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Review

Mathematical Modelling of Endocrine
Systems

Eder Zavala ,1,2,3,4,* Kyle C.A. Wedgwood ,1,2,3,4 Margaritis Voliotis ,1,2,3,4 Joël Tabak ,5

Francesca Spiga ,6 Stafford L. Lightman ,2,6 and Krasimira Tsaneva-Atanasova ,1,2,3,4

Hormone rhythms are ubiquitous and essential to sustain normal physiological
functions. Combined mathematical modelling and experimental approaches
have shown that these rhythms result from regulatory processes occurring at
multiple levels of organisation and require continuous dynamic equilibration,
particularly in response to stimuli. We review how such an interdisciplinary
approach has been successfully applied to unravel complex regulatory mech-
anisms in the metabolic, stress, and reproductive axes. We discuss how this
strategy is likely to be instrumental for making progress in emerging areas such
as chronobiology and network physiology. Ultimately, we envisage that the
insight provided by mathematical models could lead to novel experimental
tools able to continuously adapt parameters to gradual physiological changes
and the design of clinical interventions to restore normal endocrine function.

Understanding the Complexity of Endocrine Regulation Demands an
Interdisciplinary Approach
Endocrine axes are the perfect example of complex physiological regulatory systems involving
multiple levels of organisation (e.g., central nervous system, secretory glands, tissues, cells,
hormones) and timescales [e.g., monthly rhythms, circadian (see Glossary) oscillations, ultra-
dian fluctuations, fast responses]. These systems typically exhibit nonlinear responses, pos-
sessmultiple componentswith several feedback loops, and are involved in crosstalk interactions
witheachotherandotherbodysystems (e.g., the immuneandnervoussystems, thedigestiveand
reproductive apparatus). Endocrine axes are also highly dynamic, with hormone levels exhibiting
complex temporal behaviour over short and long timescales that combines sensitivity with
robustness, which allows adaptability to physiological challenges. More importantly, dysregu-
lation of these dynamic processes (particularly when it is irreversible) can lead to disease.

Since the seminal work by Norbert Wiener in themid-20th century, mathematical modelling has
helped physiologists to understand how concepts such as negative feedback are key to
homeostasis. In endocrinology, new mechanisms of dynamic active regulation have been
uncovered to explain the ability to anticipate events and to quickly react to stimuli. Instead of
stabilising set points within a certain range, endocrine axes generally control dynamic phe-
nomena (e.g., hormone rhythms, neuron firing, body temperature). Notably, the efforts to
uncover the regulatory mechanisms that sustain [342_TD$DIFF]this ‘homeodynamics’, their robustness in the
face of disturbances, their plasticity to adapt to new dynamic regimes (allostasis), and their
disruption during disease have largely benefited from mathematics. Some of these benefits
have been already described in several reviews. The review in [1] covers general principles of
modelling in neuroendocrinology using the growth hormone system as an example, while a
recent review by the same authors addresses the contributions of modelling to hypothalamic–
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pituitary neurosecretory systems [2]. The review in [3] describes in detail several mathematical
modelling tools such as types of equations, analysis of their dynamic behaviour (e.g., bist-
ability, oscillations), and approaches to deal with biological noise and systems with multiple
timescales in view of applications in endocrinology. This demonstrates a growing interest in the
use of quantitative tools andmethods to investigate complex hormone dynamics, particularly in
relation to stress, reproduction, and metabolism [4–9]. However, an increased appreciation of
the insight that mathematical modelling can bring to experimental research could better inform
the design of novel interdisciplinary approaches aimed at untangling the complexity of endo-
crine regulation.

In this review, we show how combiningmathematical models with the appropriate experimental
set up amounts to the best tool available to understand this complexity. Through examples
from the metabolic, stress, and reproductive axes, we illustrate howmodels can provide insight
on dynamic hormone regulation spanning several spatiotemporal scales and the key role that
these quantitative models could play in the advancement of chronomedicine. Rather than
present the vast and diverse array of mathematical models used in endocrinology, which we
feel may be overwhelming, we choose instead to demonstrate how models have been used to
answer specific questions. We also discuss an example of a new class of hybrid approaches:
the dynamic clamp in electrophysiology, where real-time integration of mathematical modelling
with experimental techniques can be used to understand the behaviour of secretory cells.
Lastly, through a discussion of open research questions at the intersections between the
metabolic, stress, and reproductive axes, we give a perspective of the field and how experi-
mental and clinical research can benefit from mathematical modelling approaches.

The Metabolic Axis: From Mechanisms of Secretion to Beta Cell
Coordination and Beyond
Given its strong association with diabetes, insulin secretion by pancreatic beta cells (Figure 1)
has been the subject of intense study for almost a century [10]. The primary secretory
pathway of glucose-stimulated insulin secretion is associated with complex patterns of
electrical activity across the plasma membrane, which allow Ca2+ [340_TD$DIFF] ions to enter the cell
and trigger the secretory machinery. This electrical activity is coupled to cell metabolism,
which acts as a glucose sensor by raising the intracellular ATP:ADP ratio, causing KATP

channels to close, depolarising the membrane and driving it towards its threshold for action
potential initiation [11]. Mathematical models provide an ideal framework to investigate the
complex interaction between metabolic and electrical pathways in beta cells over the diverse
timescales at which these processes occur.

The majority of mathematical models of beta cell behaviour are based on the Chay–Keizer
model [12]. This model, which describes electrical activity and Ca2+ dynamics, has subse-
quently undergone a plethora of modifications, including those to incorporate glycolytic and
mitochondrial components. The primary goal of these models is to elucidate the mechanisms
giving rise to pulsatile insulin secretion with amean period of�5 min observed in rodents, dogs,
and humans [13,14]. To this end, many models consider oscillations in Ca2+ and metabolic
activity under the assumption that one of these essentially sets the overall period of the pulses
([15] and references therein). However, the development and subsequent analysis of the dual-
oscillator model [16] highlighted that these twomechanismsmay actually work cooperatively to
generate rhythmic insulin secretion (i.e., that Ca2+ and glycolytic activity can oscillate indepen-
dently of one another but together give rise to oscillations on the timescale typically observed in
experiments). This model has thus been an invaluable tool for studying the interactions of these
processes and highlights the importance of understanding the timescales over which they
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Glossary
Allostasis: the adaptive processes
by which a physiological regulatory
system re-establishes homeostasis
(typically with increased fragility) to
compensate for physiological
disruptions.
Bistability: the coexistence of two
stable equilibrium states that, under
certain conditions, may be observed
in a dynamical system.
Chronomedicine: a novel approach
to medicine that focuses on
understanding the natural rhythms of
the body for the prevention,
diagnosis, and treatment of diseases.
Associated terms are
chronodisruption (when the timing of
perturbations is key to the disruption
of a physiological rhythm),
chronotherapy (when the timing of
treatment is key to restoring health),
and chronobiology (when referring to
rhythms not exclusive to humans).
Circadian: a biological rhythm
displaying an oscillation period of
about 24 hours.
Insulin resistance: a decrease in
the sensitivity of target tissue to
insulin.
Nonlinear response: the response
of a regulatory system in which the
change of the output is not
proportional to the change in the
input.
Oestrous: refers to the onset of a
reproductive cycle in most mammals.
Relaxation oscillator: an oscillator
that achieves its rhythmicity from
repetitive cycles of accumulation and
discharge (e.g., electrical activity,
neurotransmitter concentration).
Robustness: the ability of a system
to preserve its dynamic behaviour
while coping with perturbations.
Sensitivity: the ability of a system to
respond rapidly (and/or with large
excursions) to stimuli.
Syncytium: the conceptualization of
a cohort of multiple cells exhibiting
such a degree of interconnectedness
and synchronised behaviour that they
may be understood as if they were a
single cell (e.g., multinucleate cell).
Ultradian: a biological rhythm
displaying an oscillation period of
less than 24 hours..
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occur [15,17]. The dual-oscillator model has since beenmodified to incorporate Ca2+ feedback
to glycolytic activity. This improved integrated oscillator model [15,18] further highlights that
neither oscillations in Ca2+ nor metabolism establish the overall rhythmicity in beta cells by
themselves [19,20] and exemplifies how models can be developed in light of new experimental
evidence.

One of the striking features of beta cells is that within islets they exhibit tight synchronisation of
regular oscillations in electrical activity, while isolated cells oscillate irregularly ([21] and refer-
ences therein). This phenomenon has beenmathematically modelled by considering the islet as
a network of beta cells. Under the heterogeneity hypothesis [22], variability in individual cells is
‘smoothed’ by intercellular interactions so that the network may be thought of as the average of
the cells in it. This has led to the idea that islets are essentially a syncytium, with no single cell
dictating the overall network response. However, this notion has been challenged by novel
optogenetic experiments that show that silencing the activity of a single (specific) cell can
disrupt electrical rhythms across the entire islet [23]. The presence of these so-called hub cells
can be understood through the application of computational graph theory to the islet. Graph
theoretic models place importance on the presence and nature of interactions within islets
rather than the dynamics of individual beta cells [24]. Such models emphasise the dependency
of these interactions on the extracellular concentrations of glucose [25] and that heterogeneous
coupling could give rise to networks supporting hub cells [26], features that would be difficult to
understand without an underlying model. Despite the success of using graph theory in this
system, there is currently no experimental [344_TD$DIFF]nor mathematical model that explains the results
from the hub cell silencing experiment, but it is likely that combining the two approaches will be
necessary to do so.

Alongside secretory deficiencies, insulin resistance is one of the primary mechanisms
associated with the development of type 2 diabetes [27]. To investigate this, a recent
phenomenological model [28] describes whole-body responses to insulin resistance including
upregulation of beta cell function on short and medium timescales and changes to beta cell
mass over longer timescales. Importantly, the model predicts the effect of temporary weight
gain and loss as well as medical procedures such as gastric bypass surgery. The study
introduces the notion of a threshold for decreases in insulin sensitivity: small decreases can
be compensated for effectively whereas larger decreases cannot. In particular, the model
highlights how feedback mechanisms to counter insulin resistance can contribute to the
development of diabetes once the threshold has been crossed. The related concept of
personal fat thresholds [29] is already being used to develop diet plans for diabetic patients;
mathematical modelling has the potential to further support such interventions. Critically,
analysis of the mechanisms in the model that establish the threshold explain why preventing
diabetes is significantly easier than reversing it, exemplifying how models can be used not only
to design therapeutic interventions [345_TD$DIFF](see Box 1 for an example), but also to direct public policy.

Figure 1. The Metabolic Axis. Regulation of blood plasma glucose levels is achieved primarily through the com-
plementary actions of the hormones insulin, glucagon, and somatostatin. Insulin promotes the absorption of glucose from
the blood by the liver and peripheral tissues, thus lowering the blood glucose concentration. In these tissues, glucose is
then converted to glycogen or fat and subsequently stored. Glucagon plays the opposite role to insulin, encouraging
tissues to transform these substrates back into glucose for secretion into the bloodstream. Somatostatin inhibits the
secretion of insulin and glucagon by, respectively, beta and alpha cells, both of which reside in multicellular structures
known as the islets of Langerhans, which are located in the pancreas. Mathematical models of beta cell behaviour typically
account for the electrical activity originating from ion channels involved in insulin secretion. Recent models have also
accounted for beta cell metabolism, including, for example, the glycolytic activity and mitochondrial components shown in
the ‘dual-oscillator model’ (see text).
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The Hypothalamic–Pituitary–Adrenal (HPA) Axis: A Choreography between
Hormone Rhythms and the Stress Response
The body’s response to stress is mediated by several hormones, a crucial one being cortisol.
Cortisol belongs to a group of glucocorticoid steroid hormones with a broad spectrum of
context-dependent effects. Because they are rapidly secreted in response to physical and
psychological stressors, they are commonly known as stress hormones. In the clinic, synthetic
glucocorticoid hormones are widely prescribed for their anti-inflammatory effects as well as in
hormone replacement therapy [42]. The circulating levels of glucocorticoids – cortisol in
humans, corticosterone in rodents (CORT) – are dynamically controlled by the activity of
the hypothalamic–pituitary–adrenal (HPA) axis (Figure 2), which is characterised by the rhythmic
secretion of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) from the
paraventricular nucleus of the hypothalamus (PVN), adrenocorticotropic hormone (ACTH) from
the pituitary, and CORT from the adrenal glands. Despite cumulative evidence showing the
importance of CORT rhythms for immunological, cognitive, reproductive, and metabolic
functions [42,43], little attention has been paid to developing the dynamic aspects of gluco-
corticoid drug therapies. From a theoretical point of view, understanding how the HPA axis
sustains rhythmic activity while simultaneously eliciting fast, transient, and proportionate
responses to stressors constitutes a major challenge.

One of the key steps in understanding the dynamic activity of the HPA axis relates to the causal
relationship between ACTH and CORT secretion. A pioneering mathematical model addressed
this challenge by accounting for several steps of the signalling pathway: the activation of a
putative ACTH receptor in the membrane of adrenocortical steroidogenic cells, its relay via
cAMP in the cytosol, the mitochondrial import of cholesterol (the substrate for CORT biosyn-
thesis), and the synthesis and secretion of CORT [44]. Themodel was fitted to adrenal secretory
rates of cortisol and blood ACTH concentrations measured in dogs subjected to intravenous
infusions of ACTH. Importantly, this model predicted changes in adrenal sensitivity between
small versus large pulses of ACTH, a phenomenon that has been further identified and
investigated in other mammals. Subsequent models considered the feedback loops that
glucocorticoids exert at the level of the pituitary and hypothalamus [45,46]. These models
offered qualitative predictions of feedback-generated ultradian oscillations in CORT levels and
suggested possible ways to include circadian modulation. In this sense, [45] showed that
coupling this feedback mechanism with a central nervous system-driven pulse generator
enables both ultradian and circadian variability in hormone secretion. These early models also

Box 1. The Artificial Pancreas

The ultimate aim of treatment in diabetes is to achieve glycaemic control; that is, to keep blood glucose concentrations
within a certain band [30]. For individuals with type 1 diabetes, whose islets have an impaired ability to secrete insulin
owing to the autoimmune destruction of their beta cells, exogenous insulin is typically administered preceding
mealtimes in anticipation of spikes in blood glucose levels. Currently, the dose of insulin to be administered is predicted
by estimation of the carbohydrate content of the proposed meal [31]. In addition, these individuals must monitor their
glucose levels throughout the day using glucometers to prevent them [338_TD$DIFF]from entering either hypo or hyperglycaemia.
Developments in technology such as continuous glucosemonitors and dose-adjusted insulin pumps offer the possibility
of closed-loop control over blood glucose levels via their integration into an artificial pancreas [32,33]. Early tests of the
artificial pancreas have been promising [34–37] and the prospect of using mathematical models to understand the
dynamics and feedback between glucose, insulin, glucagon, and other hormonal systems offers a powerful tool to
support biomedical engineering advances. Importantly, mathematical models can expose inherent timescales in
biological systems, the understanding of which [339_TD$DIFF]is crucial for effective control. To this end, mathematical models of
blood glucose–insulin dynamics can be used to design control that is predictive as well as reactive to blood glucose
variations in post-prandial and fasting periods [38–40]. The possibility of further development of control methods using
Kalman filters opens avenues for the tailoring of parameters of the underlying models to the individual, with an ultimate
aim of achieving a personalised treatment plan [41].
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The Hypothalamic–Pituitary–Adrenal (HPA) Axis. Endogenous glucocorticoids (CORT) are vital hormones
involved in many physiological processes that are key to homeostasis and survival (e.g., mediating the stress response,
anti-inflammatory and immunosuppressive effects, regulation of glucose expenditure). The circulating levels of CORT are
controlled by the HPA axis. Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) stimulate the release of
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aimed at explaining specific physiopathological changes such as stress, infusion of synthetic
glucocorticoids, and adrenalectomy. Interestingly, the model in [46] also proposed a bistability
mechanism that would explain the allostatic transition of the HPA axis subjected to chronic
stress.

Although the models in [45,46] demonstrate the possibility of ultradian oscillations generated
through negative feedback, the predicted frequency of these oscillations significantly differs
from the near-hourly oscillations observed in humans. It was not until the work by Walker et al.
[47] that the mechanisms underlying ultradian oscillations were correctly predicted as origi-
nating from the negative feedback loops between the pituitary and adrenal glands, while the
hypothalamic drive provides the source of circadian modulation. This model predicted near-
hourly oscillations of ACTH andCORT secretion supported by in vivo data, even in the presence
of a constant hypothalamic CRH signal. Subsequent experiments confirmed this model
prediction [48,49], which demonstrated that a previously hypothesised hypothalamic ‘pulse
generator’ [50] is not essential to generate ultradian glucocorticoid oscillations [346_TD$DIFF].

While recent mathematical models of the HPA axis have focused on the role of glucocorticoid
dynamics in mental health [51,52], others have investigated the stress response, the role of
nuclear receptors, and inflammation [53–55]. Understanding how healthy adrenal glands
achieve rapid CORT secretion while simultaneously preventing their uncontrolled release in
response to stressors is key to explaining the dysregulation observed in endocrine disorders
such as Addison’s disease and Cushing’s syndrome (Box 2). In this direction, the work in [55]
combined experimental physiology and mathematical modelling to predict how surges of
ACTH may be decoded by the adrenal gland, hypothesising that the control mechanism
may comprise an intra-adrenal negative feedback loop mediated by the glucocorticoid recep-
tor. The organisation of the molecular mechanisms involved in such intra-adrenal regulation
was postulated in [54], distinguishing between slow genomic and fast non-genomic signalling
pathways. These mechanisms were mathematically modelled as a regulatory network that not
only predicted the transient dynamic responses observed during the stress response but
explained how the adrenal glands can decode ACTH pulses of different magnitudes, including
those observed during inflammation.

The Reproductive Axis: Uncovering the Mechanisms of GnRH Pulsatility
Hormone signals within the hypothalamic–pituitary–gonadal (HPG) axis (Figure 3) are critical for
reproduction, with a key regulatory process being the pulsatile release of gonadotropin-
releasing hormone (GnRH) from the hypothalamus onto the pituitary gland. Mathematical
models have provided insight into how GnRH pulsatility controls the synthesis and secretion
of gonadotropic hormones [[347_TD$DIFF]luteinizing hormone (LH) and follicle stimulating hormone (FSH)]
from the pituitary. Early experimental work on primates revealed the dependence of gonado-
tropin secretion on GnRH frequency by showing that pulsatile but not constant delivery of
exogenous GnRH can restore gonadotropin secretion in animals with hypothalamic lesions
[58]. It is now clear that gonadotropin secretion is suppressed when the GnRH frequency is

adrenocorticotropic hormone (ACTH) from the pituitary. ACTH in turn stimulates the adrenal glands to synthesise CORT,
which further regulates its own synthesis through an intra-adrenal feedback loop. Within the HPA axis, CORT acts to inhibit
ACTH in the pituitary as well as CRH and AVP in the hypothalamus, creating a dual negative-feedback loop. Combined
mathematical and experimental studies have demonstrated that the tightly coordinated release of ACTH and CORT in
ultradian pulses, observed under normal physiological conditions, is governed by this negative feedback [47]. These pulses
have been shown to play an important role in the optimal responsiveness of glucocorticoid-sensitive neural processes.
However, under pathological conditions (e.g., inflammation, chronic stress, neurological dysfunction) or ageing these
pulsatile dynamics are altered and the tight synchrony between ACTH and CORT becomes significantly disrupted [54].
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either too high or too low, and this effect is mediated through complex signalling networks that
allow cells to regulate the synthesis of LH and FSH differentially in response to GnRH frequency
[59,60]. Several mathematical models related to GnRH signalling have been proposed [61] and
a mechanistic model of the pathway has shown that the nonlinear relationship between
gonadotropin secretion and GnRH pulse frequency is most likely due to the convergent
feed-forward architecture of the network [61,62]. The model suggests that frequency decoding
is primarily achieved due to the synergistic effect of multiple signalling pathways [348_TD$DIFF][e.g., the
extracellular signal regulated kinase (ERK) pathway and the nuclear factor of activated T cells
(NFAT) pathway] on the expression of gonadotropin-related genes. This contrasts with
upstream negative feedback interactions (e.g., due to agonist-induced receptor internalization)
that were previously thought to play a crucial role in frequency decoding. Instead, the model
shows that feedback plays a different role, allowing the pituitary system to cope with cell–cell
heterogeneity and process GnRH information more reliably [63].

At the level of the hypothalamus, a coarse-grained neuronal population model has advanced
our understanding of howGnRH pulsatility is sustained and regulated [64]. Themodel draws on
recent experimental work, which demonstrates the pivotal role of neuropeptide signalling within
the arcuate nucleus kisspeptin population for GnRH pulse generation [65,66]. The model
supports the idea that the kisspeptin population drives GnRH pulses by postulating that it
operates as a relaxation oscillator due to neuropeptidergic negative and positive feedback
interactions mediated by neurokinin B and dynorphin, respectively. Furthermore, the model
predicts that pulsatile dynamics depend on basal activity levels in the kisspeptin population and
highlights the tipping-point behaviour of the system as basal activity increases. Using opto-
genetics, these model predictions were confirmed in vivo, showing that pulses can be directly
controlled in oestrous mice by selectively exciting kisspeptin neurons in the arcuate nucleus
with continuous low-frequency (1 Hz and 5 Hz) light stimulation [64]. Thus, this is yet another
example of how even simple phenomenological models can lead to useful and experimentally
testable insights.

Mathematical modelling has also been employed to understand the macroscopic processes
involved in follicular development [67]. Although gonadotropins are known to control the
development of ovarian follicles and their secretory activity, little attention has been given to

Box 2. The Chronobiology of Stress in Health and Disease

An urgent need for mathematical modelling is emerging in the early diagnosis and treatment of steroid-related disorders.
The adrenal glands produce hormones that have important roles in the regulation of inflammation, metabolism, blood
pressure, fertility, and mental health. Levels of hormones normally fluctuate during the day and respond rapidly to
stressors (both physical and psychological). In all healthy individuals, fluctuations are organised rhythmically [8].
However, patients with certain endocrine conditions (e.g., Cushing’s, Addison’s, primary aldosteronism) experience
disruptions of this rhythmicity that deviate from the normal variability in healthy subjects. This is important since
diagnosis of these conditions is difficult with current clinical tools, which rely on single-time-point sampling from blood.
Consequently, diagnosis is often delayed, and this may result in inadequate or inappropriate treatment, which results in
further deterioration of the patient’s health and increased costs. By accounting for the intrinsic dynamic hourly-to-daily
characteristic of hormone rhythms, mathematical methods can achieve fast classification of pathological hormone
profiles versus normal physiological variability with quantified uncertainty. Furthermore, mechanistic modelling of the
active dynamic regulation of the stress response [55] can help in understanding the body’s expected demand for
cortisol in response to different ranges of stress during health and disease. This is particularly important for patients
requiring lifelong steroid replacement therapy, and recent research has demonstrated that patients using a novel
infusion method have their dynamic cortisol levels restored to normal [56,57]. However, it remains a challenge to design
an active control of hormone infusion that dynamically responds to everyday stressors. In this direction, computational
algorithms developed from mathematical models can assist the development of dynamic drug delivery devices. Similar
modelling approaches may have a natural application in chronotherapies such as timing the treatment of chronic
inflammatory diseases, stress-related fertility interventions, and the management of metabolic conditions.
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sex steroid secretion and how it feeds back to upstream components of the HPG axis
modulating GnRH and gonadotropin secretion. These feedback interactions underpin the
ovarian cycle and have a critical role in women’s physiology and reproductive health, thus
representing a unique opportunity for experimental physiologists, clinicians, and mathematical
modellers alike [68].
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Figure 3. The Hypothalamic–Pituitary–Gonadal (HPG) Axis. Reproduction is controlled by the HPG axis. Gona-
dotropin-releasing hormone (GnRH), secreted by GnRH neurons located at the hypothalamus, stimulate the release of
gonadotropin hormones [luteinizing hormone (LH) and follicle-stimulating hormone (FSH)] from the pituitary. The release of
gonadotropins critically depends on GnRH pulsatile dynamics that are driven by hypothalamic neuronal networks.
Gonadotropins act on the gonads, initiating processes involved in gametogenesis and ovulation and triggering the release
of sex steroids (oestradiol, testosterone, progesterone) that feedback on the brain and pituitary gland to modulate GnRH
and LH/FSH secretion dynamics. Mathematical models [64] have offered insight into how hypothalamic neurons coex-
pressing kisspeptin, neurokinin-B, and dynorphin control the pulsatile dynamics of GnRH secretion and how these
pulsatile signals are decoded by single cells at the pituitary gland.
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Hybrid Systems: A New Paradigm to Establish How the Parts Contribute to
the Whole
Like alpha and beta cells in the pancreas, the five endocrine cell types of the anterior pituitary
generate electrical activity in the form of spikes and bursts [69]. Electrical activity brings Ca2+[343_TD$DIFF] into
thecells through ion channels,which triggers hormonesecretion andstimulates vesicle refilling. In
the absence of hypothalamic signals, pituitary gonadotrophs fire sharp spikes at a slow rate,
releasing very little hormone. By contrast, lactotrophs and somatotrophs fire in bursts, which are
longer electrical events than spikes. Bursts provide more time for Ca2+ to enter cells, so
lactotrophs and somatotrophs have a high basal rate of hormone release [70]. While pituitary
cells havesimilar amountsofmost voltage-andCa2+-activatedchannels, theydiffer in theamount
of large-conductance potassium (BK) channels. Lactotrophs and somatotrophs have a high
density of BK channels, while gonadotrophs have very few [71]. This is paradoxical because BK
channels are repolarising channels (in neurons and other cell types). BK channels typically open
quickly during an action potential, reducing its duration. However, in pituitary cells like somato-
trophs and lactotrophs, BK channels seem to increase event duration, turning spikes into bursts.
This prompts the question of whether gonadotrophswould burst if they expressed BK channels.

A mathematical model predicted that assimilation of BK channels into gonadotroph electrical
activity can switch its firing dynamics from spiking to bursting. By opening quickly at the
beginning of an action potential, BK channels limit the activation of other, slower K+ channels,
which in turn prevents these channels from repolarising the cell [72]. Analysis of the model
suggests that this effect is robust to changes in the expression of other ion channels [73] but
leaves open the question of whether fast BK current activation promotes bursting in real cells.
This problem was elegantly solved through the dynamic clamp technique (Figure 4). Bursting
lactosomatotroph cells first had their BK channels blocked by a channel antagonist, resulting in
a switch from bursting to spiking in most cells. Then, a BK current calculated in real time from a
mathematical model was added back to the cells via a computer-assisted dynamic clamp. This
made the cells switch back to bursting and, importantly, it occurred only if the modelled BK
current was fast enough, demonstrating that the mechanism identified by the mathematical
model was correct. Finally, use of the dynamic clamp to add a model BK current into spiking
gonadotrophs made these cells switch to bursting, demonstrating that the difference between
electrical activity patterns in lactosomatotroph and gonadotroph cells could be explained by the
presence or absence of BK channels [73].

The dynamic clampwas instrumental in establishing the role of BK channels, by linking amodel-
based mathematical mechanism to real pituitary cells. It illustrates the power of hybrid systems
to combine experiments and modelling. Another elegant example of such a system was
developed by Dhumpa et al. [74] to show that islets of Langerhans can synchronise their
insulin secretion through feedback from the liver. To do so, they introduced islets loaded with a
fluorescent Ca2+ indicator into a microfluidic chamber and interfaced the global Ca2+ signal
from the islet population with a mathematical model of glucose release by the liver in response
to insulin. The modelled glucose level was then delivered back to the islet chamber. Without
liver feedback, the islets produced independent oscillations. As soon as the feedback was
turned on, however, the islets began to synchronise, as evidenced by the resulting global Ca2+

oscillation, out of phase with the resulting glucose oscillation. This demonstrated that the liver
might act as a coordinator of activity in the islet population and enabled testing of the
effectiveness of this coordination as the speed of the liver feedback was varied. Thus, hybrid
systems allow us to determine the role played by components of a biological system, by
controlling key parameters of such components, particularly the timescale on which they
operate.
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Concluding Remarks and Future Perspectives
The complexity of endocrine systems is evidenced by the number of molecular interactions
occurring at multiple levels of organisation that are necessary to achieve robust control of
hormone secretion. Strikingly, many endocrine axes exhibit the same control strategies to
regulate hormone levels within a homeostatic range: feedback loops, network organisation of
components, and collective behaviour that cannot be explained solely by investigating the
dynamics of individual cells. Here, we have reviewed recent examples from three major

Dynamic clamp

Patch clamp amplifier
(current clamp)

ICa(V)

K+

Ca2+ IK(V)

ISK(Ca)

Cell

K+

IBK

Pharmacological
block

K+

Digi�ser

IBK

Computer

Voltage
output

Mathema�cal
model

Current
input

IBK

V

Adding a modelled IBK switches gonadotroph 
ac�vity from spiking to burs�ng

Time

Vo
lta

ge

Control

+IBK

Figure 4. The Dynamic Clamp: A Real Time, Simultaneous Modelling and Experimental Hybrid System.
Traditionally, mathematical models have been integrated with experiments via an iterative process: predictions from
models are tested against results from appropriate experiments and the models are then updated to address any
discrepancies between the two. While this has been, and continues to be, a fruitful endeavour in many cases, hybrid
experiments allow the two to be brought together in a real time and interactive fashion. Hybrid systems enable us to
manipulate the values of key parameters with the freedom of a mathematical model. At the same time, the effects of these
manipulations are observed in real biological systems. One example of a hybrid system is the dynamic clamp protocol for
electrically excitable cells [87]. In this system, a mathematical model is used to provide a command signal to the cell from
which an electrical recording is being taken. Importantly, since the real-timemembrane potential of the cell can be provided
to the model, this can be used to inject signals that mimic ionic currents that may or may not be present in the real cell. In
this way, parameters associated with these currents can bemanipulated, or entirely different channels can be incorporated
into the cell. Recently, this method has been used to determine the role of large-conductance potassium (BK) channels in
shaping the electrical activity of pituitary cells (see text) [73].

Outstanding Questions
Hormone pulsatility in endocrine sys-
tems is ubiquitous, but whether this is
an optimal solution compared with
constitutive secretion needs to be
investigated. Is there an energetic
advantage in the reduced amount of
hormone needed for pulsatile
signalling?

Compared with constant hormone lev-
els, rhythmic hormone secretion con-
tains more information in the form of,
for example, amplitude and frequency.
How is this information encoded and
how do different tissues read the same
blood signalling message in different
ways?

Hormone rhythms are known to affect
gene expression at different timescales
and in a context-dependent way. At a
cellular level, how are chromatin
responses determined by the pattern
of nuclear receptor activation?

How does chronodisruption, espe-
cially between different local and cen-
tral pacemakers, cause disease?

Can our increased knowledge of hor-
mone dynamics be used in therapeu-
tics that improve patient care?
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endocrine axes where mathematical models have delivered insight about dynamic behaviour
that was difficult to interpret solely by looking at the experimental data. The relevance and
timeliness of usingmathematical tools to understand these control strategies is largely driven by
the urgency of understanding their dysregulation in reproductive, metabolic, and stress-related
conditions, including complex psycho-immunoneuroendocrine disorders [6,75–77].

Thekey roleofhormonedynamics inhealthanddiseasehassuggested future researchavenuesat
the interface of mathematical modelling and experimental neuroendocrinology. In this sense,
frequencyencodinganddecodingmechanismsunderlyingpulsatilehormonesecretion remainan
understudied area [77]. For instance, ultradian hormone stimulation is known to induce gluco-
corticoid receptor-mediated pulses of gene transcription [78], and there exists a growing realisa-
tion that understanding how the dynamics of glucocorticoid signalling affects gene regulation is
key to thedesignofeffectivechronotherapies [79,80].Thedevelopmentofsuchunderstandingwill
be likely to involve modelling the role of hormone pulsatility on continuous dynamic equilibration
and stochastic dynamic interactions at the level of DNA binding [75].

Another burgeoning area of research is the crosstalk interactions between endocrine axes. For
instance, hypercortisolism induced by chronic stress, Cushing’s syndrome, or medication is a
known risk factor for the development of diabetes. This has prompted investigations on the
links between glucocorticoid dynamics and insulin secretion and resistance [81–83]. Similarly, a
mathematical model linking the HPA and metabolic axes describes a way in which circadian
glucocorticoid oscillations regulate a transcriptional circuit underlying adipocyte differentiation
[84], suggesting mechanisms by which conditions that disrupt pulsatile glucocorticoid secre-
tion could lead to obesity. By contrast, insulin-induced hypoglycaemia is an acute stressor that
both significantly activates the HPA axis and inhibits pulsatile LH secretion in rats [85],
evidencing crosstalk interactions between the metabolic, stress, and reproductive axes.
Gender differences in endocrine regulation are also being investigated via mathematical
methods, as suggested by a model exploring the effects of testosterone on the HPA axis
response to stress [86].

While in most experimental research it is sufficient to ‘let data speak for itself’, existing
experimental protocols as applied to complex endocrine phenomena often struggle to combine
data at different levels of organisation. As a result, the mutual interactions between factors
underlying endocrine regulation and the different timescales at which they occur are often
ignored. This is where mathematical models offer a solution to interpret the data and gain
insight on the underlying dynamics. Moreover, models help us think beyond the limits of ‘what
we can do’ at the laboratory bench and start asking ‘what if’ questions. This not only stimulates
creative interdisciplinary collaborations but also advances the field by replacing a static,
snapshot view of endocrine function with one where complex, multiscale regulation underpins
hormone dynamics [350_TD$DIFF](see Outstanding Questions).
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