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Abstract—Coupling matrix synthesis methods for all-resonator 

diplexers and multiplexers are far from mature. For complex 

coupling topologies, existing methods are often not able to find the 

appropriate coupling matrices that satisfy the S-parameter 

specifications. To address this challenge, a new synthesis method 

which hybridizes analytical and optimization techniques, called 

general all-resonator diplexer/multiplexer coupling matrix 

synthesis (GACMS) method, is proposed in this paper. The two 

main innovations of GACMS are: (1) An optimization framework 

incorporating filter design knowledge, which effectively reduces 

the search space for coupling matrix synthesis; and (2) A new 

memetic algorithm-based optimizer, which tackles the challenges 

from the complex landscape (function characteristics) of coupling 

matrix synthesis problems. GACMS is tested by six complex 

practical problems and coupling matrices are successfully 

obtained for all of them. Comparisons with existing methods 

demonstrate the advantages of GACMS in terms of solution 

quality and robustness. 

 
Index Terms—Coupling matrix, diplexers, multiplexers, 

differential evolution, memetic algorithm. 

 

I. INTRODUCTION 

IPLEXER and multiplexer design can often be divided 

into two phases, which are finding an initial 3D design 

with approximate geometric dimensions and then performing a 

full 3D electromagnetic (EM) simulation-based optimization. 

A good-quality initial design is essential for the second phase, 

no matter which local optimization-based methods [2] or global 

optimization-based methods [3] are employed. Using the 

Coupling Matrix (CM) provides a systematic method to obtain 

the initial design [1], [4], which is the focus of this paper. 

The traditional types of junction-based diplexers or 

multiplexers usually use a non-resonant junction to connect 

with multiple channel filters. Analytical-based CM synthesis 
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approaches are often employed. In such cases, the CM 

synthesis becomes multiple filter synthesis, which has been 

well documented [5]-[7]. Recently, an all-resonator multiple 

junction configuration was introduced and widely applied for 

various configurations of diplexers and multiplexers [8]-[11]. 

Fig. 1 shows an exemplary topology of an all-resonator 

multiplexer. The topology is exclusively comprised of coupled 

resonators. The configuration offers high flexibility, and 

various topologies can be realized by appropriately coupling 

the resonators. Clearly, traditional CM synthesis methods are 

no longer applicable [12]. This paper targets a general CM 

synthesis method for these all-resonator diplexers and 

multiplexers. The starting point of a diplexer / multiplexer 

design is an appropriate topology. Based on the chosen 

topology, the proposed method aims to obtain the coupling 

matrix that satisfies the S-parameter specifications. This is the 

same as in the analytical techniques, as there is no way to 

directly calculate the topology except for simple filters. 

Existing CM synthesis methods can be classified into 

analytical-based methods and optimization-based methods. 

Exact analytical-based methods are mathematically sound and 

have guaranteed successful results. Hence, they are often the 

first choice. However, there is no available analytical method 

for many topologies such as the targeted all-resonator diplexers 

and multiplexers in this paper. In [12] and [13], a pioneering 

analytical method is proposed based on polynomial calculation 

and obtains successful results. However, this technique is only 

applicable to a particular type of all-resonator multiplexer. 

Optimization-based methods are a good choice for such cases 

due to their advantage of generality. For any CM, there is a 

corresponding S-parameter response, from which the errors to 

the S-parameter specifications can be calculated. By 

minimizing this error to a sufficiently small value, the 

appropriate coupling coefficients can be obtained. 

There has been work on optimization techniques for CM 

synthesis. In [14], the CM for diplexers with a symmetric 

response is synthesized by the sequential quadratic 
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Fig. 1.  An exemplary topology of an all-resonator multiplexer. 
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programming (SQP) method with a starting point based on 

design experience. The method is extended to multiplexers in 

[8]. A global optimization technique, called self-adaptive 

differential evolution for CM synthesis (SADEC), is proposed 

in [15], which removes the dependence on a good-quality 

starting point. The search operators of SADEC are designed to 

fit for the landscape (function characteristics) of the diplexer 

CM. However, the above methods can be considerably 

improved and expanded, which is the aim of this work.  

The landscape showing how the S-parameter 

performance-based objective function changes with respect to 

the coupling coefficients is complex for diplexers and 

multiplexers. A simplified representation of such a landscape is 

illustrated in Fig. 2 [15]. It can be seen that the global optimal 

value (the appropriate coupling coefficients in this case) locates 

in one narrow valley, as shown by the red point. The landscape 

has multiple narrow valleys. In each valley, the landscape is 

multimodal (i.e., with more than one local optimal solution, as 

marked out with circles) [15]. When the optimization is trapped 

at these points, an unsatisfactory result may be obtained.  

Because of the complex landscape, optimization-based CM 

synthesis methods face two main challenges: (1) The number of 

coupling coefficients that can be handled is insufficient. 

Without being able to take advantage of an initial value, the 

SADEC algorithm would find it difficult in locating the 

solutions from an appropriate narrow valley for diplexers with 

more than 20 coupling coefficients [15]. However, many 

advanced diplexers and multiplexers have asymmetric 

responses and more than 20 coupling coefficients need to be 

handled. (2) Even if the appropriate valley is located, a 

suboptimal result may be obtained and the reflection responses 

may not reach the desired value (e.g., a 20 dB return loss) [14], 

[15]. 

To address the above challenges, a new method, called 

General All-resonator diplexers/multiplexers Coupling Matrix 

Synthesis (GACMS) method is proposed in this paper. The key 

idea is to hybridize analytical methods and advanced 

optimization techniques. In particular, design knowledge is 

employed to help reduce the search space as well as to provide 

useful supporting information (e.g., initial values for some 

coupling coefficients) for the optimization. In addition, new 

optimization techniques are developed to deal with the large 

number of local optima of the CM synthesis landscape and 

therefore considerably enhance the solution quality. 

To test GACMS, six practical complex all-resonator 

diplexers and multiplexers are used. Successful results are 

obtained for all of them. Comparisons with existing methods 

show the advantages of GACMS in terms of solution quality 

and robustness. In addition, the proposed six test cases can 

serve as a benchmark set to evaluate and compare different CM 

synthesis algorithms. 

The rest of this paper is organized as follows. Section II 

introduces the concepts of all-resonator diplexers and 

multiplexers and related fundamental optimization techniques. 

Section III describes the proposed GACMS method, including 

the new CM synthesis framework and the new optimization 

technique. Section IV describes the test cases. Numerical 

results and comparisons are provided in section V. Section VI 

concludes the paper. 

 

II. THE PROBLEM DOMAIN 

A. Introduction to all-resonator diplexers and multiplexers 

An example of an all-resonator diplexer is shown in Fig. 3. 

Typically, it can be divided into two parts, the stem and the 

branches [8]. The branches are coupled to the stem via junction 

resonators and each branch dominates one filtering band. Note 

that the branches share the junction resonator, as the junction 

resonator couples to and interacts with the branches. In general, 

all-resonator diplexers and multiplexers can be presented with a 

tree topology [8]. The number of couplings associated with 

each resonator is preferably no more than three. The port 

connecting to the stem (P1 in Fig. 3) is usually referred to as the 

common port [12], which passes all frequencies of the channel 

filters. It may be convenient to consider that the stem operates 

as a quasi-multiband bandpass filter [16]. Considering the 

resonators in the stem do not contribute to the isolation between 

the channels, the number of resonators in the stem should 

normally be kept minimum unless they are used to introduce 

transmission zeros as in [8]. More often, cross-couplings are 

added to the branches to generate transmission zeros and 

therefore enhance rejection and isolation [17], as is the case in 

Fig. 3. 

B. The coupling matrix for all-resonator diplexers and 

multiplexers 

For an n-resonator network with X (X ≥ 3) ports, the CM can 

be written in the form of block matrix [M]∈ℝ(n+X)×(n+X) [16], 

  
,

,

,
n PX

n PX

M
 

=  
  0

T

m m

m
  (1) 

 
Fig. 2.  An illustrative figure of the diplexer/multiplexer CM synthesis 

problem landscape. x: coupling coefficients, f(x): objective function  

 
Fig.  3 The different parts of an all-resonator diplexer. 
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where m∈ℝn×n is the general n×n CM, with the element 

m(i, j) (i ≠ j, and i, j = 1, 2, …, n) the mutual coupling between 

resonators i and j, and the element m(i, i) the self-coupling 

representing the resonant frequency of the ith resonator. mn,PX

∈ℝn×X is the matrix of external couplings between ports and 

resonators. The order of this CM is n+X. The corresponding 

normalized immittance matrix [A] is given by [2]: 

        A R p U j M= + −   (2) 

where [R] and [U] are block matrices, 

    , ,U R
   

= =   
   

0 0 0

0 0 0

u

r
  (3) 

where u is an n×n identity matrix and r is an X×X identity 

matrix. The S-parameters of this multi-port network can be 

calculated as 

  ( )1
1 2 ,pp pp

S A
−

=  −   (4) 

  
1

2 ,pq pqp q
S A

−


=   (5) 

where Spp is the reflection coefficient at the port attached to the 

pth resonator, and Spq is the transmission coefficient between the 

ports attached to the pth and qth resonators. 

C. Available Optimization Techniques for CM Synthesis 

As mentioned in Section I, SQP and SADEC have been 

employed and developed for diplexer and multiplexer CM 

synthesis. They are both used in GACMS and are briefly 

introduced below. 

1) Sequence Quadratic Program 

SQP is a popular local optimization technique for 

constrained nonlinear continuous problems and is used for CM 

synthesis [8-10]. In each iteration, the constrained optimization 

problem is modeled as a quadratic programming problem. The 

Lagrangian function for this problem is 

 ( )1

1

( , , ..., ) ( ),
m

T
m i i

i

L x f x c x  
=

= +    (6) 

where ( )f x  is the objective function, ( ), 1,2...ic x i m=  are the 

constraints and , 1,2,...i i m =  are the Lagrange multipliers. In 

the tth iteration of (6), the quadratic programming problem is 

21
min ( ) ( )

2

T T
t t t t tf x s s L s  +  

x
 

 ( ). . ( ) 0, 1, 2,..., .
T

i t t i ts t c x s c x i m +  =   (7) 

where ts  is the solution to the quadratic programming problem. 

The next iteration has the form of 

 1t t t tx x a s+ = +    (8) 

where ta  is the step length obtained by a line search method. 

More details of the SQP method are in [19], [20]. 

2) SADEC 

SADEC is an optimization algorithm specially designed for 

diplexer CM synthesis [15]. It is based on the differential 

evolution (DE) algorithm [18]. DE is a population-based 

stochastic global optimization algorithm. It starts by randomly 

initializing a population of candidate solutions. A mutation 

operator is then applied to generate a parent population P. In 

SADEC and GACMS, the DE/rand/1 operator [18] is used: 

 ( )1 2 3i r r r
v x F x x= +  −   (9) 

where xr1, xr2, and xr3 are three different candidate solutions 

randomly selected from the current population. vi is the ith 

mutation vector in the parent population. (0,2]F   is a scaling 

factor. The method proceeds by applying a crossover operator 

to produce a child population. It works as follows. 

i. Randomly select a variable index jrand ∈ {1, . . . , d}. 

ii. For each j = 1 to d, generate a uniformly distributed 

random number rand from (0, 1) and set 

 
( 1), if ( ) |

( 1)
( ), otherwise

i
j randi

j i
j

v t rand CR j j
u t

x t

 +  =
+ = 



  (10) 

where d is the number of variables, CR ∈ [0, 1] is a constant 

called the crossover rate, and t is the number of iterations. 

Finally, a selection operator carries out a one-to-one 

competition between the parent population and the child 

population. The winners will become the initial population for 

the next iteration. 

Considering the landscape of the diplexer CM synthesis, 

SADEC introduces self-adaptive strategies for the scaling 

factor F and the crossover rate CR. For F, this is 

( )norm 0.5,0.25tempF =  

 ( )

1, if 1

0.1, if 0.1

, otherwise

temp

i
temp

temp

F

F t F

F

 


= 



  (11) 

where norm(0.5, 0.25) is a Gaussian distributed random 

number with a mean of 0.5 and a standard deviation of 0.25. 

The self-adaptive control of CR is 

10.1 0.8tempCR rand= +   

 
2, if 0.1

( )
( 1), otherwise

tempi

i

CR rand
CR t

CR t


= 

−

  (12) 

where t is the number of iterations. CR(1)=0.9 is chosen. 

A new multi-population strategy is also introduced. Two 

opposite populations P and P are initialized and optimized 

together. These two populations have the following relations 

 (1) (1)
i ix a b x= + −   (13) 

where the [a, b]d is the search range, d is the number of the 

decision variables (i.e., coupling coefficients), xi(1) is the ith 

candidate solution in P and (1)
ix  is the corresponding 

candidate solution in .P  The strategy to control the evolution of 

the two populations in the optimization process can be found in 

[15]. Experiments show clear improvement for SADEC 

compared to standard DE for the targeted problem. Equations 

(11)-(13) are also used in the GACMS method. 
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III. THE GACMS METHOD 

A. Challenges and Motivations 

As stated above, the challenges of optimization-based 

diplexer / multiplexer CM synthesis mainly come from the 

landscape (Fig. 2 in Section I) [15], [21]. The search space 

grows exponentially with the increase in the number of 

coupling coefficients. Therefore, the valley where the global 

optimum lies appears even narrower with respect to the search 

space when more coupling coefficients are considered. In 

addition, our pilot studies show that when using 

cross-couplings, the number of local optimal solutions 

increases further. Hence, it is not a surprise that existing local 

and global optimization methods often have a low success rate 

for problems with more than 20 coupling coefficients [15]. 

To address the above challenges, two central ideas are 

proposed: (1) incorporating filter design knowledge to reduce 

the search space of the optimization, and (2) developing new 

optimization techniques to tackle the complex landscape (i.e., 

multimodal with narrow valleys). 

By employing filter design knowledge, the whole diplexer / 

multiplexer structure can be divided into several smaller groups 

(i.e., the branches). The number of coupling coefficients for 

each of these is much smaller than the whole diplexer / 

multiplexer. A method can then be proposed to link these small 

groups to form the complete CM. This division also allows the 

employment of analytical methods to make initial estimations 

of some coupling coefficients, which narrows down the search 

ranges. We term these ‘initial’ values the ‘FK values’ because 

they are from Filter Knowledge. Based on the above ideas, a 

new CM synthesis framework is proposed, and the details are in 

Section III (B). 

Our preliminary experiments show that even with the 

assistance of filter design knowledge, stronger optimization 

techniques are still needed to improve the solution quality. 

Global exploration is essential because being able to jump out 

of local optima either in the flat region or in the narrow valleys 

is critical. Local exploitation is also very important because of 

its ability to carry out an elaborate search in a certain region, so 

as to obtain a high-quality final CM. 

Both local and global optimizers have been employed for 

CM synthesis in the literature [14], [15], but an optimizer with 

strong combined global and local optimization capabilities has 

not been proposed for the targeted problem to the best of our 

knowledge. Therefore, a new optimization algorithm 

integrating the advantages of local and global optimization is 

proposed here. The details are in Section III (C) after a detailed 

discussion of the full CM synthesis framework in the next 

subsection. 

B. CM Synthesis Framework 

The new CM synthesis framework integrating filter design 

knowledge with optimization is shown in Fig. 4. It works as 

follows: 

Step 1: Normalization 

The synthesis is carried out in a normalized frequency 

domain. The specifications are normalized by the well-known 

formulas in [6] and are not repeated here. Fig. 5(a) illustrates 

the frequency transformation of a multiplexer with CN 

channels. Each channel is represented by an orange block with 

ΩA.j and ΩB.j, j (j = 1, …, CN) denoting the jth channel. After 

normalization, the overall passband of the multiplexer will be 

projected to [−1, +1], namely ΩA.1 = −1 and ΩB.CN = +1 in Fig. 

5. 

Step 2: Obtaining FK values of some coupling coefficients 

The FK values for some coupling coefficients can be 

obtained by design knowledge. The goal is to narrow down the 

search ranges. 

1) External couplings  

The external couplings between the ports and their adjacent 

resonators are derived from the external quality factors of a 

series of hypothetical lowpass prototype filters (with band 

edges of ±1) as shown in Fig. 5(b). These filters have the same 

features (e.g., return loss, number of reflection zeros) as the 

channel responses of the diplexer / multiplexer. The external 

quality factors of the low-pass prototype filters can be 

calculated by the method in [4], [22]. Lowpass-to-bandpass 

frequency transformation is applied to the external quality 

factors of the lowpass prototype filters by: 

 . .

. .

2
, ( 2, ..., ; 1,..., )

LP
e Pk e k

A j B j

q q k X j CN=  = =
 − 

 (14) 

where .e Pkq and .
LP
e kq  denote the external quality factor of the 

kth port in the multiplexer and their corresponding low pass 

prototype filter, respectively [14]. The external quality factor of 

the common port is then calculated by: 

 

 

Fig. 4.  The flowchart of the GACMS method. 

 

 
Fig. 5.  Linear frequency transformation between (a) the normalized frequency 

domain of the multiplexer and (b) the lowpass prototype for each channel 
filter. 
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. 1 .2

1 1X

e P e Pkkq q=

=    (15) 

Finally, the couplings between the ports and the resonators can 

be expressed as: 

 .( , ) 1 , ( 1... )e Pkm i Pk q k X= =   (16) 

where the kth port is coupled with the ith resonator. 

An as an example, an 8-resonator diplexer is shown in Fig. 6, 

assuming the following normalized specifications: 

• Frequency ranges: Ch1 (−1 to −0.5) and Ch2 (0.6 to 1);  

• Return loss level: 20 dB; 

The couplings between the ports and resonators are calculated 

as m(1, P1) = 0.1035, m(5, P2) =0.2329 and m(8, P3) = 0.1863 

according to (14)-(16). 

2) Mutual coupling coefficients 

It is very difficult to find FK values for the coupling values 

associated with the stem part [14]. However, the FK values can 

be found for the branches employing bandpass filter CM 

synthesis methods. For any branch with all-pole responses, the 

FK values can be obtained by assuming a conventional 

two-port filter including the junction resonator. Therefore, the 

FK coupling values can be calculated from the g values of the 

low-pass prototype [4]. If cross-couplings exist, the analytical 

method [22] or the gradient-based optimization method [23] 

can be used to obtain the coupling coefficients. Then, a linear 

frequency transformation can be applied to transform from the 

lowpass back to the bandpass through 

 
. .

, , ( 1 ... , )
2

A j B jBR LP
u v u vm m j CN u v

 − 
=  =    (17) 

where ,
BR
u vm  and ,

LP
u vm  are the mutual couplings in branches and 

in the lowpass prototype filters, respectively. The 

self-couplings in the branches are obtained by: 

 
. .

, , ( 1 )
2

A j B jBR LP
u u u um m j to CN

 + 
= + =   (18) 

where ,
BR
u um and ,

LP
u um are the self-couplings of branches and 

lowpass prototype filters, respectively. 

Taking the diplexer in Fig. 6 as an example, the obtained FK 

values are shown in Table I and the responses of the two 

branches after the above procedure are shown in Fig. 7. 

Step 3: Grouping of the coupling coefficients 

Since each branch mainly influences its corresponding 

channel response, it is reasonable to divide all the coefficients 

into groups [16]. In GACMS, all the couplings which have an 

influence on a channel constitute one group. Thus, the 

couplings in the stem are contained in every group. For the 

diplexer example in Fig. 6, the coupling coefficients are divided 

into two groups, as shown in Table II. Fig. 8 illustrates the 

group topologies after grouping. 

Step 4: Optimization group by group 

The FK values obtained in Step 2 will now be used in the 

following coupling coefficients group by group. Note that 

although a part of coupling coefficients are optimized in each 

group optimization, the objective function includes the 

specifications for all the channels. This allows solutions that 

improve the performance for some channels whilst not 

sacrificing the others. Details are in Section III (C). 

The selection of which group to start is random. For the first 

group, the search ranges for the coupling coefficients in the 

stem are set as the full range, [0, 1]. The same applies to the 

coupling coefficients associated with the junction resonator. 

For other coupling coefficients in the targeted branch, the much 

narrower search range is set to be [xh−r, xh+r], where xh is the 

FK value vector and r = 0.1. Our pilot studies show that the 

value of 0.1 offers a good tradeoff between convergence speed 

and robustness.  
It should be noticed that at the current stage, only the 

coupling coefficients in the first group are optimized, whereas 

the FK values in other groups are used as they are. The 

optimization outputs include the coupling coefficient values for 

the stem ( ref
sx ) and the targeted branch. It is observed that 

ref
sx  often has a small distance compared to the corresponding 

final optimal coupling coefficient value. Therefore, the search 

ranges for the coupling coefficients in the stem are scaled 

around ref
sx  in the following optimization. The optimization 

 

 
Fig. 6.  An exemplary diplexer with 8 resonators. 

 
Fig. 7.  The S-parameter responses of the two branches of filters 

 

TABLE I 

The FK values in each branch 

Variables m(2, 3) m(3, 4) m(4, 5) m(3, 3) m(4, 4) m(5, 5) 

Values 0.2279 0.1751 0.2279 −0.75 −0.75 −0.75 

Variables m(2,6) m(6,7) m(7,8) m(6,6) m(7,7) m(8, 8) 

Values 0.1823 0.1401 0.1823 0.8 0.8 0.8 

 

TABLE II 
Coupling coefficients in each group 

Group Coupling coefficients 

Group 1 
m(1, 2), m(2, 3), m(3,4),m(4,5); 

m(1, 1), m(2, 2), m(3, 3), m(4, 4), m(5, 5). 

Group 2 
m(1,2), m(2,6), m(6,7), m(7,8); 

m(1,1), m(2,2), m(6,6), m(7,7), m(8,8). 

The bold ones are simultaneously in both groups.  
 

 
Fig. 8.  Group topologies after coefficient grouping 
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algorithm used in this step, called Optimizer I, will be described 

in Section III (C).  

For the subsequent groups, the optimizer does not change, 

but some search ranges are different. For the coupling 

coefficients in the stem, the search ranges are reduced 

to [ , ]
ref ref
s sr r− +x x . Again r = 0.1 is chosen. Note that ref

sx  is 

updated after the optimization of each group. For resonators 

uncoupled and coupled with the junction resonator in the 

currently targeted branch, the corresponding rules of selecting 

search ranges for the first group are used. For the coupling 

coefficients not in the targeted branch, they are not optimized 

and hold on the existing values (either FK values or optimized 

values). All the remaining groups’ optimization will be 

executed following this process. 

Step 5: Final refinement 

Coupled with the junction resonators, the branches affect 

with each other due to the loading effect. Hence, the coupling 

coefficients after group by group optimization still need further 

improvement. In this step, they will be optimized as a whole but 

in a small range. A different optimizer, Optimizer II, is adopted, 

which will be described in Section III (C). After this final 

optimization, the obtained CM is transformed into the real 

frequency domain. 

C. Optimization Techniques 

1) Objective function 

The objective function is critical for any optimization. For 

diplexer / multiplexer CM synthesis, the objective function is 

formed by S-parameter specifications. Assuming an X-port 

multiplexer, the objective function considered in this paper is 

1

11

1

max[ ( )]

( ) +

X

k

k

S PB RL

f
RL

−

=

−

=


x  

 
32 1 , 1 1max[ ( )] max[ ( )]X X XS PB IS S PB IS

IS

− −− + −
+  (19) 

where PBk denotes the kth (k = 1, …, X−1) passband. RL and IS 

are the desired return loss and isolation level, respectively. S11 

is the reflection response of port 1 and S32, S42, …, SX,X−1 

represent the isolation responses. 

The first term of (19) is related to S11, representing the return 

loss of each channel. The value of S11 is evaluated from the CM 

by (4). The maximum values within the passbands are found to 

be max[S11(PBk)] in the objective function. Its distance to the 

desired return loss level (e.g., 20 dB) is minimized. The 

isolation response constraints (e.g., S32 in a diplexer) within the 

passbands are considered in the second term in (19). The design 

specifications for multiplexers usually demand the isolation 

within the passbands to be lower than the desired level (e.g., S32 

of a diplexer is less than −30dB) [25]. It has been observed that 

the isolation response within the passband of one channel 

closely follows the transmission responses (e.g. S12) in the 

rejection band of other channels [8], which helps to preserve the 

bandwidth within the passbands. Therefore, isolation responses 

within the passbands are used in the objective function as a 

convenient substitution for specifying the transmission 

responses. This also reduces the number of items in the 

objective function. Note that the optimal isolation response is 

largely determined by the selected topology. In a practical 

situation, if the isolation requirement cannot be met, an 

improved topology will be needed. 

2) Optimizers I and II 

As mentioned in Section III, Optimizer I is used in the group 

by group optimization in Step 4. This step requires the 

algorithm to find the narrow valley with the global optimum 

(see Fig. 2). To avoid being trapped in a wrong valley, a high 

global exploration ability is required. Moreover, because the 

valleys are very narrow, the new candidate solutions obtained 

by global exploration operators may be misplaced outside the 

valley (i.e., in the flat region in Fig. 2) even if the parent 

candidates have a good quality (e.g., xr1, xr2, and xr3 in (9)). 

Hence, local optimization is required to maintain the optimal 

search pattern obtained by global exploration while improving 

the objective function value. 

Memetic algorithms are able to take into account the 

requirements for both global and local optimization. An 

evolutionary algorithm serves as the global optimizer, whereas 

the memetic algorithm integrates local optimization in the 

population update of the evolutionary algorithm [24]. In each 

iteration of the evolutionary algorithm, a part of or the whole 

population obtained by evolutionary operators is updated by 

local optimization, which serves as the starting population of 

the next iteration. 

In GACMS, SADEC is selected as the global optimizer and 

SQP is selected as the local optimizer. SADEC shows a good 

capability to generate high-quality CMs for diplexers with 

symmetric responses without FK values [15]. SQP shows a 

good capability when good initial values of the CM are 

available [8]-[10]. In the proposed method, SQP is carried out 

for the whole population obtained by SADEC in each iteration. 

This memetic SADEC (MSADEC) is the Optimizer I used in 

Step 4 of the synthesis framework. Fig. 9 shows the flowchart 

of MSADEC. The self-adaptive mutation and crossover 

operator, as well as the return operator, are in (11)-(13) and 

more details are in [15].  

 
 

Fig. 9.  The flowchart of MSADEC algorithm 
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SQP itself is used as the Optimizer II in Step 5. The search 

range is defined by (mg−0.1, mg+0.1), where mg is the solution 

vector provided by Step 4. Note that mg is often close to the 

final global optimal solution, and global exploration is not 

needed in this step. In addition, recall from Fig. 3 that the valley 

that contains the global optimal solution is very narrow. Using a 

global optimizer or SQP without restricting the search range 

may destroy the already obtained optimal pattern, which is 

verified by our pilot experiments. Hence, r=0.1 is used to 

restrict the local optimization. 

IV. DIPLEXER AND MULTIPLEXER TEST CASES 

This section provides six examples to test the GACMS 

method. These examples, shown in Fig. 10, are also proposed 

as test cases to serve as a reference for the community. For 

examples 2, 3 and 4, classical topologies with the same number 

of resonators can also produce a similar response and can be 

synthesized analytically. Here the corresponding all-resonator 

diplexers are used to verify the proposed method. Examples 1, 

5 and 6, on the other hand, are meaningful to show because they 

allow many output ports (channels) maintaining the maximum 

number of couplings to each resonator to be 3. These examples 

demonstrate the unique advantages of the all-resonator 

configuration.  
The complexity of the examples lies in the large number of 

resonators, the increasing number of channels (and therefore 

junction resonators), and the many cross-couplings. In 

particular, the FK values for the coupling coefficients 

associated with junction resonators are hard to obtain. A full 

search range (i.e., [0, 1]) for these couplings has to be used, 

which significantly increases the difficulty of optimization. The 

cross-couplings add more local optima, leading to a more 

rugged landscape. The test problems are of practical interest 

allowing entirely new designs of diplexers and multiplexers to 

be envisaged.  

The key features of all the examples are listed in Table III. 

The specifications are expressed in the normalized frequency 

ranges for all cases.  

Example 1 (Fig. 10 (a)) is a 16-resonator multiplexer with 

symmetric Chebyshev responses [8]. Symmetry helps reducing 

the number of variables to 15, the fewest among all the test 

TABLE III 

 The key features of the test cases 

Examples 
No. of 

resonators 

No. of 

channels 

No. of 

cross-couplings 

No. of 

variables (with 

FK values) 

1 16 4 0 15 (12) 
2 10 2 0 19 (16) 

3 9 2 2 19 (19) 
4 12 2 4 27 (24) 

5 18 3 0 35 (26) 

6 13 3 2 27 (24) 
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Fig. 10.  The coupling topologies of the six test cases. (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4; (e) Example 5; (f) Example 6. 

 

 

 
Fig.8.  The flowchart of MSADEC algorithm 
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cases. The objective function is,  

1 2
1

3 4

1 2

max( ( 20),0) max( ( 20),0)

20 20

max( ( 20),0) max( ( 20),0)

20 20

max( ( 30),0) max( ( 30),0)

30 30

PB PB
f

PB PB

IS IS

− − − −
= +

− − − −
+ +

− − − −
+ +

 

3max( ( 30),0)
+

30

IS − −
  (20) 

where PB1=max(|S11|), [−1, −0.75]; PB2=max(|S11|), [−0.417, 

−0.167]; PB3=max(|S11|), [0.167, 0.417]; PB4=max(|S11|), [0.75, 

1]; IS1=max(|S32|), [0.167, 1]; IS2=max(|S43|), [−0.417, 0.417]; 

IS3=max(|S54|), [−1, −0.167]. PBk denotes the kth passband, the 

numbers in the square brackets refer to the normalized 

frequency bands. ISj  represents the jth isolation level within the 

passbands. The following examples are represented by the 

same symbols.  

Example 2 (Fig. 10 (b)) is a 10-resonator diplexer with 

asymmetric channel responses. The number of variables is 19. 

It has the same topology as in [15]. The objective function is 

 1 2
2

max( ( 20), 0) max( ( 20), 0)

20 20

PB PB
f

− − − −
= +   

 1 2max( ( 80), 0) max( ( 80), 0)

80 80

IS IS− − − −
+ +   (21) 

where PB1=max(|S11|), [−1, −0.661]; PB2=max(|S11|), [0.709, 1]; 

IS1=max(|S32|), [−1, −0.661]; IS2=max(|S32|), [0.709, 1]. 

Example 3 (Fig. 10 (c)) is a 9-resonator diplexer. To realize a 

narrow guard band, each branch contains one triplet 

cross-coupling to generate one transmission zero. With the 

same number of variables, the optimization of this example is, 

however, more difficult than Example 2 due to the 

cross-couplings. The objective function is 

1 2
3

max( ( 20),0) max( ( 20),0)

20 20

PB PB
f

− − − −
= +  

  1 2max( ( 30),0) max( ( 30),0)

30 30

IS IS− − − −
+ +   (22) 

where PB1=max(|S11|), [−1, −0.203]; PB2=max(|S11|), [−0.026, 

1]; IS1=max(|S32|), [−1, −0.203]; IS2=max(|S32|), [−0.026, 1]. 

Example 4 (Fig. 10 (d)) is a 12-resonator diplexer. The 

isolation response of all-resonator diplexers is not necessarily 

better than that of classical junction-based diplexers. This novel 

topology helps to increase the passband isolations of 

all-resonator diplexers [25]. Apart from the triplet in each 

channel, the coupling clusters 1-4 provide two extra 

transmission zeros. Both the number of decision variables and 

the cross-couplings increase the difficulty of optimization. The 

objective function is 

1 2
4

max( ( 20),0) max( ( 20),0)

20 20

PB PB
f

− − − −
= +  

1 2max( ( 60),0) max( ( 60),0)

60 60

IS IS− − − −
+ +   (23) 

where PB1=max(|S11|), [−1, −0.1]; PB2=max(|S11|), [0.2, 1]; 

IS1=max(|S32|), [−1, −0.1]; IS2=max(|S32|), [0.2, 1]. The 

grouping of the coupling coefficients is shown in Table IV. 

Example 5 (Fig. 10 (e)) is an 18-resonator triplexer 

comprised of standard Chebyshev filters. This topology has the 

largest number of resonators among all the examples. There are 

two junction resonators. The coupling coefficients associated 

with resonators 1 to 3 and 9 and 10 need to be searched in the 

full ranges without FK values. The objective function is 

1 2
5

3 1

max( ( 20),0) max( ( 20),0)

20 20

max( ( 20),0) max( ( 30),0)

20 30

PB PB
f

PB IS

− − − −
= +

− − − −
+ +

 

                 2max( ( 30),0)

30

IS − −
+   (24) 

where PB1=max(|S11|), [−1, −0.6]; PB2=max(|S11|), [−0.25, 

0.25]; PB3=max(|S11|), [0.4, 0.1]; IS1=max(|S32|), [−1, 0.25]; 

IS2=max(|S43|), [−0.25, 1]. The grouping of the coupling 

coefficients is shown in Table V.  

Example 6 (Fig. 10 (f)) is a 13-resonator multiplexer. The 

guard band between the first two passbands is very narrow, 

while they are widely separated from the third band. Two 

cross-couplings exist in the first two branches which increase 

the difficulty of optimization. Moreover, the coupling 

coefficients associated with junction resonator 10 and 1 have to 

be searched in the full ranges without FK values. The objective 

function is 

1 2
6

3 1

max( ( 20),0) max( ( 20),0)

20 20

max( ( 20),0) max( ( 30),0)

20 30

PB PB
f

PB IS

− − − −
= +

− − − −
+ +

 

                 2max( ( 30),0)

30

IS − −
+   (25) 

where PB1=max(|S11|), [−1, −0.578]; PB2=max(|S11|), [−0.485, 

−0.051]; PB3=max(|S11|), [0.684, 0.1]; IS1=max(|S32|), [−1, 

0.051]; IS2=max(|S43|), [−0.485, 1]. The grouping of the 

coupling coefficients is shown in Table VI. 

 
TABLE IV 

The variables and group division of Example 4 

No. Coupling coefficients 

Group 1 
m(1,2), m(1,4), m(2,4), m(2,5), m(5,6), m(6,7), m(7,8), m(5,7); 

m(1,1), m(2,2), m(4,4), m(5,5), m(6,6), m(7,7), m(8,8). 

Group 2 
m(1,3), m(1,4), m(3,4), m(3,9), m(9,10), m(10,11), m(11,12), 
m(9,11); m(1,1), m(3,3), m(4,4), m(9,9), m(10,10), m(11,11), 

m(12,12). 

The bold ones are simultaneously in both groups. 

 

TABLE V 
The variables and group division of example 5 

No. Coupling coefficients 

Group 1 
m(1,2), m(2,3), m(3,4), m(4,5), m(5,6), m(6,7), m(7,8); 

m(1,1), m(2,2), m(3,3), m(4,4), m(5,5), m(6,6), m(7,7), m(8,8). 

Group 2 

m(1,2), m(2,3), m(3,9), m(9,10), m(10,11), m(11,12), m(12,13), 

m(13,14); m(1,1), m(2,2), m(3,3), m(9,9), m(10,10), m(11,11), 

m(12,12), m(13,13), m(14,14). 

Group 3 

m(1,2), m(2,3), m(3,9), m(9,10), m(10,15), m(15,16), m(16,17), 

m(17,18); m(1,1), m(2,2), m(3,3), m(9,9), m(10,10), m(15,15), 

m(16,16), m(17,17), m(18,18). 

The bold ones are simultaneously in different groups. 
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TABLE VI 

The variables and group division of example 6 

No. Coupling coefficients 

Group 1 
m(10,1), m(1,2), m(2,3), m(3,4), m(4,5), m(2,4); 
m(10,10), m(1,1), m(2,2), m(3,3), m(4,4), m(5,5). 

Group 2 
m(10,1), m(1,6), m(6,7), m(7,8), m(8,9), m(6,8);  

m(10,10), m(1,1), m(6,6), m(7,7), m(8,8), m(9,9). 

Group 3 
m(10,11), m(11,12), m(12,13); 

m(10,10), m(11,11), m(12,12), m(13,13). 

The bold ones are simultaneously in different groups. 

V. NUMERICAL RESULTS AND COMPARISONS 

A. Performance of GACMS 

GACMS is tested by the six cases in Section IV. In terms of 

parameter setting, there are two kinds: (1) Parameters in the 

synthesis framework, such as using r = 0.1 around FK values to 

define the updated search ranges: These parameters are set 

empirically, but once set, they are fixed within the framework 

and do not need to be altered by the user. (2) The algorithm 

parameters for the MSADEC optimizer: MSADEC does not 

introduce any new parameters compared with SADEC. Hence, 

the parameter setting for SADEC still applies to MSADEC, 

which is detailed in [15]. In the following experiments, the 

same SADEC parameters in [15] are used for MSADEC. For all 

the test examples, 10 runs are carried out for GACMS with 

independent random numbers. The maximum number of 

iterations for GACMS is 250. In most cases, satisfactory results 

are obtained within 150 iterations. The external coupling 

coefficients, the FK values and the typical final solutions for all 

the examples are shown in the Appendix. For all the examples, 

the CM synthesis time is around 20 to 30 minutes using a 

desktop computer with Intel i7-7770HQ CPU and 32 GB RAM.  

The statistics of the GACMS results over 10 runs are shown 

in Table VII. The final responses are shown in Fig. 11. For test 

cases 2, 4 and 6, the optimal solutions fully satisfy the 

 

 

 

(a) 

 

(b) 

 

 

 

(c) 
 

(d) 
 

 

 

(e) 
 

(f) 
 

Fig. 11.  Responses of the optimal solutions by GACMS for the six test cases. (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4; (e) Example 5; (f) 
Example 6. 
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specifications (i.e., cost function = 0), and the other examples 

also obtain excellent results. Moreover, the very small standard 

deviation over the 10 runs shows the robustness of GACMS. In 

the response of Fig. 11(d) for the topology of Fig. 10(d), it may 

be observed that only two transmission zeros are clearly 

identifiable. This happens because the two transmission zeros 

introduced by the coupling clusters 1-4 almost merge into the 

two zeros from the channel triplets. The four transmission zeros 

are clearly visible from a sub-optimal solution (with slightly 

lower rejection at the band-edge), which is not shown here.  

B. Comparisons with State-of-the-art Methods 

As mentioned earlier, although CM synthesis is well 

established for filters, it is far from mature for all-resonator 

diplexers and multiplexers. The most popular and probably the 

only general optimization-based method is SQP with the 

starting point based on experience [14]. SADEC is an optimizer 

for diplexer synthesis instead of a standalone methodology [15]. 

The goal of SADEC is to reduce the high dependency on the 

starting point, but it still needs to be implemented in a CM 

synthesis framework. Therefore, the reference method that we 

choose is SQP. 

The quality of the starting point determines the success of 

SQP-based CM synthesis. To ensure the starting point quality, 

we use the following settings: For the coupling coefficients in 

the branches, the FK values from Step 2 of GACMS are used. 

For the coupling coefficients in the stem, because there is no 

FK value, 0.5 is used as in other filter synthesis methods [23]. 

To avoid destroying the optimal pattern as discussed in section 

III, the search ranges are the same as GACMS for the coupling 

coefficients in the branches. It can be seen that this comparison 

favors SQP by taking advantage of some ideas borrowed from 

GACMS. SQP is implemented using the function “fmincon” in 

MATLAB [26]. Since SQP is a deterministic method, only one 

run is needed. Table VIII compares the optimal objective 

function values of the enhanced SQP and the average objective 

function values of GACMS. Table IX shows the success rate of 

the two methods. The success of CM synthesis is judged based 

on the following rules [15]: (1) The reflection zeros are located 

within the specified channel passbands. (2) The S-parameter 

specifications are satisfied or almost satisfied (i.e., max|S11| < 

−18dB). It can be seen that the final objective function values of 

GACMS are better than that of enhanced SQP for all the cases. 

The enhanced SQP fails for the more complicated cases 4-6 in 

contrast with the 100% success rate for GACMS.  

For the cases 4-6, it is observed that the enhanced SQP is 

trapped in an unacceptable local optimum which is not near to 

the appropriate coupling coefficients. This shows that even 

with a carefully selected starting point, the optimization ability 

of SQP is insufficient for the targeted complex cases. The 

difference in terms of complexity between filter and diplexer / 

multiplexer CM synthesis can also be observed. When using 

0.5 as the starting point for all the variables, two-port filter CM 

synthesis using SQP often succeeds [24], but it is not the case 

for diplexers and multiplexers with complex structures. 

C. Verification of the Advantages of MSADEC  

This subsection focuses on verifying the advantages of the 

new MSADEC algorithm over the original SADEC in [15]. 

Using the same synthesis framework described in Section III 

(B), the Optimizer I (MSADEC) used in Step 4 is replaced by 

the original SADEC in [15]. All the parameter settings are the 

same. Ten runs are carried out for each test case and the 

comparison results are shown in Table X and Table XI.  

It can be seen that when using the original SADEC as 

Optimizer I, although the result is better than SQP, the solution 

quality is clearly worse than that of MSADEC. For one thing, 

the optimal objective function values obtained by MSADEC 

are much smaller than SADEC for all the test cases. For the 

very complex test cases 5 and 6, the success rate of SADEC 

drops. For test case 6, only 3 out of 10 runs succeed when using 

SADEC, in contrast with the 100% success rate of MSADEC. 

Another observation is that when using MSADEC, the 

convergence often occurs within 20,000 evaluations, while 

SADEC needs more than 200,000 evaluations. This can be 

explained by the landscape in Fig. 2. SADEC is a global 

optimization algorithm. When the narrow valley that contains 

the global optimum is identified, the DE mutation operator may 

destroy the already obtained optimal pattern and generate 

candidate solutions in the flat region in Fig. 2. This is because 

the valley is too narrow compared to the step size of the DE 

TABLE VII 
The statistics of the GACMS results over 10 runs 

Problems 
Optimal objective function values 

Min Max Mean STD 

1 8.67E−3 8.76E−3 8.70E−3 3.24E−5 

2 0.00E0 0.00E0 0.00E0 0.00E0 
3 8.69E−3 2.19E−2 1.18E−2 3.99E−3 

4 0.00E0 0.00E0 0.00E0 0.00E0 

5 1.38E−2 6.09E−2 3.08E−2 1.38E−2 
6 0.00E0 0.00E0 0.00E0 0.00E0 

 

 

 

TABLE VIII 

Comparison of optimal objective function values from enhanced SQP and 
GACMS (average) for the test cases 

Problems Methods Objective function values 

1 
SQP 0.0128 

GACMS  0.00870 

2 
SQP 0.152 

GACMS 0.00 

3 
SQP 0.391 

GACMS  0.0118 

4 
SQP 0.996 

GACMS  0.00 

5 
SQP 0.501 

GACMS 0.0308 

6 
SQP 1.87 

GACMS 0.00 

 

TABLE IX 
Success rate of enhanced SQP and GACMS for the test cases 

Problems 
Methods 

SQP GACMS 

1 100% 100% 

2 100% 100% 
3 100% 100% 

4 0% 100% 

5 0% 100% 
6 0% 100% 
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mutation at some search phases. Only when the candidate 

solutions in the population are near to each other (i.e., near the 

convergence), the step size becomes appropriate. In other 

words, SADEC is in the process of “making and breaking”. In 

contrast, MSADEC utilizes a local search (also with restricted 

search ranges) to improve the objective function while 

protecting the existing optimal pattern.  

VI. CONCLUSIONS 

In this paper, a CM synthesis method for all-resonator 

diplexers and multiplexers, called GACMS, has been proposed. 

GACMS is believed to be the first general method to address 

complex CM synthesis of all-resonator diplexers and 

multiplexers. Case studies and comparisons show its high 

optimization ability and robustness for the targeted complex 

CM synthesis problem. The excellent performance of the 

method can be attributed to the new framework, which applies 

filter design knowledge to reduce the search ranges simplifying 

the optimization problem, and the new MSADEC optimizer 

which addresses the challenges of the particular landscape. The 

six practical examples are used not only to demonstrate the 

capability of GACMS, but also to provide for future tests and 

comparisons for the community.  

A limitation of GACMS is the number of channels to be 

handled. The larger the number of channels, the more 

resonators need to be included in the frequency distribution 

network. The coupling coefficients around those junction 

resonators do not usually have the FK values, and have to be 

searched over the full range, e.g., [0,1]. Hence, the search space 

can be substantially enlarged. Our experience found that 

GACMS has successfully synthesized CM for multiplexers 

with up to about 7 channels. Our future work will focus on 

overcoming the current limitation and developing software 

tools based on GACMS. 

APPENDIX 

The external couplings, FK values and optimization results 

for Example 1-6 are listed in the following. 

A. Example 1 

External 
couplings 

m(P1,1)=0.7327, (P2,7)=m(P3,10)=m(P4,13)=m(P5,16)=0.3663. 

FK 

values 

m(5,6)=m(8,9)=0.0876, m(6,7)=m(9,10)=0.1140, 

m(5,5)=m(6,6)=m(7,7)=0.8750; m(8,8)=m(9,9)=m(10,10)=0.2920 

Final 

solution 

m(1,2)=0.7249, m(2,3)=m(2,4)=0.4006,  

m(3,5)=m(4,14)=0.1736, m(5,6)=m(14,15)=0.0926, 
m(6,7)=m(15,16)=0.1147, m(3,8)=m(4,11)=0.1318,  

m(8,9)=m(11,12)=0.0887, m(9,10)=m(12,13)=0.1142, 

m(1,1)=m(2,2)=0, m(3,3)=0.4479, m(4,4)=−m(3,3), 
m(5,5)=0.8203, m(6,6)=0.8674, m(7,7)=0.8715, 

m(14,14)=−m(5,5), m(15,15)=−m(6,6), m(16,16)=−m(7,7), 

m(8,8)=0.3033, m(9,9)=0.2933, m(10,10)=0.2927, 

m(11,11)=−m(8,8), m(12,12)=−m(9,9), m(13,13)=−m(10,10). 

B. Example 2 

External 

couplings 
m(P1,1)=0.5696, m(P2,6)=0.4177, m(P3,10)=0.3874. 

FK 

values 

m(3,4)=0.1078, m(4,5)=0.1078, m(5,6)=0.1468, 

m(7,8)=0.0927, m(4,5)=0.0927, m(5,6)=0.1262, 

m(3,3)=m(4,4)=m(5,5)=m(6,6)=−0.8306; 
m(7,7)=m(8,8)=m(9,9)=m(10,10)= 0.8543. 

Final 
solution 

m(1,2)= 0.8688, m(2,3)= 0.2133, m(3,4)= 0.1100, m(4,5)=0.1076, 

m(5.6)= 0.1474, m(2,7)=0.1653, m(7,8)=0.0921, m(8,9)=0.0929, 
m(9,10)=0.1255 

m(1,1)=−0.0729, m(2,2)=0.0797, m(3,3)=−0.8060,  
m(4,4)=−0.8280, m(5,5)=−0.8288, m(6,6)=−0.8241, 

m(7,7)=0.8384, m(8,8)=0.8532, m(9,9)=0.8540,  

m(10,10)=0.8512. 

C. Example 3 

External 
couplings 

m(P1,1)=0.9362, m(P2,5)=0.6112, m(P3,10)=0.7092. 

FK 

values 

m(2,3)=0.2976, m(3,4)=0.2189, m(4,5)=0.3618, m(2,4)=−0.2058 

m(6,7)=0.2664, m(7,8)=0.2664, m(8,9)=0.4421, m(6,8)=0.1885, 
m(2,2)=−0.6283, m(3,3)=−0.3441, m(4,4)=−0.6469,  

m(5,5)=−0.6283, m(6,6)=0.5107, m(7,7)=0.1725, m(8,8)=0.5107, 
m(9,9)=0.5040. 

Final 

solution 

m(1,2)= 0.5779, m(2,3)= 0.2461, m(3,4)= 0.2107, m(4,5)= 0.3592, 

m(1,6)= 0.5985, m(6,7)= 0.2702, m(7,8)= 0.2673, m(8,9)= 0.4419, 
m(2,4)= −0.1726, m(6,8)= 0.1961 

m(1,1)= 0.0113, m(2,2)= −0.5377, m(3,3)=−0.3027,  

m(4,4)=−0.6177, m(5,5)=− 0.6114, m(6,6)= 0.5014, 
m(7,7)= 0.1778, m(8,8)= 0.5217, m(9,9)= 0.5185. 

D. Example 4 

External 

couplings 
m(P1,1)=0.9232, m(P2,5)=0.6720, m(P3,10)=0.6330. 

FK 

values 

m(2,5)=0.2550, m(5,6)= 0.2344, m(6,7)= 0.2524, m(7,8)= 0.3825 
m(2,4)=0.2614, m(5,7)=−0.1020, m(1,4)= 0.8719, m(3,9)=0.2251, 

m(9,10)= 0.2101, m(10,11)= 0.2251, m(11,12)= 0.3316,  
m(3,4) = 0.2343, m(9,11) = 0.0814, m(2,2)= −0.5769,  

m(3,3)= 0.6167, m(5,5)=−0.5709, m(6,6)=−0.3715, 

m(7,7)= −0.5604, m(8,8)= −0.5667, m(9,9)= 0.6136, 
m(10,10)= 0.4548, m(11,11)= 0.6052, m(12,12)= 0.6046. 

Final 

solution 

m(1,2)=−0.3438, m(2,5)=0.2700, m(5,6)= 0.2343,  

m(6,7)= 0.2490, m(7,8)= 0.3793, m(2,4)= 0.1725,  
m(5,7)= −0.1153, m(1,4)= 0.6542, m(3,9)= 0.3226,  

TABLE X 

The optimal objective function values of the test cases using MSADEC and 
SADEC based on the GACMS framework 

Problems Methods 
Optimal objective function values 

Min Max Mean STD 

1 
SADEC 0.0106 0.0360 0.0215 0.00791 

MSADEC 0.00867 0.00876 0.00870 0.0000324 

2 
SADEC 0.0520 0.113 0.0652 0.0175 

MSADEC  0.00 0.00 0.00 0.00 

3 
SADEC 0.0589 0.0745 0.0691 0.00439 

MSADEC  0.00869 0.0219 0.0118 0.00399 

4 
SADEC 0.0038 0.0237 0.0128 0.00671 

MSADEC  0.00 0.00 0.00 0.00 

5 
SADEC 0.117 0.268 0.179 0.0486 

MSADEC  0.0138 0.0609 0.0308 0.0138 

6 
SADEC 0.0241 0.595 0.275 0.166 

MSADEC  0.00 0.00 0.00 0.00 

 

TABLE XI 

The success rate of the test cases using MSADEC and SADEC in GACMS 

Problems 
Methods 

GACMS+SADEC GACMS+MSADEC 

1 100% 100% 

2 100% 100% 

3 100% 100% 
4 100% 100% 

5 90% 100% 
6 30% 100% 
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m(9,10)= 0.2083, m(10,11)= 0.2225, m(11,12)= 0.3377,  
m(3,4) = 0.1496, m(9,11) = 0.1023, m(1,1)= −0.0066,  

m(2,2)=−0.5866, m(3,3)=0.6370,m(4,4)=0.0505, (5,5)=−0.5719,  

m(6,6)=−0.3476, m(7,7)=−0.5600, m(8,8)=−0.5578, 
m(9,9)=0.6212, m(10,10)= 0.4205, m(11,11)= 0.6072,  

m(12,12)= 0.6025. 

E. Example 5 

External 
couplings 

m(P1,1)=0.8686, m(P2,14)=0.4486, 
m(P3,8)=0.5015, m(P4,18)=0.5494. 

FK 

values 

m(4,5)= 0.1528, m(5,6)= 0.1459, m(6,7)= 0.1528, m(7,8)= 0.2109 

m(11,12)= 0.1272, m(12,13)= 0.1272, m(13,14)= 0.1732 
m(15,16)=0.1908, m(16,17)=0.1908, m(17,18) = 0.2599 

m(4,4)=m(5,5)=m(6,6)=m(7,7)=m(8,8) =0.0 

m(11,11)=m(12,12)=m(13,13)=m(14,14) = −0.8 
m(15,15)=m(16,16)=m(17,17)=m(18,18)=0.7 

Final 
solution 

m(1,2)=0.7597, m(2,3)= 0.5753, m(3,4) = 0.2801 

m(4,5)= 0.1557, m(5,6)= 0.1451, m(6,7)= 0.1522, m(7,8)= 
0.2108, m(3,9) = 0.4151, m(9,10)= 0.6737, m(10.11)= 0.1804, 

m(11,12)= 0.1195, m(12,13)= 0.1230, m(13,14)= 0.1692, 

m(10,15) = 0.3003,  

m(15,16)= 0.1854, m(16,17)= 0.1867, m(17,18) = 0.2546 

m(1,1)= 0.0622, m(2,2)= −0.0369, m(3,3)= 0.0361, 

m(4,4)=−0.0051, m(5,5)= −0.0052, m(6,6)= −0.0034, m(7,7)= 

−0.0028, m(8,8)= −0.0038, m(9,9)= 0.0345, m(10,10)=−0.0961 
m(11,11)= −0.7730, m(12,12)= −0.7948, m(13,13)= −0.7947, 

m(14,14) = −0.7959, m(15,15)= 0.6216, m(16,16)= 0.6806, 

m(17,17)= 0.6894, m(18,18)= 0.6896 

F. Example 6 

External 
couplings 

m(P1,10=0.5,  
m(P2,5)=0.4541, m(P3,9)=0.5125, m(P4,13)=0.4352. 

FK 

values 

m(2,3)=0.1143, m(3,4)=0.1143, m(4,5)=0.1816, 

m(2,4)=−0.0697 
m(1,1)=−0.7957, m(2,2)=−0.7983, 

m(3,3)=−0.6726,m(4,4)=−0.7983, m(5,5)=−0.7957, 

m(6,7)= 0.1394, m(7,8) = 0.1394, m(8,9)=0.2309, 

m(6,8)=0.0981,  

m(6,6)=−0.2043, m(7,7)=−0.3804, m(8,8)=−0.2043, 
m(9,9)=−0.2078, m(11,12)=0.1684, m(12,13) =0.1684, 

m(11,11)=m(12,12)=m(13,13)= 0.8368 

Final 

solution 

m(1,2)=0.2000, m(2,3)=0.1069, m(3,4)=0.1065, m(4,5)=0.1786, 
m(2,4)=−0.0831 

m(1,1)=−0.5253, m(2,2)=−0.7720, m(3,3)=−0.6502, 
m(4,4)=−0.7970, m(5,5)=−0.7889, 

m(10,1) = 0.4853 , m(1,6) = 0.2045 

m(6,7)= 0.1163, m(7,8) = 0.1160, m(8,9)=0.2013, 
m(6,8)=0.0780,  

m(6,6)=−0.2964, m(7,7)=−0.4042, m(8,8)=−0.2606, 
m(9,9)=−0.2706, m(10,11)=0.6019, m(11,12)=0.1794, m(12,13) 

=0.1661, m(10,10)= −0.1501,  

m(11,11)= 0.5523, m(12,12)= 0.8172, m(13,13)= 0.8330 
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