UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Graphene oxide induced pH alteration, iron overload and subsequent oxidative damage in rice (Oryza. sativa L.)

Zhang, Peng; Guo, Zhiling; Luo, Wenhe; Monikh, Fazel Abdolahpur; Xie, Changjian; Valsami-Jones, Eugenia; Lynch, Iseult; Zhang, Zhiyong

DOI: 10.1021/acs.est.9b05794

License: Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Zhang, P, Guo, Z, Luo, W, Monikh, FA, Xie, C, Valsami-Jones, E, Lynch, I & Zhang, Z 2020, 'Graphene oxide induced pH alteration, iron overload and subsequent oxidative damage in rice (Oryza. sativa L.): a new mechanism of nanomaterial phytotoxicity', *Environmental Science and Technology*, vol. 54, no. 6, pp. 3181-3190. https://doi.org/10.1021/acs.est.9b05794

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.est.9b05794

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

UNIVERSITY^{OF} BIRMINGHAM

Subscriber access provided by University of Birmingham

Contaminants in Aquatic and Terrestrial Environments

Graphene Oxide Induced pH Alteration, Iron Overload and Subsequent Oxidative Damage in Rice (Oryza. sativa L.): A New Mechanism of Nanomaterial Phytotoxicity

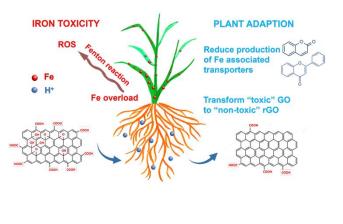
Peng Zhang, Zhiling Guo, Wenhe Luo, Fazel Abdolahpur Monikh, Changjian Xie, Eugenia Valsami-Jones, Iseult Lynch, and Zhiyong Zhang

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.9b05794 • Publication Date (Web): 21 Feb 2020 Downloaded from pubs.acs.org on February 25, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036


Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Graphene Oxide Induced pH Alteration, Iron Overload and Subsequent
2	Oxidative Damage in Rice (Oryza. sativa L.): A New Mechanism of
3	Nanomaterial Phytotoxicity
4 5	Peng Zhang, ^{a,b,*} Zhiling Guo, ^b Wenhe Luo, ^a Fazel Abdolahpur Monikh, ^c Changjian Xie, ^a Eugenia Valsami-Jones, ^b Iseult Lynch, ^b Zhiyong Zhang ^{a,*}
6 7 8	^a Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
9 10	^b School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
11 12 13 14	^c Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, Netherlands
15	*Corresponding Author.
16 17 18	E-mail address: <u>pengzhang@ihep.ac.cn (P. Zhang); zhangzhy@ihep.ac.cn (Z.Y. Zhang)</u>
19	
20	
21	
22	
23	

24 ABSTRACT

25 The mechanism of graphene-based nanomaterial (GBM) induced phytotoxicity and its 26 association with the GBM physicochemical properties are not yet fully understood. The present 27 study compared the effects of graphene oxide (GO) and reduced GO(rGO) on rice seedling growth under hydroponic condition for 3 weeks. GO at 100 and 250 mg/L reduced shoot 28 29 biomass (by 25% and 34%, respectively) and shoot elongation (by 17% and 43%, respectively), and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement 30 31 of the antioxidant enzyme activities, suggesting that surface oxygen content is a critical factor 32 affecting the biological impacts of GBMs. GO treatments (100 mg/L and 250 mg/L) enhanced 33 the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times 34 higher than control), which was found to be the main reason for the oxidative damage in shoots. 35 GO-induced acidification of the nutrient solution was the main driver for the Fe overload in 36 plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend 37 against the Fe toxicity, via downregulation of the Fe transport associated metabolites (mainly 38 coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to non-toxic 39 rGO, acting as another route for plant adaption to GO induced phytotoxicity. This study provides 40 new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for 41 agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid 42 43 toxicity.

44 **TABLE OF CONTENTS**

47

45 46

2

ACS Paragon Plus Environment

48 **INTRODUCTION**

Graphene is a two-dimensional carbon-based nanomaterial composed of a single layer of sp² hybridized carbon atoms.¹ It is considered one of the most promising engineered nanomaterials (ENM) with the potential to be used in various sectors such as electronics, medical, energy and environment,²⁻⁴ due to its unique electronic, thermal and mechanical properties. The increasing production and use of graphene-based materials (GBMs) will inevitably increase the likelihood of their release into the environment, and thus their potential adverse impacts on environmental and human safety need to be fully assessed.⁵

56 There have been extensive studies regarding the toxicity of GBMs on cells and 57 microorganisms,^{6,7} while knowledge of the potential impacts of GBMs on the growth of higher 58 plants is still lacking. There is concern that GBMs may affect plant growth and /or accumulate 59 in crops or vegetables,⁸ causing potential risks to human health. Recent studies showed that GBMs have the potential to be used as a carrier for fertilizers to enable slow release of the 60 61 nutrients and thus enhance the nutrient use efficiency by plants;⁹⁻¹¹ however, such applications in real agriculture are not currently pursued partially due to the concerns over the potential 62 63 adverse impacts of GBMs on the overall agricultural ecosystem, including soil functioning (e.g., bacterial community, enzyme activity),¹²⁻¹⁴ the potential trophic transfer of GBMs¹⁵ and 64 65 cummulative effects of GBMs after repeated application and over multiple growing seasons.

66 Overt toxicity of GBMs to plant such as inhibition of biomass production, shoot or root 67 elongation have been reported at high exposure concentrations.^{16, 17} However, a number of 68 studies also reported that GBMs induced physiological alterations (e.g., hormone levels, 69 nutrient uptake)^{17, 18} or oxidative stress (e.g., enhanced antioxidant enzymatic activities, lipid peroxidation, or H_2O_2 over-accumulation)^{16, 19} even at environmentally relevant concentrations 70 71 $(0.01 \sim 1 \text{mg/L})^{20}$ suggesting that subtle physiological processes are more sensitive indices than apparent toxicity indices (e.g., biomass, root/shoot length) for evaluating the phytotoxicity of 72 73 GBMs.²¹ In addition to the negative effects, positive effects resulting from exposure to GBMs on 74 plant growth are also reported. For example, hydrated graphene ribbons promoted the 75 germination of wheat seeds, upregulated carbohydrate, amino acids and fatty acids metabolism

during the germination and enhanced the tolerance of seeds to oxidative stress.²² Due to the
 hydrophilic nature of GO, it can act as a water transporter to promote the seed germination.²³

78 There are several reasons that may contribute to the inconsistent reports regarding the phytotoxicity of GBMs. Firstly, phytotoxicity of ENMs are species-dependent,²⁴ cross-species 79 comparison is not always suitable. Secondly, using different culture media such as soil,²³ agar²⁵ 80 and hydroponic solutions¹⁹ which have different compositions, can affect the behaviour, fate 81 82 and toxicity of the GBMs. GBM in soil and agar media usually have low mobility and accessibility 83 to plants, thereby lowering their impacts on plant growth found in such media when compared 84 with those observed in hydroponic media. However, this might be not always true. For example, CeO₂ ENMs were reported to be more toxic to *Lactuca* plants in agar medium than in water, 85 86 which is due to that *Lactuca* plants are more sensitive in agar than in water to the toxicity of Ce³⁺ ions released from CeO₂ ENMs.²⁶ Lastly, the physicochemical properties of the GBMs used 87 88 in the previous studies are very diverse and are not fully described in many cases. In reviewing 89 the studies on the effects of GBMs on higher plants (Table S1), more than half of the papers 90 considered did not provide sufficient characterization data including lateral size, thickness and 91 surface oxygen content, which are critical characteristics determining the biological effects of 92 GBMs.⁵ Where provided, the given properties were very varied: the lateral size used in these 93 studies ranged from 30 nm to 6.5 μ m, the layer thickness ranged from 0.3 nm to 3.5 nm, and the 94 surface oxygen contents ranged from 3.51% to 38.8%. Clearly, more studies are required to 95 provide sufficient data for cross comparison and elucidating the mechanism(s) of action of 96 GBMs, and to determine the ranges of GBMs' properties that can be used safely to enhance plant 97 growth and /or soil quality and nutrient cycling.

Common forms of graphene, including graphene (G), graphene oxide (GO) and reduced graphene oxide (rGO), are distinct in their surface oxygen contents. GO is the oxidized form of graphene, which contains abundant functional groups including carboxyl, hydroxyl, epoxy, and carbonyl groups.²⁷_These functional groups endow GO with high water dispersity and can be used for further functionalization of GO for different applications.³ Previous studies have suggested that GO and rGO have distinct antibacterial activities,²⁸ which is attributed to the

104 different modes of interaction of GO and rGO with cell membranes. We hypothesize that 105 comparing the phytotoxicity of GO and rGO, which is yet to be studied, will allow acquisition of 106 a mechanistic understanding of the actions of GBMs in plants. To do so, we investigated the 107 impacts of GO and rGO on the growth of rice plants. Oxidative stress, perturbation of the uptake 108 of macro- and micro- elements in plants, metabolic alteration and the transformation of GO and 109 rGO in rice plants were compared to explore the mechanisms of the interaction of GO and rGO 110 with plants and their consequences for plant health.

111

112 **2. MATERIALS AND METHODS**

113 **2.1. Chemicals and Seeds**

GO and rGO were purchased from Chengdu Organic Chemicals Co. Ltd (Chengdu, China).
Morphology, lateral size, height, chemical structure, Zeta potential and hydrodynamic sizes of
GO and rGO were characterized, details of which are described in the Supporting Information
(Section 1). All other commercial chemicals were purchased from Sinopharm Chemical Reagent
Co., Ltd (Shanghai, China). Rice (*Oryza. sativa* L.) seeds were purchased from the Chinese
Academy of Agricultural Sciences.

120 **2.2. Plant Culture and Exposure**

121 Rice seeds were germinated in the dark for 5 days after sterilization with 10% NaClO. Uniform 122 seedlings were then selected and each seedling was anchored by a plastic foam with a hole and 123 transferred into a 250 mL beaker containing 100 mL of modified 1/4 strength Hoagland 124 solution. All the beakers were wrapped with black plastic bags to simulate the dark environment in soil. Six replicates were set for each treatment. The seedlings were allowed to 125 grow in a growth chamber (PRX-450C, Saifu, China) with a day/night temperature of 28 °C /20 126 127 °C, day/night humidity of 50%/70% and a 14 h photoperiod for 10 days before treatment. GO 128 and rGO were then added into freshly prepared nutrient solution to obtain suspensions with 129 concentrations of 5, 50, 100 and 250 mg/L followed by ultrasonic pre-treatment for 10 min. The seedlings were then exposed to the GO and rGO suspensions and allowed to grow for three 130

131 weeks. The suspensions were replenished to 100 mL with fresh nutrient solution every two

132 days.

133 **2.3. Biomass Production, Seedling Length and Nutrient Content**

After three weeks of exposure to the GBMs, rice seedlings were gently lifted from the 134 135 suspensions, and the roots were rinsed with deionized water repeatedly. GO and rGO that were 136 attached to the roots were rinsed off with deionized water for further analysis. Residual GO and 137 rGO in the beakers were also collected for characterization. The roots and shoots were 138 separated and blotted with clean tissues, and the fresh weights were measured immediately. 139 The seedlings were then lyophilized, and the dry weights of the roots and shoots were 140 measured. To quantify the nutrient content (Fe, Cu, Mn, Zn, K, Ca, Mg, P) in plants, dried roots 141 and shoots were ground into fine powders and digested with a 3:1 mixture of HNO₃ and H_2O_2 142 on a heating plate (80°C for 1 h, 120 °C for 3 h, and 160 °C for 0.5 h). Elemental concentrations 143 in the digestion solution were then analyzed by inductively coupled plasma optical emission 144 spectroscopy (ICP-OES, Thermo, USA). Multi-element standard solutions (0.5~50 mg/L) 145 containing all the selected elements were used for external calibration. Blanks were analysed between every six samples. Spiking recovery experiments and analysis of certified reference 146 147 material (GBW 07602 Bush Branches and Leaves) were performed for analytical method 148 validation. Recoveries and detection limits for all the elements are reported in Table S2.

149 **2.4. Stress Response of Rice to GO and rGO**

150 Fresh roots and shoots were excised, homogenized with cold PBS (50 mM, pH 7.8), and centrifuged at 10,000 g and 4 °C for 10 min. The supernatants were collected for analyses of 151 152 superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) 153 content using assay kits purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, 154 China). Reactive oxygen species (ROS) accumulation in roots and leaves was examined by a DCFH-DA staining method. Fresh leaves and roots were excised and incubated in DCFH-DA (10 155 156 mM in PBS) for 2 h followed by rinsing with PBS three times. ROS accumulation was imaged on a fluorescence microscope (Olympus IX70) with an ex/em of 485nm/522nm. QA/QC for the 157 158 assays are described in Section 1, SI.

159 2.5. Characterization of GO and rGO After Interaction with Plants

160 After harvesting of the plants, GO and rGO that were attached to the root surface were washed 161 off from the roots using ddH₂O (named "GO-W and rGO-W) and collected by centrifugation 162 (10,000 g, 30 min). The pellets were then rinsed with hydrochloric acid and ethanol repeatedly to remove salts and organic components.²⁹ The obtained pellets were then freeze-dried for 163 analysis. The residual solutions in the beaker after removal of the plants were also collected 164 and rinsed by the same procedure described above. GO and rGO incubated in nutrient solution 165 for three weeks without the presence of plants were also collected for comparison. All the 166 167 materials described above (washed and residual) were analyzed by Raman (Horiba Scientific, 168 Japan), FTIR (Bruker Tensor 27 spectrometer, Germany), UV-vis spectroscopy (Purkinje 169 General, Beijing), and XPS (ESCALAB 250Xi, Thermo Scientific, USA). To analyze the GO and rGO 170 on the root surface in situ, fresh root apexes were freeze-dried and analysed on a Raman 171 spectrometer (Horiba Scientific, Japan). Fresh root apexes were also excised, fixed and 172 sectioned for TEM observation (see details in the Supporting Information).

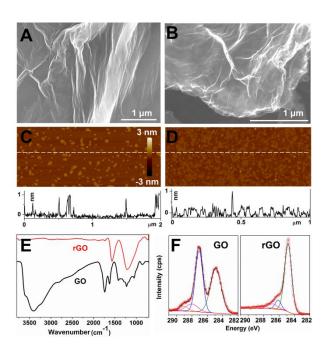
173 2.6. Xylem Sap Collection and Fe concentration Analysis

174 Rice seedlings were exposed to GO and rGO for 3 weeks as per the exposure procedure in 175 section 2.2 and then cut off at 2 cm above the root-shoot interface. The cut surface of the shoot 176 was cleaned with DI water and then a silicon tube was fit to the stump (Fig. S1). The xylem sap 177 was collected after 24 h with a pipette and digested in HNO₃ (70%). Iron concentrations in the 178 xylem saps were analysed by ICP-OES (Thermo, USA).

179 **2.7. Metabolomics analysis of rice leaves**

The fresh rice leaves were thoroughly rinsed with ddH₂O after harvest and ground into powder in liquid nitrogen. For each sample, 100 mg powder was transferred to a 1.5 mL Eppendorf tube and mixed with 2 mL methanol by vortexing vigorously. Samples were ultrasonicated for 1 hour min at 4°C and dried under a stream of N₂. Then, 500 µL of cold methanol was added to each sample. The samples were mixed by vigorous vortexing followed by centrifugation at 12,000 rpm for 10 min at 4°C. A 300 µL aliquot of supernatant was then transferred into a glass 186 sampling vial for analysis. Samples were then analysed by liquid chromatography-tandem MS
187 (LC-MS/MS). Details of the measurement and data analysis are described in the Supporting
188 Information.

189 2.8. Data processing


All statistical data were presented as means ± standard deviation. Statistical analysis was performed using IBM SPSS Statistics 19. One way ANOVA with a Tukey's test was applied after testing the data for normality and homoscedasticity, to analyse whether there were significant differences for the data of biomass, root length, stress response, and elemental concentrations between exposure conditions. P < 0.05 was considered statistically significant.

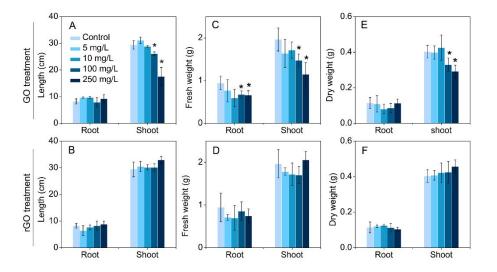
195

196 **3. RESULTS AND DISCUSSION**

197 **3.1. Characterization of GO and rGO**

198 SEM images show the morphology of GO and rGO sheets (Fig. 1A and 1B). The average sizes of 199 GO (0.089 \pm 0.023 μ m) and rGO (0.078 \pm 0.034 μ m) are not significantly different (Fig. 1C and 1D). The size distributions are shown in Fig. S2. AFM height profiles show that GO and rGO 200 201 sheets have a thickness of 0.78 ± 0.26 and 0.44 ± 0.23 nm, respectively. FTIR spectra confirm 202 that GO has a significantly higher amount of oxygen-containing groups (O-H group at 3400 cm⁻¹, 203 C=O group at 1726 cm⁻¹, C-O group at 1416 and 1052 cm⁻¹) than rGO. XPS survey analysis shows 204 34.6% and 7.8% of atomic oxygen in GO and rGO, respectively (Fig. S3). Peak fitting analysis of 205 high-resolution XPS spectra suggests that the amount of oxygen containing groups in GO and 206 rGO are 61% and 23%, respectively. DLS analysis suggests that rGO shows a positive charge in 207 both water and nutrient solution, while GO is negatively charged (Table S3). The hydrodynamic diameters of GO and rGO were larger in nutrient solution (1398 ± 347 nm and 1599 ± 368 nm) 208 209 than in deionized water (1194 ± 123 nm and 865 ± 98 nm), indicating agglomeration of GO and 210 rGO in nutrient solution, and the sizes of GO and rGO in nutrient solution were similar. The high 211 salinity of the nutrient solution contributed to the compression of the double electric layer on 212 the surface of nanomaterials and subsequent aggregation.³⁰

213


Fig. 1. Characterization of GO and rGO. SEM images of GO (A) and rGO (B); AFM images and height profiles of GO (C) and rGO (D); FTIR spectra of GO and rGO (E); XPS spectra of GO and rGO (F).

217

218 **3.2. GO and rGO showed distinct effects on rice seedling growth**

As shown in Fig. 2, GO and rGO showed distinct impacts on the seedling growth of rice plants. GO showed no effect on root elongation after three weeks of dosing, but significantly reduced the shoot length by 11% at 100 mg/L and by 40% at 250 mg/L (Fig. 2A). GO at 100 mg/L and 250 mg/L also reduced the fresh biomass of both roots and shoots (Fig. 2C), and the dry weight of shoots at 100 mg/L and 250 mg/L (Fig. 2E). In contrast, rGO showed no effect on seedling elongation and biomass production at all concentrations (Fig. 2B, 2D and 2F).

Since the lateral size and hydrodynamic size of GO and rGO are not significantly different, they are not related to the different toxicity between GO and rGO. The thicknesses of GO and rGO are slightly different. It has been reported that increasing the thickness would decrease the sharpness of the edge thus weakening the "nanoknife" effect,³¹ that is, GO with a bigger thickness should show lower effects on plant growths than rGO. However, our result is the opposite, suggesting that thickness is also not a determining factor. These indicate thatphytotoxicity of GBMs is mainly dependent on their surface oxygen content.

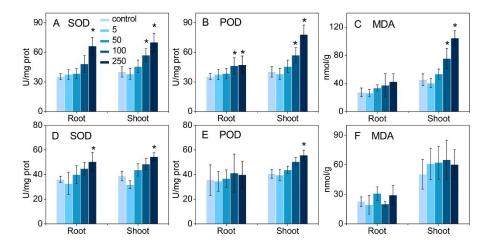

232

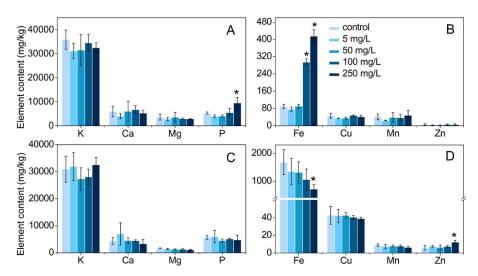
Fig. 2. Seedling lengths (A and B), fresh weights (C and D), and dry weights (E and F) of rice
seedlings after exposure to different concentrations of GO and rGO for 3 weeks. Top row shows
GO treatments, bottow row shows rGO treatments. * indicates a significant difference compared
with control at P < 0.05.

237

238 **3.3. Oxidative stress responses induced by GO and rGO**

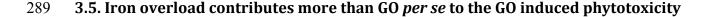
239 To further explore the underlying mechanisms of the different responses of rice seedlings and plants to GO and rGO, we examined the oxidative stress responses of rice seedlings to GO and 240 241 rGO exposure (Fig. 3). The activities of antioxidant enzymes including SOD (Fig. 3A) and POD 242 (Fig. 3B) in shoots following GO treatment were significantly enhanced at 100 mg/L and 250 mg/L whilst the MDA contents in shoots increased by 37% and 70% (Fig. 3C), respectively. No 243 244 obvious changes of SOD, POD and MDA were observed in roots. In rGO treatments, SOD and 245 POD activity only increased at the highest exposure concentration (250 mg/L) (Fig. 3D and 3E), and there was no alteration of MDA content in either roots or shoots (Fig. 3F). Significant 246 247 overproduction of ROS was found in shoots with GO treatment while no obvious change was 248 found with rGO treatment (Fig. S4). The enhanced activities of antioxidant enzymes represents 249 a defence mechanism of plants against ambient stress. Both GO an rGO triggered the stress 250 response of plants, with the enzymatic antioxidant system failing to protect the plants against the GO exposure, with the evidence showing that ROS and MDA over accumulated in GO-251 252 exposed plants. Notably, the most overt over accumulation of MDA and ROS in response to GO 253 treatment was found in shoots rather than roots. A similar phenomenon was also reported with 254 maize plants where leaves were more sensitive than roots to the oxidative stress induced by sulfonated graphene;³² the MDA content in roots was increased only by the highest GO 255 256 concentration (500 mg/L) while that in leaves was enhanced by GO concentrations ranging 257 from $100 \sim 500$ mg/L. The underlying mechanism was explored in the following studies.

258


Fig. 3. SOD (A and D) and POD (B and E) activities, and MDA (C and F) contents in rice after
exposure to GO and rGO for 3 weeks. Top row: GO treatments, bottom row: rGO treatments. *
indicates significant difference compared with control at P < 0.05.

262

3.4. Alteration of the uptake of macro- and micro- elements in plants


To further examine the impact of GO and rGO on plant growth, we measured the uptake of several key nutrients that are essential for plant growth. rGO decreased the Cu level in plant tissues at 50 mg/L but showed no effects on the level of other elements (Fig. S5); however, GO induced alteration of the levels of several elements including P and Fe in shoots and Fe and Zn in roots (Fig. 4). Surprisingly, the Fe level in shoot (415 mg/kg) treated with 250 mg/L of GO was enhanced by 3.6 times as compared with that in the control plants (90 mg/kg). Rice plants usually maintain 60~300 mg/kg of Fe; when the Fe content exceeds 400 mg/kg the plant will

experience toxicity due to Fe overload.³³ The excessive Fe is translocated upwards and 271 272 accumulated in leaves, impairing the physiological processes of plants by generating ROS via the Haber-Weiss or Fenton reactions.³⁴ In our study, the total Fe content in the GO-exposed 273 274 plants was not significantly changed (Fig. S6A); however, the translocation of Fe from root to shoot was greatly enhanced (Fig. S6B). The Fe level in shoots was increased up to 415 mg/kg 275 276 by the 250 mg/L GO treatment, which is correlated with the over accumulation of ROS and 277 altered antioxidant enzymatic activities in plant leaves. These results suggested that GO induced Fe overload and consequent oxidative stress in leaves is one possible mechanism 278 279 causing the phytotoxicity observed. The increased P level (Fig. 4A) was unlikely to be the driver 280 of the toxicity because the highest P level in the shoot (9.5 mg/g) was still below the 281 concentration (>13 mg/g) at which P may become toxic to gramineous plants.³⁵ Additionally, 282 the toxicity in shoots occurred at 100 mg/L when there is no change of P levels, suggesting that 283 P was not necessary for the occurrence of the toxicity.

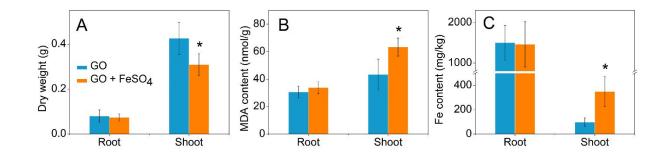

284

Fig. 4. Macronutrient and micronutrient contents in shoots (A and B) and roots (C and D) of
plants after exposure to different concentrations of GO for 3 weeks. * indicates significant
difference compared with control at P < 0.05.

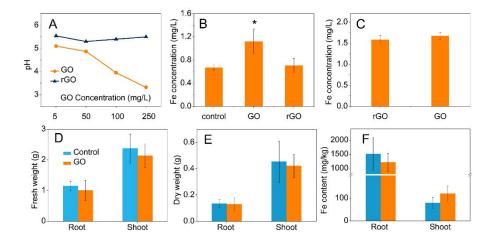
290 Since both GO per se and Fe overload may induce oxidative stress in plants, a follow-up question 291 is to understand the contributions of GO and Fe overload to the induced oxidative stress and phytotoxicity. In our study, the oxidative stress, lipid peroxidation and overt phytotoxicity 292 293 (reduction of biomass and seedling length) were found for leaves rather than roots; this pattern 294 is similar with that found in Fe overloaded plants rather than graphene or other ENM treated 295 plants. For example, it was reported that excessive FeSO₄ treatment enhanced the MDA content 296 in rice leaves by 134% while having no effect on the MDA levels in roots.³⁶ While for ENMs, the 297 roots are usually more sensitive than the leaves to ENM-induced toxicity, which might be due 298 to the fact that most of the ENMs are adsorbed onto the root surface while the upward 299 translocation of ENMs is limited.³⁷

300 Therefore, we deduced that excessive Fe uptake might be the main contributor to the toxicity 301 found in this study rather than GO per se. To prove this hypothesis, we added an excessive 302 amount of Fe (4 mM FeSO₄) to the 50 mg/L GO suspension and examined the rice seedlings 303 growth. As compared with GO treatment alone, the dry weight of leaves was reduced by 27% 304 (Fig. 5A) and the MDA content in leaves was upregulated by 46% (Fig. 5B) after exposure to GO+FeSO₄, which are correlated with a significantly enhanced Fe level in leaves (Fig. 5C). These 305 306 results suggest that Fe overload contributed more than GO per se to the oxidative stress and 307 subsequent toxicity in rice plants, although the effects of GO and rGO cannot be simply ignored since GO and rGO per se may generate ROS.³⁸ 308

309

Fig. 5. Dry weight (A), MDA content (B) and Fe content (C) in rice plants after exposure to GO (50 mg/L) and a mixture of GO (50 mg/L) and FeSO₄ (4 mM) for 3 weeks. * indicates significant difference compared with GO treatment at P < 0.05.

314 3.6. Mechanisms involved in the overload of Fe in leaves


Under anaerobic conditions, e.g. in paddy fields, Fe usually exists in the form of Fe²⁺ which is bioavailable for plant uptake. To avoid over accumulation of Fe, rice roots can release oxygen and oxidase to oxidize the Fe²⁺ to Fe³⁺, which precipitates to form a coating on the roots named "Fe plaque".³³ The Fe plaque can prevent not only the uptake of excessive Fe²⁺ but also the entry of toxic heavy metals into plants. However, a decrease of pH can significantly promote the reduction of insoluble Fe³⁺ to Fe²⁺ that eventually leads to Fe toxicity, which affects a significant proportion of rice fields in many developing countries.³³

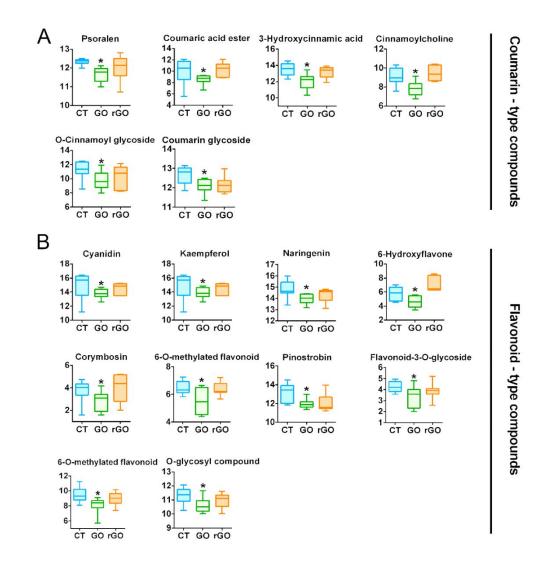
322 The pH mediated Fe uptake not only applies for plants cultured in soil but also applies for hydroponic culture. It was also reported that low pH can significantly promote Fe²⁺ uptake by 323 plants.³⁹ We found that GO acidified the nutrient solution while rGO didn't change the pH 324 325 significantly (Fig. 6A). The pH of the GO suspensions decreased with increasing GO concentration. The pH values for 100 mg/L and 250 mg/L of GO in NS are 3.95 and 3.32, 326 327 respectively, which are much lower than that of the normal NS (pH 5.5). The low pH itself was 328 unlikely the main reason for the toxicity based on two reasons: 1) Rice is relatively tolerant of 329 acidic conditions. Previous studies showed that rice can grow normally at pHs as low as 3.4, but 330 the growth can be greatly impaired if Fe contents in the soil increased.⁴⁰ 2) Impairment of the 331 root growth should be also observed if pH was the reason for the toxicity. However in our study 332 only the growth of shoots was impaired. Therefore, the low pH itself is not the main driver of 333 the toxicity. Instead, the GO induced decrease of pH can increase Fe mobilization and cause the observed Fe overload in the shoots.³⁹ Fig. 6B further showed that the Fe content flux in the 334 335 xylem sap was significantly enhanced by GO treatment.

Considering the high capacity for absorption of GBMs which results from their high surface area, we further examined another possibility, which is that GO may enrich Fe on their surface by adsorption and then translocate to the leaves which may enhance the Fe uptake. To do so, we compared the adsorption of Fe on GO and rGO (see method in Section 1, SI). The amount of Fe adsorbed onto GO and rGO was 1.22 mg/L and 1.31 mg/L (Fig. 6C), respectively, which was nearly half of the Fe present in the nutrient solution (2.9 mg/L). We then estimated the amount

of Fe that can be translocated with the GO and rGO to the shoots (see method for estimation of uptake in Section 1, SI). Only 0.098 mg/kg of Fe can be attributed to transport into the plants *via* adsorption onto the GO or rGO. This is negligible compared with the total amount of Fe that was accumulated in the leaves (325 mg/kg), suggesting that the contribution of this mechanism to Fe overload is negligible.

When the pH of the GO suspension was adjusted back to normal pH (5.5) (see details of methods in SI), the phytotoxicity was eliminated (Fig. 6D and 6E) and the Fe content in shoots was normal (Fig. 6F). These results provide solid evidence that Fe overload is the main cause of the GO induced toxicity.

351


Fig. 6. pH values of GO and rGO suspensions in nutrient solution (A), the free Fe concentration
in collected xylem saps (B), and the free Fe concentration in nutrient solution after incubation
with GO and rGO (C) from a starting concentration of 2.9 mg/L. Fresh weight (D) and dry weight
(E) of plant and Fe content (F) in plant after exposure to pH adjusted GO suspension (250 mg/L,
pH 5.5) for 3 weeks. * indicates significant difference compared with control at P < 0.05.

357

358 3.7. Plant defence against Fe overload via reduced production of Fe transport associated 359 metabolites

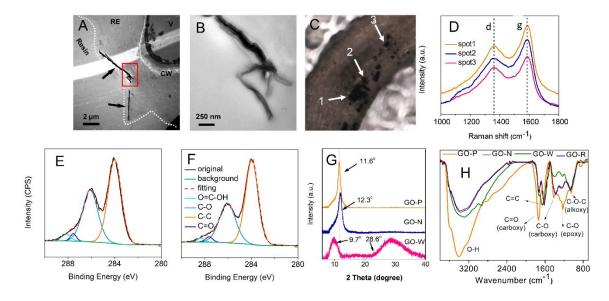
In our study, we found depressed production or excretion of iron-mobilizing coumarin-type compounds and iron-chelating flavonoid-type compounds (Fig. 7) in the leaves of GO treated plants, which may act as an important component of the iron depletion strategy in response to

Fe overload. Coumarin-derived phenolics or their corresponding glycosides were all 363 364 dramatically depressed in the GO treated plants. For example, psoralen, a linear 365 furanocoumarin, was decreased by 36% (Fig. 7A). The coumaric acid ester, 3-hydroxycinnamic 366 acid, and cinnamoylcholine (a cinnamic acid ester), which are intermediates in the coumarin biosynthetic pathway, were significantly decreased by 78%, 62%, and 60%, respectively. The 367 368 glycosides, such as coumarin glycoside (4-methylumbelliferyl glucuronide) and cinnamoyl glycoside, were also significantly decreased. In addition, an array of flavonoid-derived 369 370 compounds, including flavonoids (e.g. flavanones, flavones, flavonols, anthocyanidin), the 371 methylated derivatives, and their glycosides were all downregulated in the GO exposed plants 372 (Fig. 7B). For example, the concentrations of cyanidin (a type of anthocyanidin), kaempferol (a 373 natural flavonol), naringenin (a flavanone), 6-hydroxyflavone (a flavone), and corymbosin (a 374 flavone), were depressed by 70%, 66%, 48%, 56% and 44%, respectively. The decrement for other flavonoid derivatives ranged from 41% to 65%. These data suggest that regulatory 375 376 mechanisms at the metabolic level were evoked in leaves in order to sustain the iron homeostasis in response to GO-induced Fe overload. 377

378

Fig. 7. Box plots of relative abundance of coumarin-type compounds (A) and flavonoid-type compounds (B) in the leaves of rice treated with 250 mg/L GO and rGO compared to the untreated controls (n=8). * indicates significant difference compared with control.

382


383 **3.8. Biotransformation of GO as a pathway to alleviate GO-induced phytotoxicity**

ENMs may transform by interaction with plants, the process of which may determine their subsequent behaviour, fate and toxicity in plants. CeO₂ ENMs are reported to be transformed in many plant species,^{41, 42} being reduced and releasing Ce³⁺, which is found to be responsible for the toxicity of CeO₂ ENMs to *Lactuca* plants.⁴² The released Ce³⁺ can bind with phosphates, which could be a detoxification process.^{43, 44} Transformation of graphene materials has been reported in bacteria,²⁸ plants⁴⁵ and in water under sunlight.⁴⁶ Free radicals (OH•) were reported to be involved in the transformation of graphene into CO₂ in plant leaves, the process of which contributed to the elimination of graphene from plants following uptake and may thus reduce graphene induced phytotoxicity.⁴⁵ Immobilization of root exudates onto GO and formation of ligand-GO complexes were also reported, which decreased the surface charge and increased the unpaired electrons and the toxicity of the GO to zebrafish.⁴⁷

395 We found that GO adsorbed onto the root surface, with a significant change of morphology 396 from sheet to a folded shape (Fig. 8A and 8B). A root exudate (RE) layer between the GO and 397 the root epidermis cells can be observed, which might act as a barrier to prevent the GO from 398 entering the roots. Adsorption of GO onto the root surface was also clearly visible under the 399 Raman microscope (Fig. 8C). The Id/Ig ratios (0.715-0.783) of the Raman spectra, collected 400 from three spots on the roots (Figure 8D), were significantly lower than that of pristine GO 401 (0.98, Fig. S7, Table S4), suggesting that roots enhanced the disorder in the structure of GO.⁴⁷ 402 The O/C ratios of GO decreased significantly after interaction with plants (Fig. 8E and 8F, Table 403 S4), suggesting the partial transformation of GO into rGO. GO-W (which were washed from the 404 root surface) showed a higher reduction degree (0/C, 0.31) than GO-R (0/C, 0.4), suggesting 405 that direct contact with the plant roots accelerated the reduction of GO. XRD analysis further 406 confirmed the transformation of GO into rGO (Fig. 8G). Incubation in nutrient solution (GO-N) 407 only induced a slight shift of the (002) peak of GO from 11.6° to 12.3°, suggesting no alteration 408 of the crystal structure but a decrease of the lattice spacing. However, interaction of GO with 409 roots (GO-W) not only induced a shift of the (002) peak to 9.7° but also led to the formation of 410 a new peak at 28.6° which is attributed to the (002) peak of rGO, suggesting the reduction of GO.⁴⁸ In agreement with the XPS and XRD results, FTIR showed that GO-W was reduced to a 411 412 higher degree than GO-R, suggesting that contact of GO with plant roots facilitated the 413 transformation of GO to rGO (Fig. 8H). The transformation of "toxic" GO into a relatively low-414 toxic "rGO" might act as a pathway to alleviate the toxicity of GO. The potential role of root-415 associated microbes in the transformation process remains to be explored.

Adsorption of rGO onto the root surface was also observed by TEM (Fig. S9). FTIR spectra
(Fig. S10) showed increased intensity of surface oxygen content after interaction with plant

roots (rGO-W), suggesting partial oxidation of rGO. However, XRD analysis showed that the
main peak (002) of rGO has not shifted (Fig. S11), suggesting no changes to the crystal structure.
The increased surface oxygen content observed by FTIR might be due to the adsorption of
organic compounds from root exudates.

423 Fig. 8. Characterization of GO after interaction with plants for 3 weeks. (A and B) TEM images 424 of root sections; B is the magnified image of the rectangle area shown in A. RE indicates the root exudate, CW indicates the cell wall. (C) Optical image of roots. (D) Raman spectra collected at 425 426 the three spots shown in C; d and g indicate the d band at 1363 cm⁻¹ and g band at 1593 cm⁻¹, respectively. The intensity ratios of d to g, i.e. Id/Ig ratios, were 0.715 (spot 1), 0.723 (spot 2) 427 and 0.783 (spot 3), respectively. (E) XPS spectra of GO-R (GO in residual NS after removal of 428 429 plants). (F) Raman spectra of GO-W (GO washed off from roots). (G) XRD spectra of GO-P 430 (pristine GO), GO-N (GO incubated in nutrient solution for 3 weeks) and GO-W. (H) FTIR spectra of GO-P, GO-N, GO-W and GO-R. 431

432

422

The present study reports for the first time a new mechanism of ENM induced phytotoxicity, i.e. GO induced pH alteration of nutrient solution and subsequent Fe over accumulation and oxidative damage in plant leaves. Some previous studies have suggested that ENMs can disturb the macro and micro element distribution in plants, however, a clear interpretation of these findings are lacking. The present study indicates that ENMs may cause toxicity to plants indirectly by altering the micronutrient uptake. The apparently different impact of GO and rGO
on plant growth suggests that the phytotoxicity of GBMs is highly related to their surface oxygen
content. The inconsistent use of GO or rGO with different surface oxygen densities might be one
of the reasons that explain the inconsistence in current literature. It should be noted that this
is a short term study carried out in hydroponic condition. Effects of GBMs on plant in realistic
soil environment over longer exposure time might be different and the mechanisms involved
will be complicated by the soil components, which requires further studies.

445

446 ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website. Itincludes additional experimental details and results.

449 **AUTHOR INFORMATION**

450 **Corresponding authors**

451 Email: p.zhang.1@bham.ac.uk (P. Zhang); zhangzhy@ihep.ac.cn (Z.Y. Zhang)

452 **ACKNOWLEDGEMENT**

- 453 This work was supported by Marie Skłodowska-Curie Individual Fellowships (NanoLabels Grant
- 454 Agreement No. 750455 to PZ; NanoBBB Grant Agreement No. 798505 to ZG) under the European
- 455 Union's Horizon 2020 research program.

456 **CONFLICT OF INTEREST**

457 The authors declare no conflict of interest.

458 **REFERENCES**

- 459 1. Geim, A. K., Graphene: status and prospects. *Science* **2009**, *324*, 1530-1534.
- 460 2. Avouris, P., Graphene: electronic and photonic properties and devices. *Nano Lett.* 2010, *10*,
 461 4285-4294.
- 462 3. Tonelli, F. M.; Goulart, V. A.; Gomes, K. N.; Ladeira, M. S.; Santos, A. K.; Lorençon, E.; Ladeira,
- L. O.; Resende, R. R., Graphene-based nanomaterials: biological and medical applications and toxicity. *Nanomedicine* **2015**, *10*, 2423-2450.
- 465 4. Chabot, V.; Higgins, D.; Yu, A.; Xiao, X.; Chen, Z.; Zhang, J., A review of graphene and graphene
- 466 oxide sponge: material synthesis and applications to energy and the environment. *Energy*

- 467 *Environ. Sci.* **2014,** *7*, 1564-1596.
- 468 5. Zhao, J.; Wang, Z.; White, J. C.; Xing, B., Graphene in the aquatic environment: adsorption,
- dispersion, toxicity and transformation. *Environ. Sci. Technol.* **2014**, *48*, 9995-10009.
- 470 6. Sanchez, V. C.; Jachak, A.; Hurt, R. H.; Kane, A. B., Biological interactions of graphene-family
 471 nanomaterials: an interdisciplinary review. *Chem. Res. Toxicol.* **2011**, *25*, 15-34.
- 472 7. Gurunathan, S.; Arsalan Iqbal, M.; Qasim, M.; Park, C. H.; Yoo, H.; Hwang, J. H.; Uhm, S. J.;
- 473 Song, H.; Park, C.; Do, J. T., Evaluation of Graphene Oxide Induced Cellular Toxicity and
- 474 Transcriptome Analysis in Human Embryonic Kidney Cells. *Nanomaterials* **2019**, *9*, 969.
- 475 8. Wang, Q.; Li, C.; Wang, Y.; Que, X., Phytotoxicity of Graphene Family Nanomaterials and Its
 476 Mechanisms: A Review. *Frontiers in chemistry* 2019, 7.
- 477 9. Kabiri, S.; Degryse, F.; Tran, D. N.; da Silva, R. C.; McLaughlin, M. J.; Losic, D., Graphene Oxide:
- A New Carrier for Slow Release of Plant Micronutrients. *ACS applied materials & interfaces* 2017,
 9, 43325-43335.
- 480 10. Zhang, M.; Gao, B.; Chen, J.; Li, Y.; Creamer, A. E.; Chen, H., Slow-release fertilizer 481 encapsulated by graphene oxide films. *Chem. Eng. J.* **2014**, *255*, 107-113.
- 482 11. Andelkovic, I. B.; Kabiri, S.; Tavakkoli, E.; Kirby, J. K.; McLaughlin, M. J.; Losic, D., Graphene
- 483 oxide-Fe (III) composite containing phosphate–A novel slow release fertilizer for improved
 484 agriculture management. *Journal of cleaner production* 2018, *185*, 97-104.
- 485 12. Ren, W.; Ren, G.; Teng, Y.; Li, Z.; Li, L., Time-dependent effect of graphene on the structure, 486 abundance, and function of the soil bacterial community. *J. Hazard. Mater.* **2015**, *297*, 286-294.
- 487 13. Chung, H.; Kim, M. J.; Ko, K.; Kim, J. H.; Kwon, H.-a.; Hong, I.; Park, N.; Lee, S.-W.; Kim, W.,
- 488 Effects of graphene oxides on soil enzyme activity and microbial biomass. *Sci. Total Environ.*489 **2015**, *514*, 307-313.
- 490 14. Kim, M.-J.; Ko, D.; Ko, K.; Kim, D.; Lee, J.-Y.; Woo, S. M.; Kim, W.; Chung, H., Effects of silver491 graphene oxide nanocomposites on soil microbial communities. *J. Hazard. Mater.* 2018, *346*,
 492 93-102.
- 493 15. Dong, S.; Xia, T.; Yang, Y.; Lin, S.; Mao, L., Bioaccumulation of 14C-labeled graphene in an 494 aquatic food chain through direct uptake or trophic transfer. *Environ. Sci. Technol.* **2018**, *52*,
- 495 541-549.
- 496 16. Begum, P.; Ikhtiari, R.; Fugetsu, B., Graphene phytotoxicity in the seedling stage of cabbage,
 497 tomato, red spinach, and lettuce. *Carbon* 2011, *49*, 3907-3919.
- 498 17. Zhang, P.; Zhang, R.; Fang, X.; Song, T.; Cai, X.; Liu, H.; Du, S., Toxic effects of graphene on the
- growth and nutritional levels of wheat (Triticum aestivum L.): short-and long-term exposure
 studies. *J. Hazard. Mater.* 2016, *317*, 543-551.
- 501 18. Cheng, F.; Liu, Y.-F.; Lu, G.-Y.; Zhang, X.-K.; Xie, L.-L.; Yuan, C.-F.; Xu, B.-B., Graphene oxide
- modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. *J. Plant Physiol.* 2016, 193, 57-63.
- 504 19. Chen, L.; Wang, C.; Li, H.; Qu, X.; Yang, S.-T.; Chang, X.-L., Bioaccumulation and toxicity of 505 13C-skeleton labeled graphene oxide in wheat. *Environ. Sci. Technol.* **2017**, *51*, 10146-10153.
- 506 20. Zhou, Q.; Hu, X., Systemic stress and recovery patterns of rice roots in response to graphene
- 507 oxide nanosheets. *Environ. Sci. Technol.* **2017**, *51*, 2022-2030.
- 508 21. Servin, A. D.; White, J. C., Nanotechnology in agriculture: next steps for understanding
- 509 engineered nanoparticle exposure and risk. *NanoImpact* **2016**, *1*, 9-12.

- 510 22. Hu, X.; Zhou, Q., Novel hydrated graphene ribbon unexpectedly promotes aged seed 511 germination and root differentiation. *Sci. Rep.* **2014**, *4*, 3782.
- 512 23. He, Y.; Hu, R.; Zhong, Y.; Zhao, X.; Chen, Q.; Zhu, H., Graphene oxide as a water transporter
- 513 promoting germination of plants in soil. *Nano Research* **2018**, *11*, 1928-1937.
- 514 24. Zhang, P.; Ma, Y.; Xie, C.; Guo, Z.; He, X.; Valsami-Jones, E.; Lynch, I.; Luo, W.; Zheng, L.; Zhang,
- 515 Z., Plant species-dependent transformation and translocation of ceria nanoparticles. 516 *Environmental Science: Nano* **2019**, *6*, 60-67.
- 517 25. Wang, Q.; Zhao, S.; Zhao, Y.; Rui, Q.; Wang, D., Toxicity and translocation of graphene oxide
 518 in Arabidopsis plants under stress conditions. *RSC Advances* 2014, *4*, 60891-60901.
- 26. Cui, D.; Zhang, P.; Ma, Y.; He, X.; Li, Y.; Zhang, J.; Zhao, Y.; Zhang, Z., Effect of cerium oxide
 nanoparticles on asparagus lettuce cultured in an agar medium. *Environmental Science: Nano* **2014**, *1*, 459-465.
- 522 27. De Jesus, L. R.; Dennis, R. V.; Depner, S. W.; Jaye, C.; Fischer, D. A.; Banerjee, S. J. T. j. o. p. c. l.,
- 523 Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene 524 ovide **2013** *4* 2144 2151
- 524 oxide. **2013**, *4*, 3144-3151.
- 525 28. Guo, Z.; Xie, C.; Zhang, P.; Zhang, J.; Wang, G.; He, X.; Ma, Y.; Zhao, B.; Zhang, Z., Toxicity and
- 526 transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. *Sci. Total*
- 527 *Environ.* **2017**, *580*, 1300-1308.
- 528 29. Liu, L.; Zhu, C.; Fan, M.; Chen, C.; Huang, Y.; Hao, Q.; Yang, J.; Wang, H.; Sun, D., Oxidation and
- degradation of graphitic materials by naphthalene-degrading bacteria. *Nanoscale* 2015, *7*,
 13619-13628.
- 30. Zhang, P.; He, X.; Ma, Y.; Lu, K.; Zhao, Y.; Zhang, Z., Distribution and bioavailability of ceria
 nanoparticles in an aquatic ecosystem model. *Chemosphere* **2012**, *89*, 530-535.
- 31. Wang, J.; Wei, Y.; Shi, X.; Gao, H., Cellular entry of graphene nanosheets: the role of thickness,
 oxidation and surface adsorption. *Rsc Advances* 2013, *3*, 15776-15782.
- 535 32. Ren, W.; Chang, H.; Teng, Y., Sulfonated graphene-induced hormesis is mediated through 536 oxidative stress in the roots of maize seedlings. *Sci. Total Environ.* **2016**, *572*, 926-934.
- 537 33. Mahender, A.; Swamy, B.; Anandan, A.; Ali, J., Tolerance of iron-deficient and-toxic soil 538 conditions in rice. *Plants* **2019**, *8*, 31.
- 539 34. Kehrer, J. P., The Haber–Weiss reaction and mechanisms of toxicity. *Toxicology* 2000, *149*,
 540 43-50.
- 541 35. Shane, M. W.; McCully, M. E.; Lambers, H., Tissue and cellular phosphorus storage during
- development of phosphorus toxicity in Hakea prostrata (Proteaceae). *J. Exp. Bot.* 2004, 55,
 1033-1044.
- 36. Müller, C.; Kuki, K. N.; Pinheiro, D. T.; de Souza, L. R.; Silva, A. I. S.; Loureiro, M. E.; Oliva, M.
- 545 A.; Almeida, A. M., Differential physiological responses in rice upon exposure to excess distinct 546 iron forms. *Plant Soil* **2015**, *391*, 123-138.
- 547 37. Zhang, P.; Ma, Y.; Zhang, Z., Interactions between engineered nanomaterials and plants:
- 548 phytotoxicity, uptake, translocation, and biotransformation. In *Nanotechnology and Plant* 549 *Sciences*, Springer: 2015; pp 77-99.
- 550 38. Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y.,
- 551 Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:
- membrane and oxidative stress. *ACS nano* **2011**, *5*, 6971-6980.

- 553 39. Zhao, T.; LING, H. Q., Effects of pH and nitrogen forms on expression profiles of genes 554 involved in iron homeostasis in tomato. *Plant, Cell Environ.* **2007**, *30*, 518-527.
- 40. Tanaka, A.; Navasero, S., Growth of the rice plant on acid sulfate soils. *Soil Sci. Plant Nutr.* **1966**, *12*, 23-30.
- 557 41. Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Zhang, J.; Guo, Z.; Tai, R.; Zhao, Y.; Chai, Z.,
- 558 Biotransformation of ceria nanoparticles in cucumber plants. *ACS nano* **2012**, *6*, 9943-9950.
- 42. Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Li, Y.; Zhang, J.; Zheng, L.; Zhao, Y., Species-specific toxicity
 of ceria nanoparticles to Lactuca plants. *Nanotoxicology* 2015, *9*, 1-8.
- 561 43. Li, R.; Ji, Z.; Chang, C. H.; Dunphy, D. R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong,
- 562 J., Surface interactions with compartmentalized cellular phosphates explain rare earth oxide
- nanoparticle hazard and provide opportunities for safer design. *ACS nano* **2014**, *8*, 1771-1783.
- 44. Briffa, S. M.; Lynch, I.; Hapiuk, D.; Valsami-Jones, E., Physical and chemical transformations
 of zirconium doped ceria nanoparticles in the presence of phosphate: Increasing realism in
- 566 environmental fate and behaviour experiments. *Environ. Pollut.* **2019**.
- 567 45. Huang, C.; Xia, T.; Niu, J.; Yang, Y.; Lin, S.; Wang, X.; Yang, G.; Mao, L.; Xing, B., Transformation
- of 14C-Labeled Graphene to 14CO2 in the Shoots of a Rice Plant. *Angew. Chem.* 2018, *130*, 99079911.
- 46. Hou, W.-C.; Chowdhury, I.; Goodwin Jr, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard,
- 571 D.; Zepp, R. G., Photochemical transformation of graphene oxide in sunlight. *Environ. Sci.* 572 *Technol.* **2015**, *49*, 3435-3443.
- 47. Du, J.; Hu, X.; Mu, L.; Ouyang, S.; Ren, C.; Du, Y.; Zhou, Q., Root exudates as natural ligands
- that alter the properties of graphene oxide and environmental implications thereof. *Rsc*
- 575 *Advances* **2015**, *5*, 17615-17622.
- 576 48. Huang, H.-H.; De Silva, K. K. H.; Kumara, G.; Yoshimura, M., Structural evolution of
- 577 hydrothermally derived reduced graphene oxide. *Sci. Rep.* **2018**, *8*, 6849.