expander [39]. It should be noted that the “Combustor” shown in Figure 1 103 

can be replaced with any fuel combustion, waste heat, or renewable energy reaching certain 104 

temperature, and the gas will drive the expander. 105 

 106 

Figure 1. System schematic figure of a Joule Engine Cycle 107 

The configuration of the LJEG prototype developed by the authors is illustrated in Figure 2, using an 108 

external reactor to burn fuel as heat input. It is an open system, and the exhaust gas after the expander 109 

would be high-pressure, high temperature gas. The air is compressed in a positive displacement 110 

compressor featured with a double-acting free piston and several poppet valves for intake and 111 

discharge; the compression of the air results in a high pressure, high temperature air, which is fed into 112 

an external reactor. The fuel is fed into the reactor and reacts with the air to produce heat and high 113 

pressure gas. The expander reduces the pressure and temperature by expanding the working fluid and 114 

this expansion is used to drive the linear generator and the compressor.  115 
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 116 

Figure 2. The LJEG prototype configuration with a reactor as an example heat input  117 

3. Numerical modelling 118 

3.1 Model structure 119 

The numerical model aims to describe the dynamic and thermodynamic characteristics of the LJEG 120 

system, e.g. the piston motion, the pressure variation in the expander and the compressor, the system 121 

power output, the system efficiency, etc. As the piston in the proposed system is not restricted by a 122 

mechanical linkage, the piston motion is determined by the forces acting on it, which are the gas 123 

pressure forces from the linear expander and the compressor, the resistance force from the linear 124 

generator, the frictional force, and the inertia of the moving mass. Therefore a piston dynamic model 125 

is developed on the top level. The structure of the numerical model is demonstrated in Figure 3. 126 

Three sub-model that describe the specific forces that acting on the pistons are developed on a lower 127 

level, and the calculated forces are used as feedback signals to the top-level piston dynamic model to 128 

determine the piston acceleration. The pressure forces are determined by the gas thermodynamic 129 

processes from both chambers of the linear expander and the linear compressor, which consider the 130 

compression/expansion of the piston, gas intake/exhaust through the valves, the heat transfer from the 131 
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gas of the chamber to the wall, etc. During the operation of the system, the linear generator will 132 

generate electricity, and outputs an electric resistance force acting on the piston. 133 

The performance of the linear expander is affected by the high-pressure, high-temperature gas from 134 

the external reactor, which is the intake gas to the chambers of the expander through the intake valves. 135 

The outputs of the reactor, i.e. the gas pressure, temperature, and mass flow rate, will be used as input 136 

parameters to the linear expander during the gas intake process. The external reactor can be replaced 137 

with any fuel combustor, solar energy, waste heat, or renewable energy that can drive the expander. 138 

The external reactor would largely follow the isobaric heat addition process with a confined pressure 139 

fluctuation regardless fuel species, thus the inlet pressure and temperature of the linear expander are 140 

assumed to be constant.  141 

 142 

Figure 3. The structure of the numerical model  143 

3.2 Piston dynamics model 144 

The forces acting on the pistons are the gas pressure forces from the linear expander and the 145 

compressor, the resistance force from the linear generator, the frictional force, and the inertia of the 146 

moving mass, which can be expressed as blow according to the Newton’s Second Law: 147 

𝐹𝑒𝑥𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐹𝑐𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐹𝑒⃗⃗  ⃗ + 𝐹𝑓⃗⃗  ⃗ = 𝑚𝑥̈                                                  (1) 148 
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𝐹𝑒𝑥𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝑒𝑥𝑝_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐹𝑒𝑥𝑝_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                                         (2) 149 

𝐹𝑐𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐹𝑐𝑜𝑚_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝑐𝑜𝑚_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                          (3) 150 

Where 𝐹𝑒𝑥𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) is the pressure force from the linear expander; 𝐹𝑒𝑥𝑝_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) is the pressure force from the 151 

left chamber of the linear expander; 𝐹𝑒𝑥𝑝_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (N) is the pressure force from the right chamber of the linear 152 

expander; 𝐹𝑐𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (N) is the pressure force from the linear compressor; 𝐹𝑐𝑜𝑚_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (N) is the pressure force 153 

from the left chamber of the linear compressor; 𝐹𝑐𝑜𝑚_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (N) is the pressure force from the right chamber 154 

of the compressor; 𝐹𝑒⃗⃗  ⃗ (N) is the resistance force from the linear electric alternator; 𝐹𝑓⃗⃗  ⃗ (N) is the 155 

frictional force. 156 

The gas forces from both chambers of the linear expander and compressor can be calculated by the gas 157 

pressure and piston effective area, where can be represented as following: 158 

𝐹𝑒𝑥𝑝_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑝exp_𝑙 ∙ 𝐴𝑒𝑥𝑝                                                           (4) 159 

𝐹𝑒𝑥𝑝_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑝exp_𝑟 ∙ 𝐴𝑒𝑥𝑝                                                           (5) 160 

𝐹𝑐𝑜𝑚_𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑝com_𝑙 ∙ 𝐴𝑐𝑜𝑚                                                           (6) 161 

𝐹𝑐𝑜𝑚_𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑝com_𝑟 ∙ 𝐴𝑐𝑜𝑚                                                           (7) 162 

Where 𝑝exp_𝑙 (Pa) is the cylinder pressure from the left chamber of the linear expander; 𝑝exp_𝑟 (Pa) is 163 

the cylinder pressure from the right chamber of the linear expander; 𝑝com_𝑙 (Pa) is the cylinder pressure 164 

from the left chamber of the linear compressor; 𝑝com_𝑟 (Pa) is the cylinder pressure from the right 165 

chamber of the linear compressor; 𝐴𝑒𝑥𝑝 (m3) is the piston area of the expander; 𝐴𝑐𝑜𝑚 (m3) is the piston 166 

area of the compressor. 167 
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3.3 Linear expander 168 

The thermodynamic processes in a chamber of the linear expander mainly include the 169 

compression/expansion process due to the piston movement, heat transfer from gas in the chamber to 170 

the wall, as well as the inlet and exhaust gas exchange processes. By applying the first law of 171 

thermodynamics on the charge in the chamber and ideal gas equation, yields the pressure calculation 172 

equation for one of the two chambers (detailed derivation process can be found in the previous 173 

publications of the authors [25]): 174 

𝑑𝑝𝑒𝑥𝑝

𝑑𝑡
=

𝛾−1

𝑉𝑒𝑥𝑝
(−

𝑑𝑄ℎ𝑡

𝑑𝑡
) −

𝑝𝑒𝑥𝑝𝛾

𝑉𝑒𝑥𝑝

𝑑𝑉𝑒𝑥𝑝

𝑑𝑡
+

𝛾−1

𝑉𝑒𝑥𝑝
∑ 𝑚̇𝑒𝑥𝑝𝑖𝑖 ℎ𝑒𝑥𝑝𝑖                        (8) 175 

Where 𝑝𝑒𝑥𝑝 is the pressure in the chamber of the linear expander (pa); 𝛾 is the heat capacity ratio; 𝑉𝑒𝑥𝑝 176 

is the working volume of the linear expander for one cylinder (m3); 𝑚̇𝑒𝑥𝑝𝑖 is the mass flow rate in or 177 

out of the valve (m/s); ℎ𝑒𝑥𝑝𝑖 is the specific enthalpy of the mass flow (J·kg-1). 178 

The heat transfer between the walls and the gas of one chamber of the expander is modelled according 179 

to Hohenber [40]: 180 

𝑄̇ℎ𝑡 = 130𝑉
−0.06 (

𝑝(𝑡)

105
)
0.8

𝑇−0.4(𝑣𝑝 + 1.4)
0.8
∙ 𝐴exp_𝑠𝑢𝑟𝑓(𝑇 − 𝑇𝑤)                     (9)  181 

Where 𝑄̇ℎ𝑡 is heat flow rate (J/s); 𝑉 is the instantaneous cylinder volume (m3); 𝑣𝑝 is the average piston 182 

speed (m/s), 𝐴𝑒𝑥𝑝_𝑠𝑢𝑟𝑓 (m2) is area of the surface in contact with the gas in the chamber of the expander; 183 

𝑇𝑤 (K) is the average surface temperature of the cylinder wall. 184 

The mass flow rate through the valves, 𝑚̇𝑓𝑙𝑜𝑤 is assumed to be represented by a compressible flow 185 

through a flow restriction. It is determined by temperature, composition, the gas pressure, and a 186 

reference area of the valve [24], which is given by: 187 
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𝑚̇𝑓𝑙𝑜𝑤 =

{
 
 

 
 𝐶𝑑𝐴𝑑𝑝𝑢

(𝑅𝑇𝑢)
1
2

(
𝑝𝑑

𝑝𝑢
)

1

𝛾√ 2𝛾

𝛾−1
[1 − (

𝑝𝑑

𝑝𝑢
)

(𝛾−1)

𝛾
] ,  𝑝𝑑/𝑝𝑢 > [2/(𝛾 + 1)]

𝛾/(𝛾−1)     

𝐶𝑑𝐴𝑑𝑝𝑢

(𝑅𝑇𝑢)1/2
𝛾1/2 (

2

𝛾+1
)
(𝛾+1)/2(𝛾−1)

, 𝑝𝑑/𝑝𝑢 ≤ [2/(𝛾 + 1)]𝛾/(𝛾−1)    

        (10) 188 

Where 𝑚̇𝑓𝑙𝑜𝑤 is the mass flow rate through a poppet valve (kg/s); 𝐶𝑑 is the discharge coefficient; 𝐴𝑑  is 189 

the reference area of the flow (m2); 𝑇𝑢 is the temperature of the upstream of the flow restriction (K); 190 

𝑝𝑢  is the pressure of the upstream of the flow restriction (Pa); 𝑝𝑑 represents the downstream air 191 

pressure of the flow restriction (Pa). 192 

3.4 Linear compressor 193 

For ideal gas, both compression and expansion process are governed by the gas pressure and its volume 194 

after the intake valve and exhaust valve closed. The air leakage across the piston rings was considered 195 

negligible, hence it is assumed that the gas is completely isolated by the piston rings and there is no 196 

air mass transfer. The relationship between gas pressure 𝑝𝑐𝑜𝑚 and volume of the chamber 𝑉𝑐𝑜𝑚 during 197 

the compression/expansion process is listed below: 198 

𝑑𝑝𝑐𝑜𝑚

𝑑𝑡
=

𝛾−1

𝑉𝑐𝑜𝑚
(−

𝑑𝑄ℎ𝑡

𝑑𝑡
) −

𝑝𝑐𝑜𝑚𝛾

𝑉𝑐𝑜𝑚

𝑑𝑉𝑐𝑜𝑚

𝑑𝑡
                                         (11) 199 

Where 𝑝𝑐𝑜𝑚 is the pressure in the chamber of the linear compressor (pa); 𝛾 is the heat capacity ratio; 200 

𝑉𝑐𝑜𝑚 is the working volume of the linear compressor for one cylinder (m3). 201 

The intake and exhaust valves here adopted are reed valves, which open when the pressure of the 202 

upstream is higher than that of the downstream. When the intake valve is opened, the gas pressure in 203 

the chamber of the linear compressor is assumed to be equal with the intake pressure immediately; and 204 

the gas pressure is assumed to be same with the exhaust pressure (or the intake pressure to the linear 205 

expander) once after the exhaust valve is open. In summary, the gas pressure in one chamber of the 206 

linear compressor is described by: 207 
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𝑝𝑐𝑜𝑚_2 = {

𝑝𝑒𝑥𝑝_𝑖𝑛;         𝑝𝑐𝑜𝑚_2 > 𝑝𝑒𝑥𝑝_𝑖𝑛

𝑝𝑐𝑜𝑚_1(𝑉𝑐𝑜𝑚_1
𝛾

/𝑉𝑐𝑜𝑚_2
𝛾

); 𝑝𝑐𝑜𝑚_𝑖𝑛
𝑝𝑐𝑜𝑚_𝑖𝑛;        𝑝𝑐𝑜𝑚_2 < 𝑝𝑐𝑜𝑚_𝑖𝑛

< 𝑝𝑐𝑜𝑚_2 < 𝑝𝑒𝑥𝑝_𝑖𝑛                      (12) 208 

Where 𝑝𝑐𝑜𝑚_𝑖𝑛 (Pa) is the intake gas pressure of the linear compressor; 𝑝𝑒𝑥𝑝_𝑖𝑛 (Pa) is the intake gas 209 

pressure of the linear expander, which is the same with the exhaust gas pressure of the linear 210 

compressor. 211 

3.5 Linear electric generator 212 

The linear electric machine is operated as a generator, electrical current is drawn from the alternator 213 

coils through the continuous back and forth movement of the mover. The linear generator is modelled 214 

using a simplified numerical model to make it feasible with limited amount of design parameters 215 

known to the users. Figure 4 illustrates an equivalent circuit of the linear electric machine.  216 

 217 

Figure 4 Equivalent circuit of the linear electric machine [31] 218 

Then the Faraday's electromagnetic induction laws give the electromotive voltage ε (V) as 219 

𝜀(𝑡) = −𝑁
𝑑∅

𝑑𝑡
= −𝐾𝑣

𝑑𝑥

𝑑𝑡
= −𝐾𝑣 ∙ 𝑣                                            (13) 220 

Where ∅ is the magnetic flux; 𝐾𝑣 is a motor property and determined by the design parameters of the 221 

motor and can be found in the manual; 𝑥 is the piston displacement (m); 𝑣 is the piston velocity (m/s). 222 

The induced current is determined by the voltage and the load circuit, assuming the load circuit is 223 

purely resistive (𝐶 = 0, 𝐿 = 0), it can be derived by:  224 

𝜀(𝑡) = (𝑅𝑆 + 𝑅𝐿)𝑖(𝑡)                                                         (14) 225 
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Where 𝑅 is the resistance of the circuit (Ω), 𝑅𝑆 is the internal resistance (Ω), and 𝑅𝐿is the resistance of 226 

the external load (Ω); 𝑖 is the current (A). 227 

Then the current in the coil is then expressed by: 228 

𝑖(𝑡) = −
𝐾𝑣

𝑅𝑆+𝑅𝐿
∙ 𝑣                                                            (15)  229 

As the load force of the electric machine is assumed to be proportional to the current of the circuit 230 

according to electromagnetic theory, the resistance force from the alternator is then written as: 231 

𝐹𝑒 = −𝐶𝑒𝑣                                                               (16) 232 

Where 𝐶𝑒 is the load constant of the alternator (N/(m·s-1)), which can be calculated from the physical 233 

parameters of the alternator design specifications. 234 

3.6 Frictional force 235 

An analysis of engine friction mechanisms in four stroke spark ignition and diesel engines is presented 236 

by Heywood [41]. Friction work is expected to be lower than conventional internal combustion engines 237 

due to the elimination of the crank mechanism. Thus the friction in the wrist pin, big end, crankshaft, 238 

camshaft bearings, the valve mechanism, gears, or pulleys and belts which drive the camshaft and 239 

engine accessories have been removed. The total friction force 𝐹𝑓 of each piston is estimated as a linear 240 

combination of piston velocity plus a constant 𝐶𝑠, as shown in the equation below [42]: 241 

𝐹𝑓 = −(𝐶𝑘 ∙ |𝑣| + 𝐶𝑠) ∙ 𝑠𝑖𝑔𝑛(𝑣)                                              (17) 242 

𝐶𝑘  is the kinetic friction coefficient related to the instantaneous velocity, and the  𝐶𝑠  is the static 243 

friction coefficient as a constant part of the frictional force. 244 
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4. Model implementation and validation 245 

4.1 Simulation model implementation 246 

The simulation model is developed in Matlab/Simulink. The design parameters of the model are 247 

derived from the preliminary design of the prototype in built/testing and the initial boundary conditions 248 

are defined based on the practical starting conditions and the assumptions made in the model 249 

mentioned above. Both the piston displacement and velocity generated in the simulation are monitored 250 

and fed back to a controller which imposes the valve timings. The initial piston position is assumed to 251 

be at its TDC (approximately 8 mm from the cylinder head) in the left chamber of the linear expander.  252 

The prototype specifications and the values of the input parameters for the system operation cycles are 253 

listed in Table 1. The system design parameters and the input boundary parameters will be further 254 

optimised at the next stage. The inlet pressure of the reactor is set to be the same with the outlet pressure 255 

of the linear compressor, and the inlet pressure of the linear expander, which can be adjusted during 256 

the simulation. The outlet pressure of the linear compressor, and the mass flow rate to the reactor are 257 

all variables, which will affect the inlet pressure to the reactor and the linear expander, and the intake 258 

temperature of the linear expander correspondingly. 259 

Components Parameters [Unit] Value 

Expander 

Moving mass [kg] 8.5 

Maximum stroke [mm] 120.0 

Effective bore [mm] 80.0 

Inlet pressure [bar] 7.0 

Inlet temperature [K] 1100.0 

Valve number 4 

Valve diameter [mm]  32.5 

Valve lift [mm] 8.13 

Linear compressor Maximum stroke [mm] 120.0 
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Effective bore [mm] 66.0 

Inlet pressure [bar] 1.0 

Outlet pressure [bar] 7.0 

Linear generator load constant [N/m·s-1] 367.6 

Table 1. Prototype specifications and input parameters 260 

As the valves are actuated based on the piston position, the scavenging durations will be significantly 261 

affected by the piston speed and profile. The step functions are used to impose the valve-lift profiles, 262 

as which proved to be aligned with the response of the installed valve system. The opening and closing 263 

valve timings can be adjusted via the controller to optimise the scavenging process. The expansion 264 

process of the expander is initialised after the intake valve open (IVO), which is actuated when the 265 

piston reaches its TDC. The exhaust valve open (EVO) is triggered when the piston reaches its BDC.  266 

The valve timings versus the piston displacement for both chambers of the expander are illustrated in 267 

Figure 5, and example piston dead centres are set to -50 mm and 50 mm. 268 

 269 

(a) Rightward stroke           270 
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 271 

(b) Leftward stroke 272 

Figure 5. The example valve timings for both chambers of the linear expander 273 

4.2 Validation with a Reciprocating Joule Engine 274 

The simulation results from the model were first compared to data from a Reciprocating Joule Engine 275 

developed at University of Plymouth [8]. The configuration of a Reciprocating Joule Engine is 276 

different from the LJEG system, which is illustrated in Figure 6. The comparison was undertaken to 277 

verify that the simulation developed in this research produces the realistic results and is valid for 278 

predicting the prototype performance in different system operation conditions. The system 279 

specifications were set to be identical with the Reciprocating Joule Engine introduced in [8]. The 280 

Reciprocating Joule Engine input parameters are listed in Table 2, the bores of the expander and 281 

compressor are the same.  282 
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 283 

Figure 6. Schematic configuration of a Reciprocating Joule Engine 284 

Parameter [Unit] Value 

Stroke [mm] 61.5 

Bore [mm] 82.0 

Clearance volume [cc] 30 

Supply pressure [bar] 7.5 

Supply temperature [K] 850 

Table 2. The  Reciprocating Joule Engine specification for model validation [8] 285 

During the testing, the engine was operated on external compressed air (with no compressor connected). 286 

The test data and simulation results of the expander pressure are compared in Figure 7. For the 287 

Reciprocating Joule Engine, the expander was operated on external compressed air, and the 288 

compressor was not connected, which would contribute to the difference with the simulation results. 289 

The valve timing was set based on the crank angle, and the inlet valve was set to open at 10º before 290 

TDC, and close at 80º after TDC. The exhaust valve was set to open at 10º before BDC, and close at 291 

70º before TDC [8]. As for the LJEG concept used in this research, the piston is not restricted with 292 

mechanical crankshaft linkage, and the piston movement cannot be represented with crank angle as 293 
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the Reciprocating Joule Engine does. As a result, the setting of the valve timing in the simulation 294 

would not be exactly the same with the test engine, which introduces the error to a great extent. Despite 295 

of the errors, the numerical model can simulate the performance of the expander, and predict the 296 

variation of the cylinder pressure.  297 

 298 

Figure 7. Comparison with test data from a Reciprocating Joule Engine [8] 299 

4.3 Validation with LJEG prototype 300 

The simulation model was also validated with the LJEG prototype developed at Newcastle University, 301 

which is comprised of a compressor, an expander, and an external heater. Two double-acting free-302 

pistons are placed in the compressor (left) and the expander (right) respectively, which separates the 303 

cylinders into two opposite chambers. The figure of the prototype is shown in Figure 8, and more 304 

information can be found in elsewhere [9]. A control algorithm is developed in LabVIEW to set the 305 

valve timings with the piston displacement and velocity as the feedbacks. The bore of the expander is 306 

80.0 mm, with a maximum stroke of 120.0 mm. The bore of the compressor is 66.0 mm, and the bore 307 

of the connection rod is 10.0 mm. The total moving mass of the system is 8.5 kg. The inlet pressure of 308 
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the expander is 2.5 bar during the testing. More details about the prototype and its configuration can 309 

be found elsewhere [3, 9].  310 

 311 

Figure 8. LJEG prototype at Newcastle University 312 

The validation results on the piston displacement and the cylinder pressure in the left chamber of the 313 

expander cylinder are presented in Figure 9 and Figure 10 respectively. It is found that the simulation 314 

model agrees with the piston movement in the tests, and the system operating frequency fits very well. 315 

The cylinder pressure profile in the expander can be precisely estimated during the compression and 316 

the expansion processes. There is a difference during the intake process as a simple step function is 317 

adopted to simulate the valve lifting profile, which cannot predict the gas pressure instantaneous 318 

fluctuations when the valves open and close. Despite these errors, the simulation model is considered 319 

to be of reasonable accuracy to estimate the operation characteristics of the LJEG system. 320 
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 321 

Figure 9. The comparison with test data from a LJEG prototype on piston displacement 322 

 323 

Figure 10. The comparison with the test data from the LJEG prototype on the cylinder pressure 324 

5. Fundamental system performance 325 

The values for the input variables during the current simulation are listed in Table 1. The inlet pressure 326 

of the expander is set to 7.0 bar, which is feasible for a compressor at the end of compression process. 327 

The data in Table 3 shows the system performance with the input parameter shown in Table 1. The 328 
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indicated power from the linear expander is estimated to be 6582.0 W, and the indicated power from 329 

the linear compressor is estimated to be 1594.0 W. The electric power output can reach 4412.0 W. The 330 

engine thermal efficiency can reach above 34%, with an electric generating efficiency of 30% from 331 

our simulation [3, 9]. 332 

Table 3 LJEG system performance 333 

Performance [Unit] Value 

Operation frequency [Hz] 15.0 

Piston amplitude from central stroke [mm] 51.0 

Clearance length [mm] 9.0 

Peak piston velocity [m/s] 4.0 

Compression ratio [-] 12.3 

The piston displacement versus time is demonstrated in Figure 11, which shows certain similarity with 334 

a sinusoidal wave with a fixed amplitude and period during stable operation process after the beginning 335 

stage. The piston moves between its top dead centre (TDC) and bottom dead centre (BDC) from 336 

approximately -51.0 mm to +51.0 mm. The operation stroke is around 102.0 mm, and the clearance 337 

length is 9.0 mm, which can be adjusted by the valve timings, the inlet pressure of the expander, and 338 

the load of the generator. As there is no combustion in the expander and the driven pressure in the 339 

expander is lower (normally higher than 40 bar after combustion for an internal combustion engine), 340 

the clearance length is longer than that of an internal combustion free-piston engine.  341 
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 342 

Figure 11. The piston displacement vs time 343 

The piston velocity profile is demonstrated in Figure 12. As there is no combustion, the difference of 344 

the piston velocity during the gas intake process and the exhaust process is not significant. The piston 345 

velocity reaches its peak value before it crosses the midpoint of the stroke during the intake process. 346 

The peak piston velocity achieved is approximately 4.0 m/s, which is lower than that of a free-piston 347 

internal combustion engine with similar size (nearly 4.5 m/s) [31], due to a lower input pressure level 348 

without combustion. The corresponding system frequency is approximately 13 Hz (equivalent to 780 349 

rpm) with the current operation conditions, which is also lower than the reported operation frequency 350 

of a free-piston internal combustion engine (20-50 Hz). 351 
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 352 

Figure 12. The piston velocity vs time 353 

The pressure-displacement diagram of the left chamber of the linear expander is shown in Figure 13, 354 

with the valve open/closing timing marked on it. During the simulation, the intake valve is set to open 355 

when the piston reaches its TDC. The peak pressure in the expander is affected by the intake duration 356 

of the expander of the other side. When the intake duration of the other side is short, then the gas 357 

pressure at the end of compression process will be lower than the intake pressure, and vice versa. 358 

 359 

Figure 13. The pressure in the expander vs the piston displacement 360 
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The pressure in the left chamber of the linear compressor with piston displacement is shown in Figure 361 

14, with the valve opening timing marked on it. The compression and expansion processes of the 362 

compressor are assumed to be isentropic processes. Reed valves are employed in the LJEG prototype. 363 

The inlet pressure for the linear compressor is equal with the ambient pressure, and the pressure in the 364 

compressor is assumed to be drop to and maintain at the ambient pressure when the intake valve of the 365 

compressor opens. The exhaust valve will be open when the gas pressure in the compressor reaches 366 

the target pressure (7.0 bar in this simulation), and the compressor will then output the compressed gas 367 

to the reactor for combustion with the fuel. The exhaust valve will be closed when the gas pressure in 368 

the compressor drops below the target pressure. 369 

 370 

Figure 14. Pressure in the compressor vs piston displacement 371 

The forces acting on the piston that contribute to the piston inertia force are compared in Figure 15. It 372 

is found that the force from the expander is highest among all the forces acting on the piston, which 373 

can reach up to 3500 N. The peak force from the generator is approximately 2100 N. The peak force 374 

from the compressor is 2000 N, which is achieve at the end of the compression process, and stays at 375 

the peak value during the outlet process. The force from the expander will overcome the forces from 376 

the compressor, the linear generator, and the frictional force, and acts as a excite force to drive the 377 
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pistons reciprocate. As the force from the expander is generated by the gas pressure in its chambers, 378 

the influence of the influence pressure will be significant to the system. 379 

 380 

Figure 15 Forces vs time 381 

The system power output with different system pressures (or the input pressure of the linear expander) 382 

is shown in Figure 16, and all the other input parameters remained unchanged during the simulation. 383 

Linear fittings for expander indicated power and electric power are presented in the same figure. It is 384 

found that both the indicated power of the expander and the electric power of the linear alternator are 385 

nearly in a linear relationship with the system pressure. When the system pressure is increased to above 386 

7.5 bar, the electric power extracted from the LJEG system can be above 5.0 kW. As a result, with the 387 

current setting of the system volumetric parameters and operating parameters, the indicated power of 388 

the linear expander, 𝑃𝑒𝑥 (W) can be estimated by: 389 

𝑃𝑒𝑥 = 1943.8 × 𝑝𝑖𝑛 − 6848.1                                               (18) 390 

The electric power output of the linear alternator, 𝑃𝑒 (W) can be estimated by: 391 

𝑃𝑒 = 1247.4 × 𝑝𝑖𝑛 − 4214.9                                              (19) 392 

Where 𝑝𝑖𝑛 (bar) is the inlet pressure of the linear expander, or the system pressure.  393 
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 394 

Figure 16. Power output with different system pressures 395 

Conclusions 396 

In this research, the background and recent development of the LJEG was summarised. A detailed 397 

numerical model was described, and model validation was performed with test data from both a 398 

reciprocating Joule Engine and a LJEG prototype. Fundamental system operation characteristics were 399 

presented. The main conclusions from this work are listed below: 400 

(1) It was found that the piston displacement shows certain similarity with a sinusoidal wave with fixed 401 

amplitude and period. The operation stroke is around 102.0 mm, and the clearance length is 9.0 mm.  402 

(2) The peak piston velocity and system operation frequency are found to be lower than that of a free-403 

piston internal combustion engine with similar size, due to a lower input pressure level without 404 

combustion. The peak piston velocity achieved is approximately 4 m/s, and the corresponding system 405 

frequency is approximately 13 Hz (equivalent to 780 rpm) with the current operation conditions.  406 

(3) The electric power output can reach 4.4 kWe, the engine thermal efficiency can reach above 34%, 407 

with an electric generating efficiency of 30%. 408 
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(4) The peak pressure in the expander is affected by the intake duration of the expander of the other 409 

side. When intake duration of the other side is short, then the gas pressure at the end of compression 410 

process will be lower than the intake pressure, and vice versa.  411 

(5) Both the indicated power of the expander and the electric power of the linear alternator are nearly 412 

in a linear relationship with the system pressure. 413 
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