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Abstract 

A single passive acoustic emission sensor is used to collect signals coming from an obstructed 
pipe in a water recirculation system. Four geometrically different obstructions are under 
investigation. The flow field of water around each obstruction is visualised with the use of 2D 
Particle Image Velocimetry to identify the different flow features. In parallel, the acoustic 
emission signals have been acquired by locating a piezoelectric sensor on the outer wall of the 
pipe at the tip of the obstruction. The acoustic emission signals are then pre-processed and the 
frequency domain is extracted for 100 recordings in each case. Signals are processed further 
by using Principle Component Analysis and a matrix is created for Supervised Machine 
Learning algorithms. This methodology is applied over a range of four flow rates, all in fully 
developed turbulent flow.  

Results show that different obstructions generate different acoustic signals and flow fields, 
which reflect the different flow fields observed with PIV. The average velocity and amplitude 
of the acoustic signals are increasing in magnitude with an increase in flow rate. The machine-
learning algorithm with highest prediction values is quadratic SVM with predictions in the area 
of 95% accuracy or above. This makes the combination of machine learning and a single 
passive acoustic sensor a viable option to predict pipe obstructions and the type of obstruction. 
This may lead to a useful application for urban water supply or sewage system as well as 
agricultural practice for field irrigation or the detection of nozzle blockages.  
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Symbols and abbreviations  

Roman 

Acircle   Area of the pipe 

b   A scalar in the hyperplane equation. A physical quantity that does not 
   change with changes in position or orientation 

D   Diameter 

dpipe   Internal diameter of the pipe 

H   Height 

L   Length 

Lp   Length of the interrogation area 

vmax maximum velocity in the pipe 

vsuperficial Superficial velocity in the pipe 

V Volumetric flow rate 

W   Normal vector to the hyperplane (W, b) 

X    Position vector 

Y   Peak Intensity 

 

 

Greek 

Δt   Time difference of laser pulses 

ηfluid   Dynamic viscosity 

ρ   Density 

 

Acronyms 

AE   Acoustic emission 

AI   Artificial Intelligence 

AVG%  arithmetic mean percentages 

CCD   Charge-coupled device 

CLA   Classification Learner Application 

FFT   Fast Fourier Transform 

H   Height 

ID   Internal Diameter 



k-NN   k-nearest neighbour, a machine learning classifier 

IoT   Internet of things 

Nd:Yag  Neodymium-doped yttrium aluminium garnet 

ML   Machine Learning 

PIV   Particle Image Velocimetry 

SVM   Support-Vector Machine 



1. Introduction 1 

Water is the most precious resource on the planet and even subject to several local conflicts on 2 
the globe (Gleick, 2014; Lohmar, Wang, Rozelle, Huang, & Dawe, 2003; Treszkai, 2018). 3 
Agriculture is by distance the largest sector in water consumption, by using up 60% to 90% of 4 
the total water available from human use (Thenkabail, Hanjra, Dheeravath, & Gumma, 2017). 5 
Also with projections of population increase and climate change will make this resource scarcer 6 
than ever before.  7 

That makes it necessary to create effective engineering solutions to limit losses and detect 8 
faulty supply systems. Blocked water pipes will have a negative impact on field irrigation and 9 
livestock. Also, recent trends towards intelligent precision farming makes it necessary to 10 
develop online tools to check farming systems, improve farming practice and increase 11 
sustainability. The so-called internet of things (IoT) or algorithm driven systems (machine 12 
learning, artificial intelligence (AI)) support this trend (The Economist Newspaper Limited, 13 
2016). 14 

This paper explores the combination of passive acoustic emission sensing (AE) and supervised 15 
machine learning to create prediction algorithms for different pipe obstructions and flow rates.  16 

This is a first approach to combine a patent pending mechanical design, a single passive 17 
acoustic emission sensor and supervised machine learning to detect changes of the fluid (not 18 
the structure (i.e. the pipe wall)) to detect blockages in a unbranched pipe system.  19 

The flow field is visualised by using 2D Particle Image Velocimetry (PIV) and the pressure 20 
drop is measured for each obstacle. 21 

For the measurements of acoustic emissions, there are two sensor systems available. Such 22 
sensors can either be active, meaning they are based on an emitter-receiver system, or passive. 23 
Where active acoustic emission sensors measure the change of introduced acoustic waves 24 
(sometimes referred as slot waves) over the distance from the emitter to the receiver, passive 25 
acoustic emission sensors only detect the acoustic emission that the process emits itself (Boyd 26 
& Varley, 2001). Hence, active acoustic emission is based on an active energy input whereas 27 
passive acoustic emission simply measures the energy release. 28 

Although active acoustic emission sensors are more present in research and in industry they 29 
face several challenges, which include loss of signals due to obstructions, bubbles, distance or 30 
simply not reaching the necessary penetration depth (Borenstein & Koren, 1988; Hauptmann, 31 
Hoppe, & Püttmer, 2002). Overall, active acoustic emission sensors prove to give good 32 
predictions on factors such as flow rate, degree of gassing or solid content. This technology 33 
works well for Newtonian and non-Newtonian fluids (Kotzé, Ricci, Birkhofer, & Wiklund, 34 
2016; Rahman, Håkansson, & Wiklund, 2015).  35 

There have been several attempts to make use of acoustic emission data to gain a greater 36 
understanding of pipe flow (Joseph D. Butterfield, Collins, Krynkin, & Beck, 2017; Hou, Hunt, 37 
& Williams, 1999; Li, Song, & Zhou, 2018). However, work has mainly been focussed on 38 
active acoustic emission (Borodina, Zaitsev, & Teplykh, 2018; Das, Das, & Mazumdar, 2013), 39 
multiphase flow (Hou et al., 1999; O’Keefe, Maron, Felix, van der Spek, & Rothman, 2010) 40 
or water (Khulief & Khalifa, 2012; Li et al., 2018; Martini, Troncossi, & Rivola, 2016).  41 

Passive acoustic emission sensors are used for leak detection in water pipes by employing in-42 
pipe hydrophones (Chatzigeorgiou, Youcef-Toumi, & Ben-Mansour, 2015; Khulief & Khalifa, 43 
2012) or by aiming to recognise acoustic patterns based on the signals of a series of sensors (Li 44 
et al., 2018). Other work on passive acoustic emission sensing has mainly focused on 45 



multiphase systems (Finfer et al., 2015; Hou et al., 1999; O’Keefe et al., 2010). However, no 46 
solutions have been created so far on enclosed, fully flooded and single-phased pipe systems. 47 
This also includes creating a new system to use passive acoustic emission sensing as a mean to 48 
get information about fluid flow fields and as a tool for process control.  49 

In addition, all know passive acoustic emission technologies are based on clamp on solutions 50 
and at least 2 sensors (J.D. Butterfield, Krynkin, Collins, & Beck, 2017). The solution proposed 51 
is only based on the application of a single passive acoustic emission device that is capable to 52 
predict blockages upstream. The technology looks at changes to the acoustic information of the 53 
fluid (by implementing a T shaped pin) and not like traditional approaches to structural changes 54 
of the pipe. To overcome issues around attenuation (Martini, Rivola, & Troncossi, 2018; Pavić, 55 
1992) the T shaped pin is made from metal, however, can easily be incorporated in other 56 
materials. Other technologies to overcome attenuation problems can be overcome by 57 
computational solutions and pattern recognition technologies, however, do require additional 58 
computational power (Sause, Gribov, Unwin, & Horn, 2012). Another advantage of the 59 
technology compared to hydrophones is that the sensor is placed on the outer wall of the pipe. 60 
Hydrophones are in-pipe solutions, which makes it difficult to maintain or replace such 61 
equipment. A hydrophone are microphones that have been waterproofed which makes them 62 
suitable to be immersed in fluids. By positioning the hydrophone close to a suspected leak or 63 
by applying those inside a pipe system the distinctive sound of water escaping can be detected. 64 
Hydrophones can additionally be used to listen for leaks in pressurised pipe systems that run 65 
close to the wall (Khalifa, Chatzigeorgiou, Youcef-Toumi, Khulief, & Ben-Mansour, 2010) 66 
and work for plastic piping well (Hunaidi & Chu, 1999).  67 

A key challenge making use of such data is the sheer volume of incoming data points. To make 68 
use of such complex and high-volume data machine learning can be used.  69 

The term machine learning (ML) applies to artificial systems that can generate knowledge 70 
based on experience. Such systems learn on given, and to the problem representative, examples. 71 
It is the system’s task to create logical paths or identify logical patterns to the given problem.  72 

In general, machine learning can either solve classification or regression problems. In the first 73 
case machine learning aims to classify data into classes, such as fault classification. Regression 74 
problems are those where the system will be asked to provide future predictions of a continuous 75 
variable (e.g. temperature trends) (Kubat, 2015; Moraru, Pesko, Porcius, Fortuna, & Mladenic, 76 
2010). 77 

In the end of this process, the system will create a general algorithm/ system that is capable to 78 
solve problems to previously unseen datasets. The system/ algorithm can also evaluate 79 
unknown datasets (learning transfer) or fail to learn unknown data (overfitting) (Koza, Bennett, 80 
Andre, & Keane, 1996; Reitmaier, 2015). 81 

Based on the methodology ML approaches a problem and makes use of datasets three types of 82 
ML learning algorithms can be distinguished; namely supervised, unsupervised and reinforced 83 
learning (Fischer, 1999).    84 

The majority of machine learner employed in industry (between 80 to 90%) are of supervised 85 
and unsupervised nature with a dominance towards supervised machine learning (Ge, Song, 86 
Ding, & Huang, 2017).  87 

The way the system learns is by giving it labelled examples, hence the answer to the question 88 
is already known. The system will try to build a logical path with the help of algorithms 89 
(Quadratic SVM, Decision Trees etc.). This will be done with only a selected proportion of 90 



dataset, whereas the remaining parts are used to optimise the algorithm and finally test it to an 91 
unknown dataset, with a common split being 60% for training, 20% for optimisation and 20% 92 
for testing (Chong, Abraham, & Paprzycki, 2004; Wuest, Weimer, Irgens, & Thoben, 2016). 93 
Results are projected as observations, which are dependent on the number of features. An 94 
observation is a specific number set that characterises a class (Kotsiantis, Zaharakis, & Pintelas, 95 
2007). Hence, data can be seen as points in an n-dimensional space. The number of attributes 96 
n are directly related to the class observed from experience or the experiments. In order to 97 
achieve a better classification between data classes, each class will be plotted in another 98 
dimensional space, the so-called feature space (Guan et al., 2019; Masud et al., 2010). Figure 99 
2 1 illustrates the presentation of machine learning data.  100 

 101 

Figure 1 Schematic projections of machine learning data, adopted from (Liu & Wang, 2017). 102 



2. Materials and Method 103 

2.1  Water recirculation system and pipe obstructions 104 

A water recirculation system fed by a 40 L water tank and is powered by a centrifugal pump 105 
(Alfa Laval, Sweden) of the type I KA-5 132SSS1. The internal diameter ID of the pipework 106 
is 25.4 mm with a 120 mm in length pipe segment from stainless steel, which is used for the 107 
AE data acquisition of passive acoustic signals. A schematic drawing of the test rig is given 108 
below (Figure 12). 109 

 110 

Figure 1 2 Experimental setup (schematic). 111 

All four in-pipe obstructions are designed in AutoCad 2018 (Autodesk Inc., USA), and 112 
extruded by a FlashForge Dreamer 3D printer (Zhejiang Flashforge 3D Technology Co., Ltd., 113 
China). Each obstruction can be slotted into the pipe and has a length of 1.5 times the inner 114 
diameter (38.1 mm). The four geometric obstructions are a wall-leaning cone, cross (four 115 
wedges meeting in the central focal point), three triangular aligned holes and a semicircle. An 116 
IMO iDrive AC Inverter Drive control unit (IMO Precision Controls Ltd, United Kingdom) is 117 
used to set the four flow rates of 1300, 3000, 4530 and 6350 l h-1. The pressure drop has been 118 
measured by using a TPI 665L Digital Manometer (Test Products International Europe Ltd., 119 
UK). 120 

All four obstacles in-pipe obstructions under investigation are presented in Figure 23. 121 



 122 

Figure 31 3D animation of extruded obstacles to be slotted as obstructions into the pipe. ID=25.4 mm, H=38.1 123 
mm, drawings are not to scale. Obstruction types are “cone”, “three holes”, “semicircle” and “cross” (top left 124 
to right, bottom left to right). 125 

The free area of each obstruction is: 126 

Cone:  1.287*10-4 m. 127 

Three holes: 2.83*10-5 m. 128 

Semicircle: 2.53*10-4 m. 129 

Cross:  2.53*10-4 m. 130 

The geometries chosen represent either potential deposit types (cone type for slight build-up, 131 
semi circular for half blocked pipe and three holes for a full blockage with perforations 132 
delivering partial flow) and the potential design of s spray nozzle (cross).  133 

2.2  2D Particle Image Velocimetry 134 

PIV is an established technology in fluid dynamics to visualise flow fields by a combining laser 135 
technology, a camera and seeding particles. PIV is a non-intrusive technology that delivers 136 
time-resolved velocity information and flow maps on a nearly instantaneous basis, however, is 137 
still mainly exclusively used within academia (Adrian, 2005). A pulsed laser beam is bend into 138 
a light slab that is fired onto a translucent chamber. The fluid within the chamber contains 139 
seeding particles that are assumed to behave as the fluid within the chamber. The laser pulse 140 
delay is referred as Δt. By the help of cross-correlation algorithms, the particle displacement 141 
(X, Y direction) and velocity can be determined. 142 

The time delay Δt between each frame depends on the maximum distance a particle could travel 143 
within the interrogation window. The formula Δt for is given below and follows Adrian (1986): 144 

 145 

∆t 0.25 ∗
∗

         (1) 146 

 with S being the magnification factor, Lp is the length of the interrogation area in pixels 147 
vs for the superficial velocity in the pipe.  148 

The superficial velocity , a hypothetical flow velocity calculated which does not take local 149 
differences into account, in the pipe has been calculated by the division of the volumetric flow 150 
rate  by the area 	of the channel: 151 



          (2) 152 

The Reynolds number in the pipe has been calculated by using 153 

 154 

∗ ∗
         (3) 155 

 with dpipe being the internal pipe diameter and ηfluid being the dynamic viscosity of 156 
water. 157 

 158 

For the flow field visualisation a TSI 2D PIV system (TSI Inc., USA) has been used. A dual 159 
head green 532 nm Nd:Yag laser (Litron Nano PIV,UK) pulsing at 7 Hz has been formed to 160 
light sheet. The laser is mounted and levelled 500 mm above the acrylic chamber, with the light 161 
sheet follows the length of the chamber. The system is synchronised to a single TSI Power 162 
View 4 megapixels (2048 x 2048 pixels) 12-bit CCD camera that can be controlled in its X-Y-163 
Z direction by a remotely controllable frame construction. The CCD camera is connected to 164 
another synchroniser (TSI 610035) which is attached to a desktop PC (DELL Inc., USA). The 165 
2D PIV system is controlled by TSI Insight 4G software. Since fully developed turbulent flow 166 
is apparent, 2x500 images are taken. The area is set to 32 x 32 pixels under the application of 167 
a recursive Nyquist grid. The resolution has been adjusted for each experiment as changeover 168 
between obstructions make readjustments necessary. Captured images are combined, Fourier 169 
transformed, averaged and debugged in order to determine the final averaged flow field. The 170 
generated flow field is visualised with Tecplot 360 software (Constellation Software, Canada). 171 
The seeding particles used are silver coated, hollow glass spheres (D= 10μm, ρ= 1400 kg m-3) 172 
(Dantec Dynamics, Denmark).  173 

2.3  Passive Acoustic Emission 174 

The acoustic emissions are detected with a piezoelectric VS375-M sensor (Vallen Systeme 175 
GmbH, Germany). The sensor is linked to an AEP5H preamplifier (Vallen Systeme GmbH, 176 
Germany) along with a DCPL2 decoupling unit (Vallen Systeme GmbH, Germany), a 177 
PicoScope 5000 Series oscilloscope (Pico Technology Ltd, UK) and a personal computer using 178 
PicoScope version 6.13.15 software (Pico Technology Ltd, UK). One hundred recordings, the 179 
so-called buffers, each of a length of 500 ms, a resolution of 16-bit and an amplitude of 180 
maximum ±1 V are taken. The sampling number is set to 600 kS to ensure that the sampling 181 
frequency of 1.2 MHz is at least twice the number of the resonance frequency to meet 182 
Shannon’s theorem (Shannon, 1948). The choice of 500 ms is justified as a 10 s buffer is 183 
divided that long until the lowest recording time is reached where Fast Fourier Transform 184 
(FFT) spectra are still visually similar. The sensor has been placed on the outer side of the pipe 185 
wall and sits on top of a circular shaped pinhead, located on the tip of the obstruction. This 186 
means that sensor and fluid are never getting into direct contact, which brings hygienic as well 187 
as maintenance benefits (patent application GB1909291.5). 188 

2.3.1  Data Processing 189 

Recorded acoustic emission are converted from the psdata file into mat files to make them 190 
available for Matlab R2018a (MathWorks Inc, USA). All data are processed on a computing 191 
system with 8-gigabyte memory. In a first step, each buffer gets assigned with a corresponding 192 



label, describing the experimental condition (e.g. flow rate 1, obstacle “cross”). Once assigned 193 
the data is cleared from environmental noise. This is regarded to be frequencies below 4 kHz, 194 
meeting literature reporting environmental noise being in the range between 2-6 kHz and below 195 
(Chang et al., 2011; Forrest, 1994). 196 

In a consecutive step, Discrete Fourier Transform is applied to transform the time-bound 197 
signals into the frequency domain (FFT spectrum). In addition,When converted into Matlab, 198 
positive and negative infinitive values appear, representing over range values. These values are 199 
filtered and replaced by the value ±1 or for those values that are underneath the detection limit 200 
of the sensor the value zero is inserted.  201 

The last reduction step is the selection of only the 5,000 FFT values with the largest relative 202 
variance. To get the relative variance the mean and the variance for each column (frequency) 203 
has to be found by using the following formulae: 204 

Vj
1

N 1
∗ ∑ Aij μj

2
N
i 1         (4) 205 

 206 

μj
1
N
∗ ∑ AijN

i 1          (5) 207 

 208 

VRelative,j
1

N 1∗∑ Aij μj
2N

i 1
1
N∗∑ AijN

i 1
        (6) 209 

 210 

 211 

 with Aij being the magnitude of the FFT transform of the frequency j for the i-th row 212 
which corresponds to the i-th buffer.  213 

 214 

The relative variance  was chosen instead of the variance as this way absolute values 215 
can be weighted on the arithmetic mean values. This means in consequence that small values 216 
with a relative small absolute change in value but big relative change become considered. 217 

 218 

2.4  Supervised Machine Learning 219 

Support-Vector machines (SVM) are a classifier type within machine learning. The basic 220 
concept of SVM is the establishment of hyperplanes, seeking to create separation between 221 
classes. A hyperplane (for problems higher than 2-dimensional or binary classification) is the 222 
n-dimensional space that creates the boundary of data points for different clusters that belong 223 
to different classes. 224 

The general equation for a hyperplane for the case of linear separability is given in Equation 225 
7: 226 

W ∗ X b 0          (7) 227 

where W	 	 w 	w 	 	w 	 and b is a scalar. 228 



 W represents the normal vector to the hyperplane (W, b) and X being the position vector 229 
of the points lying on the plane.  230 

 231 

The classes are separated by their value being either positive (+) or negative (-) measured based 232 
upon their distance from the hyperplane (Dagher, 2008).  233 

This idea of the hyperplane dates back to the mid-1930s (Fisher, 1936), however, a first 234 
appearance within the background of artificial networks was not done until 1958 (Rosenblatt, 235 
1958). These initial concepts were further developed by Vapnik & Chervonenkis  (1974) and 236 
lead to today’s SVMs. 237 

Noble & Street (2006) state four key concepts behind every SVM. Those are  238 

 The separation of the hyperplane, 239 
 The maximum margin hyperplane, 240 
 The soft margin, and 241 
 The kernel function. 242 

To make the data available for the Matlab R2018a Classification Learner Application (CLA) 243 
(MathWorks Inc, USA) feature scaling and mean normalisation was applied to the reduced 244 
FFT spectrum. The necessity of this operation is to have features with a comparable range of 245 
values.  246 

Principal Component Analysis (15 components) is enabled for the CLA. The goal of the PCA 247 
is to project the data points of the matrix into an n-dimensional subspace in such a way that as 248 
little information as possible is lost and existing redundancy is summarised in the form of 249 
correlation in the data points. This enhances the supervised ML performance, contributing to a 250 
better support vector delimitation. The dataset for the Machine Learning is further split into in 251 
a training (60%), optimisation (20%) and a test dataset (20%). The test dataset is given to the 252 
supervised classifiers (e.g. k-NN, Decision Tree, SVM) whilst the second dataset is not fed into 253 
the CLA to evaluate the accuracy of the algorithms.  254 

Figure 3 4 shows a summary of the steps from the raw data acquisition to a supervised machine 255 
learning prediction: 256 

 257 

Figure 2 4 Transformation schematic from the raw data acquisition to a prediction. 258 



3. Results and discussion 259 

3.1 2D Particle Image Velocimetry 260 

2D PIV has been used to visualise the flow around four geometrically different in-pipe 261 
obstruction on fixed flow rates (1'300, 3'000, 4'530 and 6'350 l h-1). All pictures represent fully 262 
developed turbulent flow, with flow running from right to left (abscissa). Selected pictures 263 
represents the time-averaged data over the 500 image pairs. The images acquired are presented 264 
in Figures 4 5 and 5 6: 265 

 266 

Figure 3 5 Exemplary contour plot of 2D PIV results for one obstruction (semicircle) over four flow rates. The 267 
Reynolds numbers for the highest point of restriction are (a) Re ≈36,251, (b) Re ≈83,701, (c) Re ≈126,195 and 268 
(d) Re ≈176,182. Blanked parts show the in-pipe obstruction. 269 



 270 

Figure 4 6 Exemplary contour plot of 2D PIV results for one flow rate (4,530 lh-1) against all obstruction types. 271 
The Reynolds numbers for the highest point of restriction are (a) Re ≈126,195, (b) Re ≈126,195, (c) Re ≈267,489 272 
and (d) Re ≈252,390. 273 

With increasing flow rates increases in velocity magnitude can be observed (Figure 4 5 (a)-274 
(d)). 275 

Looking at the semicircular obstruction, a drag up effect is apparent along the semicircle’s tip 276 
(Figure 4 5 (a)-(d)). 277 

For the cone type obstruction (Figure 5 6 (d)) preferential flow is present following the open 278 
space above the cone. When inserting the cross type obstruction (Figure 5 6 (b)) a butterfly 279 
wing-like structure appears, provoked by swirls at the direct exit of the obstruction. In Figure 280 
5 6 (c) jetting is present for the three holes obstruction. The jet opens up in width with 281 
increasing flow rates.  282 

3.2 Pressure Drop Measurements 283 

The pressure drop has been measured 5 mm before and 120 mm behind the obstruction. Plotting 284 
the pressure drop Δp against the Reynolds number for the unobstructed pipe as per equation 3 285 
the following figure can be obtained (Figure 76).  286 



 287 

Figure 5 7 Pressure drop Δp of different obstacles against Re as determined for the unobstructed pipe. 288 

The obstruction type with the three holes shows a very different pressure drop to the other three 289 
obstructions. This will be explained with the high degree of restriction along each hole (D= 2 290 
mm). Overall, all curves are in a parallel arrangement. For Re≈18,125 the semicircle and the 291 
cone share a value at 0.01 bar. Also for Re≈88,406 the data points are nearly congruent as they 292 
differ only by 0.007 bar. This shows that it is challenging to distinguish between different runs 293 
purely based on pressure drop measurements.  294 

3.3 Pressure Drop Measurements versus Acoustics 295 

As per 3.1 2 it is challenging to distinguish between different experimental runs when looking 296 
at the pressure drop values. However, when linking the pressure drop to acoustic response, 297 
distinguishable responses can be retrieved. Even for the case where obstructions share the same 298 
pressure drop of 0.001 bar, it is possible to get different obstructions (Figure 78). 299 
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 300 

Figure 7 8 Cropped and from environmental noise cleared FFT spectra for different obstructions (cone (red) 301 
versus semicircle (black)) but the same pressure drop Δp (0.01 bar). 302 

 303 

This results in the advantage that the sensing technique is more sensitive than conventional 304 
methods. In addition, the detection of these pressure drops can consequently be used to predict 305 
leakages in a very early stage.  306 

3.4 Acoustic Emission Signals 307 

The signal collected from a piezoelectric passive acoustic emission sensor has been collected. 308 
After the removal of the environmental noise, the discrete Fourier Transform was applied to 309 
convert the signal from the time-domain into a frequency-domain. These acoustic 310 
“fingerprints” are presented in Figures 8 9 and 910.  311 



 312 

Figure 89 Acoustic fingerprints for the obstruction type semicircle across all flow rates, with (a) Re ≈36,251, (b) 313 
Re ≈83,701, (c) Re ≈126,195 and (d) Re ≈176,182. 314 



 315 

Figure 6 10 Acoustic fingerprints for all obstruction types((a) cross, (b) cone, (c) Semicircle, (d) holes and (e) 316 
unobstructed)  against a fixed flow rate (4,530 lh-1). 317 



Increases in flow rate come with increases in the peak intensity Y. In addition, an increase in 318 
flow rate leads to the formation of wider mountains and more defined shapes. A peak shift 319 
towards the lower frequencies (left side) is characteristic for increases in flow rate (Figure 89). 320 
Towards the side of the higher frequencies (right) a periodic pattern of spike and valley can be 321 
observed, that remains throughout flow rate increases.  322 

Figure 9 10 shows that for each obstruction type on a fixed flow rate of 4,530 lh-1 unique 323 
acoustic “fingerprints” can be retrieved as well. Building this into a database this sensing 324 
technique cannot just only be used to detect blockages in a pipe system, but also the type of 325 
obstruction or degree of obstruction. This can be used to determine the point of servicing or 326 
cleaning the system.   327 

3.5 Supervised Machine Learning 328 

A total of 22 different machine learning algorithms have been tried, with quadratic SVM 329 
delivering best prediction accuracies. Quadratic SVM also has shown to be capable to give 330 
highly accurate predictions with only a limited number of input data points. The figure below 331 
represents a selection of a few of the algorithms tested and their performance against the 332 
number of features (Figure 1011).  333 

 334 

Figure 7 11 Performance plot for quadratic SVM learner against the number of features (PCA 15 components 335 
enabled). 336 
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Amongst all 22 algorithms, Sub Space KNN performed the poorest in terms of prediction 342 
accuracies and consistency of predictions. The prediction accuracies for the machine learning 343 
on unseen datasets are presented in Table 1: 344 

Table 1 Presentation of Machine Learning predictions on previously unseen data sets. 345 

Case   Prediction 
Accuracy 
water run 1 

Prediction 
Accuracy  water 
run 2 (repeat 1) 

Prediction 
Accuracy  water 
run 3  (repeat 2) 

Prediction 
Accuracy  water 
run 4  (repeat 3) 

AVG% 

Cross vs all Q  95  98  97  97  96.75 

Cone vs all Q  96  96  95  98  96.25 

Semi vs all Q  94  95  96  96  95.25 

Holes vs all Q  99  98  97  97  97.75 

Empty vs all Q  95  95  95  96  95.25 

Obstruction vs 
Obstruction 

96  96  95  96  95.75 

 346 

The results show that machine learning is a powerful tool to predict obstructions and flow in 347 
single-phased and fully flooded water channels, which delivers instant results. This possibility 348 
to use passive acoustic emission on such as system is not reported in literature previously. It 349 
shows that results are consistent over several repetitive runs for the same settings. All results 350 
are in average in the region of 95% or above. In general a case describes the condition machine 351 
learning has been tested upon. For example, the first case “Cross vs Q” means that machine 352 
learning has been given the labels for all flow rates on the fixed obstruction type “cross”. After 353 
training the algorithm machine and having applied PCA, the system will deliver a prediction 354 
based on unknown data. In terms of output machine learning provides a confusion matrix where 355 
the systems prediction is plotted against its true class. This result describes the accuracy 356 
prediction percentage. Each percentage is the output of a test of 100 test sets. This equates to 357 
100,000 individual test data points for 1 individual class (e.g. Q1 and cross).  358 

The table (Table 1) shows that when comparing different obstructions against a fixed flow rate 359 
can be confidently distinguished as well as each obstruction against its different flow rate. The 360 
same applies when investigating the case of the unobstructed pipe. Machine learning also 361 
delivers very consistent predictions when looking into all cases investigated against each other. 362 
The range of the poorest performing prediction and the best prediction in its average deviate 363 
by only 2.5%. Within runs for the same cases (e.g. obstruction cross against run 1 to 4) the 364 
range is in the 3%. Hence, data is repeatable which is of high importance when aiming for an 365 
industrial solution to build a surveillance for irrigation systems. 366 



4. Conclusions 367 

A single passive acoustic emission sensor has been placed on a water channel. This channel 368 
has been obstructed by different geometries, aiming to represent blockages through build up 369 
and a spray nozzle. The different geometries lead to different flow patterns as supported by 2D 370 
PIV. When analysing the acoustic signals, higher flow rates lead to higher peak values and 371 
different obstructions to distinguishable different FFT spectra. Even marginally different or 372 
same pressure drops still deliver distinguishable different acoustic responses. This technology 373 
also makes it possible for the first time (in reported literature) to measure such features in a 374 
single phased, fully flooded channel. In addition this work shows that the proposed technology 375 
is also capable to deliver very different “acoustic fingerprints” when the pressure drop is 376 
marginal. This makes it a highly sensitive technology that might be applied in the future to 377 
detect upstream blockages at a very early stage. 378 

Highest prediction accuracy levels in supervised ML are attained when applying the quadratic 379 
SVM learner. For all cases under investigation accuracy levels are in the region of 95% or 380 
above with all experiments having been repeated four times and a hundred buffers for each 381 
case. 382 

The combination of the sensor, pipe device and machine learning can be used as an in situ 383 
measuring tool for pipe blockages and may be implemented as a prediction tool for water 384 
supply system, spray systems etc.  385 

Future research will focus on the refining of the algorithms and create a user interface. Further, 386 
scale-up must be considered. Other work shall focus on branched systems and the maximum 387 
detection distance of the sensor system. Also, in field applications on irrigation and spraying 388 
systems shall be investigated. The application for other materials must also be studied.  389 
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