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Abstract
Objective: To support future developments of field-based biomechanical load monitoring tools, this
study aimed to identify generalised segmental acceleration patterns and their contribution to ground

reaction forces (GRFs) across different running tasks.

Design: Exploratory experimental design.

Methods: A multivariate principal component analysis (PCA) was applied to a combination of
segmental acceleration data from all body segments for fifteen team-sport athletes performing
accelerated, decelerated and constant low-, moderate- and high-speed running, and 90° cutting trials.
Segmental acceleration profiles were then reconstructed from each principal component (PC) and used

to calculate their specific GRF contributions.

Results: The first PC explained 48.57% of the acceleration variability for all body segments and was
primarily related to the between-task differences in the overall magnitude of the GRF impulse.
Magnitude and timing of high-frequency acceleration and GRF features (i.e. impact related
characteristics) were primarily explained by the second PC (12.43%) and also revealed important
between-task differences. The most important GRF characteristics were explained by the first five

PCs, while PCs beyond that primarily contained small contributions to the overall GRF impulse.

Conclusions: These findings show that a multivariate PCA approach can reveal generalised
acceleration patterns and specific segmental contributions to GRF features, but their relative
importance for different running activities are task dependent. Using segmental acceleration to assess
whole-body biomechanical loading generically across various movements may thus require task

identification algorithms and/or advanced sensor or data fusion approaches.

Keywords: Biomechanical loading; Principal component analysis; Segmental contributions; Running;

Accelerations
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Practical Implications

A multivariate PCA approach can be used to simultaneously identify general segmental
coordination patterns and specific segment contributions to GRF across running tasks, but
segment contributions to GRF vary between different movements.

Caution should be practiced when using segmental acceleration signals to evaluate
biomechanical loads (e.g. from popular body-worn accelerometers), especially across different
tasks.

Segmental acceleration information likely requires task identification algorithms and/or
advanced sensor or data fusion approaches to assess whole-body biomechanical loading

generically across various running movements.
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Introduction

Although the physiological demands of sports have been monitored and investigated extensively in the
field, biomechanical loads are still poorly quantified and not well understood '. Ground reaction forces
(GRF) have, therefore, been suggested as a measure of external whole-body biomechanical loading,
which might be estimated from currently popular body-worn accelerometers 3. Estimating GRF from
single accelerometers is, however, not straightforward *¢. Whilst there might be the potential of using
full-body segmental accelerations to estimate GRF, reducing the number of segments to a number
more feasible in a practical setting has been shown to substantially increase the GRF error »7. These
findings collectively suggest that estimating whole GRF waveforms accurately from segmental
accelerations across different tasks is unlikely to be feasible. Since human running comprises a
complex combination of simultaneous segmental movements however, more complex analyses may
identify fundamental movement features that contribute to the GRF and could still be captured with

accelerometers.

Principal component analysis (PCA) is a technique that can be used to reduce the amount of redundant
information and extract key characteristics (e.g. magnitude, difference and phase shift operators ')
of highly-dimensional biomechanical data. For example, PCA has been used to analyse gait patterns

10°and postural control 12, differentiate between pathological groups '%13:14

, or quantify and evaluate
sports technique '*'7. Although applications of PCA in biomechanics have typically focussed on
waveform data for individual variables, multivariate PCA approaches allow for structures of
variability to be uncovered across multiple parameters at the same time %%!°, Given the complexity of
segment coordination and interdependency of segmental accelerations during human running, a
simultaneous analysis of multiple acceleration profiles is desirable to examine if generalised
acceleration patterns across various segments exist and are related to specific GRF features. A
multivariate PCA approach in which different variables (e.g. segments, tasks, time) are combined,

might help to uncover such acceleration patterns and related GRF features across different running

tasks, and reveal which specific segmental accelerations together influence changes in GRF profiles.
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It is unlikely that GRF can be predicted from one or several segmental accelerations using mechanical
methods >*°. However, these approaches typically use acceleration signals from predefined segments
deemed important for GRF but do not allow for an agnostic identification of generalised multi-
segmental contributions to the GRF. We hypothesised that if explicit GRF features are related to
generalised acceleration patterns across different running tasks, this could further inform the potential
for using segmental accelerations to assess whole-body biomechanical loads in running-based sports
(such as the choice of relevant segments or the feasibility to generalise across tasks). Therefore, this
study aimed to use a multivariate PCA approach to identify segmental acceleration patterns that
contribute to GRF features, to more comprehensively understand biomechanical loading and support

future developments of field-based biomechanical load monitoring tools.

Methods

Data. A previously described data set of full-body kinematics and GRF data for right foot
contacts of fifteen healthy team-sport athletes (12 males and 3 females, age 23+4 years, height 17849
cm, body mass 73+10 kg, sports participation 7+5 h per week) were used for this study 2. This study
was approved by the Liverpool John Moores University ethics committee and participants provided

written informed consent according to the ethics regulations.

Participants performed accelerated, decelerated, low- (2-3 m-s™') moderate- (4-5 m-s™') and high-speed
(>6 m-s! including maximal sprinting) running, and 90° cutting 2. Seventy-six marker trajectories
were measured from a three-dimensional motion capture system (Qualisys Inc., Gothenburg, Sweden),
while GRFs were measured from a force platform (Kistler Holding AG, Winterthur, Switzerland).
Kinematic and kinetic data were exported to Visual3D (C-motion, Germantown, MD, USA), which
was used to build a fifteen segment (head, trunk, pelvis, upper arms, forearms, hands, thighs, shanks
and feet) six-degree-of-freedom model 2. Centre of mass (CoM) accelerations for each segment were

calculated as the double differentiation of segmental CoM positions.

Normalisation and scaling. All fifteen segmental CoM acceleration and GRF waveforms in
the mediolateral (x), anteroposterior (y) and vertical (z) direction during ground contact were

normalised to 101 data points for each trial. Segmental accelerations were then expressed as

5
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acceleration vectors a for every time point t (equation 1) (note: vectors and matrices will be referred to

by using bold lowercase or capital letters respectively).

a(t) = [ax, (D), ay; (1), az; (1), ax, (1), ..., az45(0)] Eq.1

The combination of acceleration vectors for each trial thus formed a 101 X 45 acceleration matrix A,
Trial-specific acceleration matrices were then combined in participant- and task-specific matrices
AParttask by vertically stacking each trial matrix A" per participant and task. These combined
acceleration matrices AP435k wwere normalised and scaled to 1) assure that every participant equally
contributed to the variance of the total acceleration matrix, 2) reduce anthropometric differences
between participants, 3) preserve relative segmental acceleration amplitudes and 4) correctly represent
the portion of the total body mass of each segment '?. First, a participant- and task-specific mean
acceleration vector aParttask wag calculated and subtracted from each acceleration vector a (equation
2), to assure that the first PC described the direction of maximum variance in the segmental
acceleration data.

APTSI(1) = [ (ax, (1) — ax, PAEAsK), (ayy (1) — ay, Proask), ., (azy5 (1)

Eq.2
— azlspart,task)]

Matrix ASUPhtask’ thys represented the acceleration deviations from the participant’s mean segmental

acceleration for each task. Secondly, acceleration vectors for each participant were divided by the

mean Euclidean norm euc, ., P25k of all acceleration vectors (equation 3), to ensure that

participants equally contributed to the variance of the total acceleration matrix and to minimise

amplitude differences due to anthropometric differences 1%,

parttask’
Apart,taskll (t) — A (t) E q 3
eucnormpart,task

Thirdly, each acceleration vector was normalised for the relative segmental masses to further account
for anthropometric differences between segments. Acceleration vectors were multiplied by a weight

vector w (equation 4), which contained mass ratios of each segment relative to the total body mass ".
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Apart,tasklll(t) = w- Apart,taskl!(t) Eq.4
Finally, the participant- and task-specific acceleration matrices for each participant APATtask’”” yere
combined in one 48783 X45 (15 participants - 6 tasks - number of trials per task (483 in total) - 101

data points per trial) acceleration matrix A.

Principal component analysis. A PCA was performed on the normalised and combined
acceleration matrix A. The results included 1) eigenvector matrix EV consisting of 45 orthogonal
eigenvectors evy, (or ‘principal component vectors’) each indicating the largest acceleration variability
for all segments, 2) eigenvalue matrix A containing the eigenvalues Ax which quantified the amount of
variability described by each eigenvector evy, with a strict decrease in the amount of variability with
increasing k, and 3) time evolution coefficient matrix C (or ‘score matrix’) describing how the original
segmental acceleration data evolved along the new principal acceleration axes. C was calculated by
projecting each original normalised and scaled acceleration vector a onto each PCy of the eigenvector

matrix 2, according to equation 5.

c(t) = a(t) - evg Eq.5
Principal accelerations and principal GRF. Participant- and task-specific principal

parttask wore reconstructed for each individual PCy (equation 6) to

acceleration (PA) matrices PA
investigate how patterns of acceleration contribute to the GRF, or the sum of the first k PCs (equation
7) to examine the number of PCs required to adequately describe the whole GRF waveform. PCs were
expressed in the original segmental acceleration space by decomposing reconstructed acceleration

matrices into participant- and task-specific matrices, after which the normalisation and scaling steps

were retraced.

PAkPart,task(t) — gparttask eucnormpart,task w1, [Ck . evk]Pal‘t,task Eq.6
12,..,45 parttask
PAl_kpart,task(t) = gparttask 4 eucnormpart,task -w1. Z Ck . eV, Eq,7
k=1

Since the reconstructed PAs are consistent with the laws of Newtonian mechanics, the principal

segmental acceleration vectors pa can be used to calculate principal GRF (PGRF) profiles. PGRF was
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defined as the part of the overall GRF that is associated with the totality of all segment PAs combined.
Resultant PGRF curves were calculated as the sum of the product of each segmental mass and
principal CoM acceleration in the three directions, from each individual PCy (equation 8), or from the

sum of PAs reconstructed from the first k PCs (equation 9; Fig. 1).

2 2

15
+ (pan, -my) +g- BM) Eq. 8

15 2 15
PGRF = (Z (pak’“'x . mn)> + (Z (pak'n'y . mn)>
n=1

n=1

Z PGRFy-1c = Zk: { (i (Paknx - mn)>2 + (i (Pakn,y - mn)>2 + (i(pak,n,z ‘my) +g- BM>2]| Eq.9

pe=t |4 \n=1 n=1 n=1 |
In which k is the PC number, pa the principal segmental acceleration in x, y or z direction, m the
segmental mass, n the number of segments (n=15), g the gravitational acceleration (-9.81 m-s™!) and
BM the total body mass. Measured and calculated PGRF curves were normalised to each participant’s
body mass and accuracy evaluated as the curve root mean squared error (RMSE) relative to the

measured GRF.

Results

Visual screening of PC results revealed that distinct acceleration and GRF features were primarily
explained by the first five PCs, which explained 77.8% of all segmental acceleration variability across
participants and tasks. Each additional PC (i.e. k>5) explained <3% variance of the original
acceleration data and contributed <1% to the overall GRF. Therefore, only the first five PGRF and

> PGRF profiles (see Fig. 1 for an example), and associated PAs were used for further qualitative

analysis.

PC, explained 48.6% of the acceleration variability of all segments, which accounted for the majority
of the overall GRF impulse (Fig. 2; Table 1). The largest amplitude of PA; occurred between ~10-70%
of stance (Fig. A.1 and A.2) for decelerated and constant-speed running, but later during stance (~30-
90%) for accelerated running. PA; magnitudes were typically the lowest for 90° cutting and running at

slower speeds and the highest for the forearms and hands.
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Including PC; reduced > PGREF errors by 25.5% across tasks (Table 1). PC; primarily explained high-
frequency acceleration contributions to the GRF impact peak associated with landing (Fig. 2), for all

tasks except accelerations, and were primarily expressed in PA; profiles of the right thigh, shank and
foot (stance leg segments) and pelvis. In contrast to the other tasks, PGRF, features for accelerated

running occurred during the second half of stance (i.e. ~50-90%).

Segmental accelerations from PCs were associated with two GRF features for constant-speed running,
but not for the other tasks. PGRF3 contained small impact peak force components during early stance
(~20-30%), as well as a general contribution to GRF impulse during the second half of stance (Fig. 2).
Magnitudes for both GRF features increased with running speed and were primarily associated with

accelerations of leg and arm segments (Fig. A.2).

Compared to the first three PCs, PC4 and PCs contained considerably less segmental acceleration
variability and distinct GRF features (Table 1). For accelerated running, these PCs made constant (but
small) GRF contributions from ~10-80% (PGRF,) and ~0-50% (PGRF35) of stance (Fig. 2), while for
other movements, PA4 profiles were mainly associated with small GRF contributions during the first
~40% of stance. For high-speed running, PGRFs contained a considerable amount of GRF impulse,

but not for the other tasks.

Including more PCs (i.e. k>5) gradually increased the overall GRF and reduced } PGRF errors but
were not related to specific GRF features. To achieve ) PGRF errors within 10% of the mean RMSE
for GRF from all 45 PCs (i.e. the original data), a total of 18 (accelerations), 2 (decelerations), 15 (90°
cuts), 7 (low-speed running), 4 (moderate-speed running) and 18 (high-speed running) PCs were

required, respectively.

Discussion

Task-specific accelerations. The aim of this study was to identify key contributions of
generalised acceleration patterns and specific segments to the GRF. The three primary modes of
variation described by PCA; a magnitude operator, difference operator and phase shift 2%, were

evident in the first five PAs and PGRFs. First, segmental acceleration magnitude differences
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associated with GRF impulse (i.e. overall loading of the body) and the impact peak were captured by
PC, and PC; respectively. Substantial amplitude variability in PA and PGRF profiles between tasks
showed that the magnitude of these GRF characteristics was strongly dependent on task (Fig. 2).
Secondly, PCs and PCs highlighted difference operator features. For accelerated running for example,
the main contributions of PGRF3 and PGRF;5 to the overall GRF was during the first half of stance but
explained a much lower amount of force during push-off, while for constant-speed running this was
the other way around. Thirdly, clear phase shift characteristics were manifested in the first two PCs.
For example, the impulse peak (PGRF) and high-frequency acceleration and force features of PC;
appeared in the first ~10-40% of stance for decelerations, constant-speed running and cutting tasks,
but much later during stance for accelerated running. These results show that PCA can identify general
acceleration patterns underlying specific GRF profiles, as well as highlight the relative importance of

these features for different running tasks.

PC; primarily contained acceleration and force features related to the GRF impact peak, for all tasks
except accelerations. These force peaks were mostly explained by high PA, peaks of the support leg’s
foot, shank and thigh segment, and the pelvis to a lesser extent (Fig. A.1 and A.2). This supports
previous suggestions that the impact peak is primarily associated with stance leg accelerations 2%,
Moreover, despite the absence of visual impact peaks in GRF waveforms for non-rearfoot running
gaits (e.g. sprinting), force frequencies associated with these initial force peaks are still present 2425,
Clear impact force peaks were indeed found in PGRF; profiles for high-speed running, for which
runners typically switched to a forefoot landing technique (Fig. 2). The present PCA approach thus

further supports the presence of impact force peaks in non-rearfoot running, despite their visual

absence in the GRF waveform.

For accelerated running, PA; profiles of the support leg’s foot, shank and thigh segments were mainly
related to a force peak during the second half of stance (Fig. 2). In addition, the smoother impacts of
landing during accelerations were better explained by PCs and thus less important for the overall
biomechanical load on the body. This highlights the importance of force production when pushing off

the ground in acceleration movements, compared to other tasks in which braking (force) is emphasised

10
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more. Using PCA across multiple tasks can thus not only identify generic acceleration patterns, but

also explain their relative importance for different running movements.

The results of this study highlight that segment contributions to GRF are movement dependent. These
findings could explain why generalised methods to predict GRF from one or a few acceleration signals
cannot lead to accurate GRF estimates across different tasks >7. For example, a specific segment (or
combination of segments) might be suitable to estimate GRF profiles for sprinting, while the same
segments are not so suitable to describe the GRF for decelerated running. Therefore, one should be
cautious when using generic biomechanical models or approaches to estimate GRF and/or assess

external biomechanical loads from segmental accelerations across different running tasks.

Segment-specific accelerations. Trunk accelerometry is arguably the most commonly used
acceleration signal for assessing biomechanical loads in different sports 228, Although the trunk is
thought to be the main contributor to GRF 2!, trunk PA, profiles were very similar to other segments,
for all tasks (Fig. A.1 and A.2). Moreover, higher PCs (i.e. k>1) did not explain any considerable
additional trunk acceleration features. These findings thus suggest that the trunk’s large contributions
to GRF are primarily due to its large mass rather than the characteristics of its acceleration. The value
of using trunk accelerometry alone for biomechanical load monitoring purposes is thus probably

limited.

PAs of the forearm and hand segments typically had a high magnitude of acceleration (Fig. A.1 and
A.2) but did not make any distinct contribution to the specific GRF features in the first five PCs.
Furthermore, for decelerated and low- to moderate-speed running considerably less PCs were required
to achieve Y PGRF errors within 10% of the mean RMSEs from all 45 PCs. This is possibly caused by
the more profound and complex arm movements (explained by PCs beyond the first five) during
acceleration, cutting and sprinting movements. Therefore, although arm movements (but also swing
leg motion) are not the primary contributors to GRF, these segments do account for a considerable part
of overall GRF impulse. These findings highlight that all segments should be considered when
assessing whole-body loading, especially for sports in which dynamic and high-intensity tasks are

frequently performed.
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It should be acknowledged that directly measuring PAs (e.g. from multiple body-worn accelerometers)
may not be feasible in training and competition environments, making it difficult to translate the
present findings to a field-based load monitoring context. The multivariate PCA approach used in this
study could, however, uncover a deeper layer of complexity and highlight key characteristics in a
high-dimensional acceleration data set. This complexity adds to previous findings that reconstructing
GRF waveforms from less than all segments across different tasks is unlikely feasible 2. The PCA
allowed for different acceleration combinations and key features to be detected, which provides
practical insight for what sensors to include when using too many sensors is an issue in the field.
Regardless, the complexity of segmental contributions to GRF outlined in this study further
emphasises that estimating biomechanical loading from accelerations is not straightforward, especially
across different tasks. Therefore, using body-worn accelerometry to estimate whole-body
biomechanical loading across various movements likely requires task identification algorithms and/or

advanced sensor or data fusion approaches (e.g.?).

Limitations. The methods described in this study have several limitations. First, PCA was
deliberately performed on the combined segmental accelerations for multiple participants and tasks.
The results are thus a general representation of how segmental acceleration contribute to GRF, across
different running tasks. Unique loading or movement features for individual athletes or tasks may thus
not be highlighted and future research could consider task- and/or participant-specific PCA. Secondly,
using resultant accelerations and GRFs did not allow for identifying direction-specific acceleration and
GREF features. However, this study aimed to evaluate generic acceleration patterns related to overall
biomechanical load features. Moreover, body-worn accelerometers cannot typically distinguish
between global x-y-z directions and using resultant accelerations was deemed more feasible for
potential translations of our findings to a field-based load monitoring context. Thirdly, segmental
acceleration data were normalised by a weighting vector based on a standardised mass distribution '°.
Due to typical anthropometric differences between participants, defining and applying an

individualised mass distribution could affect the results. Although this was beyond the scope of this

study, future work could consider if personalised normalisation may be beneficial.
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Conclusions

This study aimed to identify general segmental acceleration patterns associated with GRF features that
might be used to assess whole-body biomechanical loads. Although a multivariate PCA could reveal
generic acceleration patterns and specific segmental contributions to GRF, the relative importance of
these features varied between tasks. Using segmental acceleration to assess whole-body biomechanical
loading generically across different movements thus likely requires task identification algorithms

and/or advanced sensor or data fusion approaches.
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Figure 1 Representative example of individual and summed ground reaction force (GRF) profiles

reconstructed from the first five principal components (PCs), for a single trial of running at a constant

moderate speed. Individual principal GRFs (PGRFs; grey dotted lines) were added together as the
summed PGRFs (3 PGRFs; grey solid lines) for the first k PCs and compared to the measured GRF

(black solid line) by the curve root mean square error (RMSE).
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Figure 2 Mean principal ground reaction forces (PGRFs) calculated from the first five principal
components (PCs), for each task. PGRFs were calculated from principal accelerations (PAs)
reconstructed from either the k™ PC (top row), or the sum of the first k PCs (3 PGRF,.x; middle row).
Root mean square errors (RMSE; bottom row) are mean errors for the > PGRF profiles and the

horizontal black line represents the RMSE for > PGRFs from all 45 PCs (i.e. the original data).
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Table 1 Principal components and ground reaction forces for the different tasks

Principal components (k)

1 2 3 4 5 45
M (%) 48.57 1243 856 444  3.78 0
Cumulative A (%) 48.57 60.99 69.55 73.99 7777 100

YPGRF RMSE (N-kg™)

446 537 509 493 388 2.89
1.3 1.5 15  £15  £12 0.7

10.69 6.18 6.44  6.11 588  5.97
3.1 £23 24 £22 +2 +1.8

511 377 379 365 3.61 2.66
+13 09 09 08 07 0.7

Accelerations (n=80)
Decelerations (n=83)

90° Cuts (n=88)

Constant speed running

253 189 193 192  1.87 1.65
0.5 04 05 05 05 04

374 270 282 272 266 251
1.1 0.8 09 08 0.7 0.6

567 414 503 471 484 434
+2 1.2 +12 £12 £11 £13

538 401 417 400 378 3.33
+3.1 +2 2.1 19 1.8 <£1.38

Low (2-3 m-s’'; n=81)
Moderate (4-5 m's!; n=80)
High (>6 m's™'; n=71)

All tasks (n=483)

Summed principal ground reaction force (3. PGRF) error results from the first k
principal components (PCs), as well as all 45 PCs (i.e. original data). Eigenvalues Ak
represent the normalised amount of segmental acceleration variance explained by
each PCy. Root mean square errors (RMSE) are mean + standard deviation values per
PC for each task.
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405  Appendix A: Principal segmental accelerations
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407 Figure A.1 Principal accelerations (PAs) from the first five principal components (rows) for
. . ° . .
408 accelerations (blue), decelerations (red) and 90° cuts (green) during a right leg contact phase. PA

409  profiles are mean + standard deviation (shaded) curves from 0-100% of stance, for all fifteen segments

410 (columns).

411
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Low-speed running
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Moderate-speed running
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High-speed running
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414 Figure A.2 Principal accelerations (PAs) from the first five principal components (rows) for running

415 at constant low (light grey), moderate (grey) and high speeds (black) during a right leg contact phase.
416 PA profiles are mean + standard deviation (shaded) curves from 0-100% of stance, for all fifteen

417 segments (columns).
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