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ABSTRACT  20 

The benefits of differentiating between the physiological and biomechanical load-response pathways in football 21 

and other (team) sports have become increasingly recognised. In contrast to physiological loads however, the 22 

biomechanical demands of training and competition are still not well understood, primarily due to the difficulty 23 

of quantifying biomechanical loads in a field environment. Although musculoskeletal adaptation and injury are 24 

known to occur at a tissue level, several biomechanical load metrics are available that quantify loads experienced 25 

by the body as a whole, its different structures and the individual tissues that are part of these structures. This 26 

paper discusses the distinct aspects and challenges that are associated with measuring biomechanical loads at 27 

these different levels in laboratory and/or field contexts. Our hope is that through this paper, sport scientists and 28 

practitioners will be able to critically consider the value and limitations of biomechanical load metrics and will 29 

keep pursuing new methods to measure these loads within and outside the lab, as a detailed load quantification is 30 

essential to better understand the biomechanical load-response pathways that occur in the field. 31 

  32 
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INTRODUCTION 33 

Optimal sports performance with minimal injury risk is largely determined by the training an athlete has been 34 

exposed to. Whilst sufficient training loads are required to achieve beneficial physical adaptations for enhanced 35 

performance in the form of improved fitness, excessive loading can introduce fatigue and is known to increase 36 

the risk of injury [1,2]. Training loads are, therefore, widely measured and monitored in football and other (team) 37 

sports, with the aim to better control training prescription and optimise load-response pathways. On the one hand 38 

there is a physiological load-response pathway, where the metabolic challenge to maintain powerful and 39 

prolonged skeletal muscle contractions triggers a broad range of biochemical responses in the body, primarily in 40 

the form of metabolic and cardiorespiratory adaptations [3,4]. On the other hand, there is a biomechanical load-41 

response pathway, where the mechanical challenges to withstand high forces repetitively applied to the 42 

musculoskeletal system triggers mechanobiological tissue responses of the muscles, tendons, ligaments, bones 43 

and articular cartilage [5–7]. There is a growing belief that monitoring the physiological and biomechanical 44 

loads separately can contribute to the holistic understanding of an athlete’s adaptive mechanisms that ultimately 45 

determine their physical fitness and performance outcomes [8]. However, in contrast to a considerable 46 

understanding of the physiological branch, the extent to which (team) sports imposes loads on the 47 

musculoskeletal system and triggers mechanobiological responses that make the tissues stronger or weaker are 48 

relatively under-investigated and not well understood. 49 

A major issue that limits the progress in understanding biomechanical load-response pathways, is that measuring 50 

in vivo biomechanical loads to the musculoskeletal system as a whole, to the various structures within it, and to 51 

the tissues making up those structures, remains very difficult or even impossible with the current technologies, 52 

especially in a field-based context. Our aim was therefore 1) to provide an overview of biomechanical load 53 

metrics at different levels, 2) to discuss current methods and challenges for measuring in vivo biomechanical 54 

loads, and 3) suggest future considerations and avenues to be explored to enhance field-based biomechanical 55 

load monitoring. 56 

TISSUE LOADS 57 

During training and match-play in football and other (team) sports, the different hard- and soft-tissues of the 58 

body are exposed to an array of forces. These forces cause mechanical tension within the tissues in the form of 59 

stresses and strains that, together with exercise-induced microdamage and metabolic stress, trigger remodelling 60 

and repair responses. Examples of such adaptations include alterations in muscle architecture [9,10], changes in 61 

tendon stiffness and structure [11–14], and increased bone mass and mineral density [15,16], which are generally 62 
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considered desirable characteristics for enhanced performance (e.g. higher force production, increased storage 63 

and return of elastic energy). Excessive exposure to stresses and strains on the other hand, can outpace repair 64 

mechanisms and cause an accumulation of micro-damage that weakens the tissues over time. This progressive 65 

weakening can ultimately lead to mechanical fatigue and tissue failure, such as muscle tears, tendon rupture or 66 

bone fractures [17,18]. The optimal loading thresholds of individual tissues depend on many factors, including 67 

tissue properties and loading history. In an ideal world one would thus want to quantify and monitor the 68 

accumulation of tissue-specific stresses and strains over time. 69 

From a mechanical perspective stress and strain can be defined as the force acting per unit surface area and the 70 

resulting relative tissue deformation, respectively. This direct relationship between force, stress and strain allows 71 

for in vitro experiments to be performed to investigate tissue adaptative or failure responses to predefined 72 

biomechanical loads [19,20]. Such experiments can provide a detailed insight into tissue behaviour under 73 

specific loading conditions, but require highly controlled laboratory setups, homogeneous tissue specimens and 74 

strictly constant or repetitive loading patterns. As an alternative, advanced computational modelling approaches 75 

(e.g. finite element analysis) can be used to accurately predict stress and strain distributions throughout tissues in 76 

silico, and investigate their response mechanisms under different mechanical and biological conditions [21,22]. 77 

However, there is extensive physiological, structural and morphological variability within musculoskeletal 78 

structures, and during sports movements tissues are exposed to highly varying non-uniform tensile, compressive 79 

and shear forces. This makes it difficult to translate findings from controlled in vitro and/or in silico studies to 80 

the field, beyond understanding the expected stress-related deformations and stress tolerances of individual 81 

tissues. Although biomechanical responses to training loads are thus known to take place at a tissue level, the 82 

quantification of tissue-specific loads is primarily restricted to laboratory environments only (Figure 1). 83 

--------------------------------------------------------------------------------------------------------------------------- 84 

Figure 1 around here 85 

--------------------------------------------------------------------------------------------------------------------------- 86 

STRUCTURAL LOADS 87 

Much research has investigated loads experienced by the musculoskeletal system at a structural level. Individual 88 

organs (e.g. muscles, tendons, ligaments, bones) or a combination thereof (e.g. joints, segments, limbs) form 89 

structures on which forces and moments act. These structural loads thus describe the combination of stresses and 90 

strains working on the individual tissues comprised by the structure. Net moments about the knee joint structure 91 
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for example, can be used as an indicator of loading magnitude and injury risk of the anterior cruciate ligament 92 

[23,24]. Likewise, measures of joint or leg stiffness, which is the resistance of a structure to withstand the forces 93 

acting on it, have been demonstrated to be sensitive to training status [25], running speed [26] and exercise-94 

induced fatigue [27,28] (see [29] for an extensive discussion of the use of stiffness measures in sports). 95 

Quantifying structure-specific loading parameters can thus be informative for evaluating the risk of injury or 96 

biomechanical adaptations to training.  97 

To indirectly estimate the in vivo loads acting on individual structures, including bone and muscle-tendon forces, 98 

and joint moments, reaction forces and stiffness parameters, musculoskeletal modelling techniques can be used 99 

[30,31]. Although such approaches are traditionally laborious and time consuming, recent advancements have 100 

shown the potential for real-time analysis of joint forces and moments, as well as muscle-tendon forces [32–35]. 101 

The downside of these methods however, is that they are strongly dependent on kinematic (motion-capture 102 

systems), kinetic (force platforms) and/or neuromuscular (electromyography) input, the combination of which is 103 

yet largely restricted to laboratories. Several studies have, therefore, aimed to directly measure the in vivo 104 

structure-specific loads. Surgically implanted force transducers or strain gauges may, for example, be used to 105 

measure muscle-tendon forces [36–38] or bone strains [39] for walking, running and jumping activities, but their 106 

invasive and temporary nature makes the use of implants unsuitable for large-scale human experiments, let alone 107 

day-to-day load monitoring in the field. Very recently, a wearable tensiometer device has shown promising 108 

results for non-invasively assessing mechanical properties and loading of superficial tendons [40], and could be a 109 

first step towards the direct and field-based measurement of structure-specific loads. The difficulty of directly 110 

measuring structural forces has also led to the exploration of various indicators (or surrogate measures) of 111 

structural load. Tibial accelerations measured from shank-mounted accelerometers for example, have been 112 

suggested to provide a valid, reliable and simple field-based indicator of tibial loading [41–43], but it remains 113 

uncertain if tibial accelerations are related to the actual forces, stresses and strains experienced by the bone [44]. 114 

In short therefore, despite the availability of several techniques to quantify structural loads directly or indirectly, 115 

their application is still primarily bound to a lab context (Figure 1). 116 

WHOLE-BODY LOADS 117 

Besides internal stresses and strains that are experienced by specific tissues and/or structures, the body as a 118 

whole is exposed to external forces. These external loads are primarily caused by interactions with other athletes 119 

(e.g. during tackling), equipment (e.g. kicking or hitting a ball) or the ground. Ground reaction forces (GRFs) 120 

following from foot-ground interactions especially, both drive and are affected by muscular actions, and 121 
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contribute to impact forces experienced by individual structures. GRFs thus describe the biomechanical loading 122 

experienced by the musculoskeletal system as a whole and have been investigated extensively for their potential 123 

association with running performance features [45–47] or specific overuse related pathologies [48–50]. Such 124 

relationships remain ambiguous though [48,50] and GRF may even be a poor predictor of the loads experienced 125 

at a structural level [20,49].  126 

Whilst GRF alone unlikely suffices as a source of information for the prevention or treatment of particular 127 

tissue- or structure-specific pathologies, GRF can still provide a generic indicator of cumulative loading of the 128 

musculoskeletal system as a whole. In contrast to tissue- and structure-specific loads, GRFs can be measured 129 

relatively easily and non-invasively from force platforms. Unfortunately, force platforms are not suitable for 130 

sport-specific training and competition environments, and different approaches have been explored to estimate 131 

GRF from wearable devices in the field. Probably the most intuitive method is by using instrumented insoles, 132 

which are typically worn in or under the shoe and provide a summed measure of the pressure that the foot exerts 133 

on the ground [51]. Although pressure insoles can estimate GRF for running and jumping fairly well [52–56], 134 

their compromised accuracy for high-intensity movements [52,54–56] and practical limitations (e.g. movement 135 

restrictions, added mass in the shoe, discomfort) [51], leaves the feasibility of using insoles for monitoring GRF 136 

on a large-scale in the field currently still questionable.  137 

Based on the relationship between force and acceleration according to Newton’s second law (F=m·a), segmental 138 

movements may be used to indirectly estimate GRF [57–59]. Currently popular body-worn accelerometers have, 139 

therefore, received special attention for their potential to measure GRF in this manner [41,60–65]. Several 140 

studies have, however, demonstrated that either whole GRF waveforms [60–62], or even specific GRF features 141 

[41,61,63], cannot be estimated well from individual trunk-, pelvis- or shank-mounted accelerometers. In fact, 142 

the majority of segmental accelerations are likely required to accurately estimate GRF [57,58], making the use of 143 

one or even a combination of several accelerometer units to predict GRF probably insufficient. 144 

Besides GRF, other accelerometry-based metrics have been suggested to assess whole-body loading, including 145 

vertical stiffness [66–68] and cumulative acceleration metrics [69–74]. Vertical stiffness is assumed to represent 146 

the whole-body response to the dynamic external forces and may be used to assess neuromuscular fatigue and 147 

performance after different types of training [67,68]. Likewise, cumulative acceleration metrics (e.g. 148 

PlayerLoadTM, New Body Load, Dynamic Stress Load, Force Load [69–74]) are thought to provide an indication 149 

of the accumulated external impacts the body is exposed to. However, the premise underpinning these metrics 150 
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that accelerations of individual segments appropriately represent the whole-body acceleration is probably not 151 

valid [60], while evidence for a relationship with loads acting on a structural or tissue level is yet lacking. As 152 

such, if associations between any of these metrics and performance improvements or increased injury risk are 153 

observed, this does not provide an explanation for the underlying mechanisms of such associations. In other 154 

words, although GRF, stiffness or accelerometry-derived metrics offer field-based methods to quantify whole-155 

body loading (Figure 1), their relevance and intrinsic value for assessing load-response pathways at a structural 156 

or tissue level remains to be determined. 157 

FROM LAB TO FIELD 158 

A big hurdle for translating research into the biomechanical load-response pathways from the lab to the field is 159 

the difficulty of quantifying biomechanical loads. This is primarily due to the lack of means to accurately 160 

measure biomechanical information in an athlete’s natural training and/or competition environment (e.g. a 161 

football pitch). Recent developments have, however, demonstrated that such information might become more 162 

easily available in applied sport settings in the near future. For example, full-body wireless inertial sensor suits 163 

have been shown to be a reliable and valid method to simultaneously measure kinematic information of all body 164 

segments outside the laboratory (e.g. Xsens MVN [75]), and can already provide GRF and joint moment 165 

estimates during stereotypical activities such as walking [76,77]. To overcome discomfort and movement 166 

restriction issues associated with the use of multiple body-worn devices, markerless motion capture techniques 167 

are a non-invasive method for measuring different biomechanical variables in various sport environments [78–168 

83]. These techniques may in the future allow for load metrics to be estimated at different levels. If for example, 169 

information from body-worn sensors or markerless motion capture can be used to accurately estimate GRF 170 

[58,84], the combination of kinematics and GRF may eventually be used to estimate structure-specific loading 171 

and thus open the door to field-based measurements and monitoring of internal biomechanical loads. 172 

Given the often-limited availability of information in day-to-day football environments (as well as other applied 173 

sports settings), estimating biomechanical loads using conventional mechanical methods that attempt to directly 174 

measure load is not always possible. An imminent area in sports biomechanics that overcomes this issue is the 175 

use of advanced machine learning approaches to identify and/or predict biomechanical variables of interest [85]. 176 

For example, neural network methods have been used to predict GRF and moments [86,87] and joint forces [88] 177 

from body-worn inertial sensors for different running tasks. Although these studies show promising results, 178 

interpreting the underlying biomechanical mechanisms of the predicted variable can be difficult [85,89], which 179 

could limit their application for e.g. explaining adaptation criteria or injury mechanisms. If similar techniques 180 
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can be used to accurately predict tissue- or structure-specific forces however, this may enable large-scale and 181 

non-invasive internal load monitoring in the field. 182 

To effectively investigate and describe biomechanical load-response pathways in the field, the relevance of 183 

metrics used to quantify loads acting on the musculoskeletal system, as well as the outcome measures against 184 

which these loads are validated, should be considered. Popular body-worn sensor technologies especially, have 185 

opened the door for relatively easy measurements of several indicators of whole-body loading, but the applied 186 

researcher or practitioner should be reminded that their relationship with established tissue or structural load 187 

metrics, or their relevance in the context of the adaptive or injury mechanisms, has not been validated. For 188 

example, changes observed at a whole-body level (e.g. technique changes in a fatigued state) can be insightful 189 

when assessing generic whole-body adaptations to training but as yet, cannot be used to directly infer on load-190 

response pathways experienced by individual tissues or structures. Therefore, careful validation is required for 191 

such field-based metrics against measures of tissue and/or structural responses (e.g. from tissue biopsies or 192 

ultrasound scanning) to establish the relationships between available biomechanical load metrics and the 193 

adaptive or injury mechanisms occurring at internal levels. 194 

CONCLUSION 195 

Biomechanical load-response pathways can be explained at different levels of the musculoskeletal system. Due 196 

to the currently limited availability of field-based biomechanical load metrics, enhancing our understanding of 197 

what biomechanical load metrics can and cannot be used for is essential. Our hope is that through this paper, 198 

sport scientists and practitioners alike will revisit their views on the value and limitations of biomechanical load 199 

metrics at different levels. Moreover, we would like to encourage sport scientists and biomechanics researchers 200 

to keep pursuing ways to overcome the challenges of measuring these loads within and outside the lab, as a 201 

detailed quantification of biomechanical loads experienced during football and other (team) sports is essential to 202 

further understand the in vivo biomechanical load-response pathways and ultimately monitor them in the field. 203 

  204 
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FIGURE CAPTIONS 423 

 424 

Figure 1 Schematic overview of currently available biomechanical load metrics. The feasibility of measuring 425 

these metrics, ranging from strictly limited to the laboratory to viable in field environments, is indicated along 426 

the y-axis. The level at which loads act on the musculoskeletal system is indicated along the x-axis. The different 427 

hard- and soft-tissues affected by each load metric are shown in red (muscles), green (tendons and ligaments) 428 

and/or blue (bones and cartilage). Metrics to assess tissue- or structure-specific loads that are viable to be 429 

measured in the field are still lacking. 430 
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