
 
 

University of Birmingham

A complete dichotomy for complex-valued holantc
Backens, Miriam

DOI:
10.4230/LIPIcs.ICALP.2018.12

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Backens, M 2018, A complete dichotomy for complex-valued holant

c
. in C Kaklamanis, D Marx, I

Chatzigiannakis & D Sannella (eds), 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018., 12, Leibniz International Proceedings in Informatics, LIPIcs, vol. 107, Schloss Dagstuhl, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic,
9/07/18. https://doi.org/10.4230/LIPIcs.ICALP.2018.12

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.4230/LIPIcs.ICALP.2018.12
https://doi.org/10.4230/LIPIcs.ICALP.2018.12
https://birmingham.elsevierpure.com/en/publications/659719c2-bb9b-499c-be38-cdf665add366


A Complete Dichotomy for Complex-Valued
Holantc

Miriam Backens1

Department of Computer Science, University of Oxford, UK
miriam.backens@cs.ox.ac.uk

Abstract
Holant problems are a family of counting problems on graphs, parametrised by sets of complex-
valued functions of Boolean inputs. Holantc denotes a subfamily of those problems, where any
function set considered must contain the two unary functions pinning inputs to values 0 or 1.
The complexity classification of Holant problems usually takes the form of dichotomy theorems,
showing that for any set of functions in the family, the problem is either #P-hard or it can be
solved in polynomial time. Previous such results include a dichotomy for real-valued Holantc
and one for Holantc with complex symmetric functions, i.e. functions which only depend on
the Hamming weight of the input.

Here, we derive a dichotomy theorem for Holantc with complex-valued, not necessarily
symmetric functions. The tractable cases are the complex-valued generalisations of the tractable
cases of the real-valued Holantc dichotomy. The proof uses results from quantum information
theory, particularly about entanglement. This full dichotomy for Holantc answers a question
that has been open for almost a decade.
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1 Introduction

Holant problems are a framework for the analysis of counting problems defined on graphs.
They encompass and generalise other counting complexity frameworks like counting constraint
satisfaction problems (#CSP) [9, 10] and counting graph homomorphisms [10, 4].

A Holant instance is defined by assigning a function from a specified set to each vertex
of a graph, with the edges incident on that vertex corresponding to inputs of the function.
The counting problem is a sum-of-products computation: multiplying all the function values

1 The research leading to these results has received funding from EPSRC via grant EP/L021005/1 and
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may be made of the information contained therein. No new data were created during this study. The
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and then summing over the different assignments of input values to the edges [10]. A more
rigorous definition can be found in Section 2. In this work, we consider only complex-valued
functions of Boolean inputs. Throughout, all numbers are assumed to be algebraic [4].

Problems expressible in the Holant framework include counting matchings or counting
perfect matchings, counting vertex covers [10], and counting Eulerian orientations [14]. A
Holant problem can also be thought of as the problem of contracting a tensor network; from
that perspective, each function corresponds to a tensor with one index for each input [7].

The main goal in the analysis of Holant problems is the derivation of dichotomy theorems,
showing that all problems in a certain family are either polynomial time solvable or #P-
hard. Families of Holant problems are often defined by assuming that the function sets
contain specific functions, which are said to be ‘freely available’. As an example, the
problem #CSP(F) for a function set F effectively corresponds to the Holant problem
Holant (F ∪ {=n| n ∈ N≥1}), where (=1) : {0, 1} → C is the function that is 1 on both
inputs, and, for n ≥ 2, (=n) : {0, 1}n → C is the function satisfying:

(=n)(x1, x2, . . . , xn) =
{

1 if x1 = x2 = . . . = xn

0 otherwise.
(1)

The problem Holantc (F) is the Holant problem where the unary functions pinning edges
to values 0 or 1 are available in addition to the elements of F :

Holantc (F) = Holant (F ∪ {δ0, δ1}) , (2)

with δ0(0) = 1, δ0(1) = 0 and δ1(0) = 0, δ1(1) = 1 [9]. Another important family is Holant∗,
in which all unary functions are freely available [6].

Known Holant dichotomies include a full dichotomy for Holant∗ [6], dichotomies for
Holantc with symmetric functions, i.e. where all functions in the sets considered depend
only on the Hamming weight of the input [9], and a dichotomy for real-valued Holantc,
where functions need not be symmetric but must take values in R instead of C [11]. There is
also a dichotomy for symmetric Holant [5] and a dichotomy for non-negative real-valued
Holant [18]. Both existing results about Holantc are proved via dichotomies for #CSP
problems with complex-valued, not necessarily symmetric functions: in the first case, a
dichotomy for general #CSP problems, and in the second case, a dichotomy for #CSPc

2,
a subfamily of #CSP in which each variable must appear an even number of times and
variables can be pinned to 0 or 1.

While many dichotomies have been derived for functions taking values in some smaller
set, we consider complex-valued functions to be the natural setting for Holant problems.
This is motivated in part by connecting Holant problems to quantum computation, where
complex numbers naturally arise: the problem of strongly classically simulating a quantum
circuit with fixed input and output states can immediately be expressed as a Holant problem.
The second justification for considering complex numbers is that many tractable sets find a
more natural expression over C. An example of this are the ‘affine functions’ (see Section
3.1): they were originally discovered as several distinct tractable sets for a smaller codomain,
but their definition is vastly more straightforward when expressed in terms of complex values
[10]. Thirdly, some problems parametrised in terms of real values are naturally connected
by complex-valued holographic transformations (defined in Section 2.1): for example, the
problem of counting Eulerian orientations on 4-regular graphs is expressed in the Holant
framework in this way [5, 14].

We therefore build on the existing work to derive a Holantc dichotomy for complex-
valued, not necessarily symmetric functions. In the process, we employ notation and results
from quantum information theory. This approach was first used in a recent paper [2]
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to derive a dichotomy for Holant+, in which four unary functions are freely available,
including the ones available in Holantc: Holant+ (F) = Holant (F ∪ {δ0, δ1, δ+, δ−}),
where δ+(x) = 1 for both inputs (i.e. it is the same as the unary equality function2) and
δ−(x) = (−1)x.

A core part of quantum theory, and also of the quantum approach to Holant problems, is
the notion of entanglement. A pure3 quantum state of n qubits, the quantum equivalents of
bits, is represented by a vector in the space (C2)⊗n, which consists of n tensor copies of C2.
Such a vector is called entangled if it cannot be written as a tensor product of vectors from
each copy of C2.

An n-ary function f : {0, 1}n → C can be considered as a vector in C2n by treating each
input as an element of an orthonormal basis for that space and using the function values
as coefficients in a linear combination of those basis vectors (cf. Section 2). This vector
space C2n is isomorphic to (C2)⊗n, allowing functions to be brought into correspondence
with quantum states. We thus call a function entangled if the associated vector is entangled.
Identifying this property in Holant problems lets us apply some of the large body of work
on quantum entanglement [19, 13, 12, 17] to Holant problems. The resulting complexity
classification of Holant problems remains non-quantum, we simply employ a different set of
mathematical tools in their analysis.

In the Holant+ dichotomy, it was shown how to construct a gadget for an entangled
ternary function, given an n-ary entangled function with n ≥ 3 and using the freely-available
unary functions. Furthermore, in most cases it was shown to be possible to realise a ternary
symmetric function from this [2]. We show how to adapt those constructions to the Holantc
framework, where only two unary functions are freely available. This does not always work,
yet if the construction fails, it is always the case that either the problem is tractable by
the Holant∗ dichotomy or it is equivalent to #CSPc

2 using techniques from [11]. With
these adaptations, we therefore extend the dichotomy theorem for real-valued Holantc to
arbitrary complex-valued functions.

In the following, Section 2 contains the formal definition of Holant problems and an
overview over common strategies used in classifying their complexity. We recap existing
results in Section 3. The new dichotomy and its constituent lemmas are proved in Section 4.
Section 5 contains the conclusions and outlook.

2 Holant problems

Holant problems are a framework for counting complexity problems defined on graphs, first
introduced in the conference version of [10]. Let G = (V,E) be a graph with vertices V and
edges E, which may contain self-loops and multiple edges between the same pair of vertices,
and let F be a set of complex-valued functions of Boolean inputs. Throughout, when we
refer to complex numbers we mean algebraic complex numbers. Let π be a function that
assigns to each degree-n vertex v in the graph an n-ary function fv ∈ F and also assigns one
edge incident on the vertex to each input of the function. This determines a complex value

2 The availability of the function δ+ is indeed important to the Holant+ dichotomy proof. This is a
difference between the Holant framework and #CSP, where a constraint equal to δ+ would have no
effect.

3 There are also mixed quantum states, which have a different mathematical representation, and which
are not considered here.

ICALP 2018
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associated with the tuple (F , G, π), called the Holant and defined as follows:

Holant(F,G,π) =
∑

σ:E→{0,1}

∏
v∈V

f
(
σ|E(v)

)
. (3)

Here, σ is an assignment of a Boolean value to each edge in the graph and σ|E(v) is the
restriction of σ to the edges incident on vertex v. The tuple (F , G, π) is called a signature
grid.

The associated counting problem is Holant (F): given a signature grid (F , G, π) for the
fixed set of functions F , find Holant(F,G,π).

It is often useful to think of the functions, also called signatures, as vectors or tensors
[7]. The n-ary functions can be put in one-to-one correspondence with vectors in C2n as
follows: pick an orthonormal basis for C2n and label its elements {|x〉}x∈{0,1}n , i.e. each basis
vector is labelled by one of the 2n n-bit strings.4 Then assign to each f : {0, 1}n → C the
vector |f〉 =

∑
x∈{0,1}n f(x) |x〉. Conversely, any vector |ψ〉 ∈ C2n corresponds to an n-ary

function ψ : {0, 1}n → C :: x 7→ 〈x|ψ〉, where 〈·|·〉 denotes the inner product of two vectors.5
The product of two functions of disjoint sets of variables corresponds to the tensor product
of the associated vectors, i.e. if h(x1, . . . , xn, y1, . . . , ym) = f(x1, . . . , xn)g(y1, . . . , ym) then
|h〉 = |f〉⊗ |g〉. Where no confusion arises, we drop the tensor product symbol and sometimes
even combine labels into a single ‘ket’ |·〉: for example, instead of writing |0〉 ⊗ |0〉, we may
write |0〉 |0〉 or |00〉. If g is a unary signature, we sometimes write 〈g|l |f〉 to indicate that
the l-th input of f is connected to a vertex with signature g.

The vector perspective is particularly useful for bipartite Holant problems, which arise on
bipartite graphs if we assign functions from two different signature sets to the vertices in the
two different partitions. Then the Holant becomes the inner product between two vectors
corresponding to the two partitions. Formally: let G = (V,W,E) be a bipartite graph with
vertex partitions V and W , and let F ,G be two sets of signatures. Suppose π is a function
that assigns elements of F to vertices from V and elements of G to vertices from W and
otherwise acts as described above. Then:

Holant(F|G,G,π) =
(⊗
v∈V

(|fv〉)T
)(⊗

w∈W
|gw〉

)
, (4)

where we assume the two tensor products are arranged so that the appropriate components of
the two vectors meet. The bipartite Holant problem over signature sets F and G is denoted
by Holant (F | G).

Any Holant instance can be made bipartite without changing the value of the Holant by
inserting an additional vertex in the middle of each edge and assigning it the binary equality
signature =2. Thus, Holant (F) ≡T Holant (F | {=2}), i.e. the two problems have the
same complexity.

In the following, we use the function and vector perspectives on signatures interchangeably.

2.1 Complexity classification
Most complexity results about the Holant problem take the form of dichotomies, showing
that for all signature sets in a specific family, the problem is either #P-hard or in FP. Such a
dichotomy is not expected to be true for all counting complexity problems: if FP 6= #P, then
there are problems in #P \ FP which are not #P-hard [6].

4 The |·〉 notation for vectors is the Dirac or bra-ket notation commonly used in quantum theory.
5 Strictly speaking, this notation refers to the complex inner product, i.e. 〈x| is the conjugate transpose
of |x〉, but the distinction is irrelevant if all coefficients of |x〉 are real.
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We write A ≤T B if there exists a polynomial-time reduction from problem B to problem
A and A ≡T B if (A ≤T B)∧ (B ≤T A). A number of polynomial-time reduction techniques
are commonly used in Holant problems.

The technique of holographic reductions is the origin of the name Holant. Let M be
a 2 by 2 invertible complex matrix and define M ◦ f = M⊗ arity(f) |f〉, where M⊗1 = M

and M⊗n+1 = M ⊗M⊗n. Furthermore, let M ◦ F = {M ◦ f | f ∈ F}. This is called a
holographic transformation. Let F and G be two signature sets. Then:

Holant (F | G) ≡T Holant
(
M ◦ F | (M−1)T ◦ G

)
(5)

and, in fact, Holant(F|G,G,π) = Holant(M◦F|(M−1)T ◦G,G,π′); this is Valiant’s Holant Theorem
[20].

A second technique is that of gadgets. Consider a subgraph of some signature grid, which
is connected to the larger graph by n edges. This subgraph can be replaced by a single
degree-n vertex with an appropriate signature without changing the value of the overall
Holant. Thus, if there exists some subgraph with signatures taken from F such that the
effective signature for that subgraph is g, then [6]:

Holant (F ∪ {g}) ≤T Holant (F) . (6)

We say g is realisable over F . As multiplying a signature by a non-zero constant does not
change the complexity of a Holant problem, we also consider g realisable if we can construct
a gadget with effective signature cg for some c ∈ C \ {0}. In bipartite signature grids, we
may distinguish between left-hand side (LHS) gadgets and right-hand side (RHS) gadgets,
which can be used as if they are signatures for the left and right partitions, respectively.

Finally, there is the technique of polynomial interpolation. Let F be a set of signatures
and suppose g is a signature that cannot be realised over F . If, given any signature grid
over F ∪ {g}, it is possible to set up a family of signature grids over F such that the Holant
for the original problem instance can be determined efficiently from the Holant values of
the family by solving a linear system, then g is said to be interpolatable over F . We do not
directly use polynomial interpolation here, though the technique is employed by many of the
results we build upon. A rigorous definition of polynomial interpolation can be found in [10].

2.2 Properties of signatures
A signature is called symmetric if its value as a function depends only on the Hamming
weight of the inputs – in other words, it is invariant under any permutation of the inputs.
Symmetric functions are often written in the short-hand notation f = [f0, f1, . . . , fn], where
fk is the value f takes on inputs of Hamming weight k.

A signature is degenerate if it can be written as a tensor product of unary signatures.
Conversely, using language from quantum theory, a signature is entangled if it cannot be
written as a tensor product of unary signatures. This corresponds to the notion of non-
degenerate signatures in the Holant literature. For example, |01〉 + |11〉 is not entangled
because it can be rewritten as (|0〉 + |1〉) ⊗ |1〉. On the other hand, the binary equality
signature |00〉+ |11〉 is entangled. If k ≥ 2, a k-ary signature can be partially decomposable
into a tensor product, e.g. |0〉 ⊗ (|00〉+ |11〉). We say a signature is genuinely entangled if
there is no way of decomposing it as a tensor product of signatures of any arity. A genuinely
entangled signature of arity at least 3 is said to be multipartite entangled (as opposed to the
bipartite entanglement in a signature of arity 2). A non-genuinely entangled signature has
multipartite entanglement if it has a tensor factor corresponding to a genuinely entangled
signature of arity at least 3 and a set of signatures has multipartite entanglement if it contains
a signature that does.

ICALP 2018
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Among genuinely entangled ternary signatures, we distinguish two types, also known as
‘entanglement classes’ [12]. Each entanglement class contains signatures that are related via
local holographic transformations, i.e. two states |f〉 , |g〉 are in the same entanglement class if
and only if there exist some 2 by 2 invertible matrices A,B,C such that (A⊗B⊗C) |f〉 = |g〉.

In quantum theory, the two entanglement classes are named after their representative
states: the ternary equality signature |000〉+ |111〉, called the GHZ-state, and the ternary
perfect matching signature |001〉+ |010〉+ |100〉, called the W state. We say that a signature
has GHZ type if it is equivalent to the GHZ state under local holographic transformations
and that a signature has W type if it is equivalent to the GHZ state under local holographic
transformations. In the Holant literature, GHZ-type signatures are called the generic case
and W type signatures are called the double-root case [9].

The two types of ternary genuinely entangled signatures can be distinguished as follows
[17]. Let f be a ternary signature and write:

|f〉 =
∑

k,`,m∈{0,1}

ak`m |k`m〉 , (7)

where ak`m ∈ C for all k, `,m ∈ {0, 1}. Then |f〉 has GHZ type if the following polynomial
in the coefficients is non-zero:

(a000a111−a010a101 +a001a110−a011a100)2−4(a010a100−a000a110)(a011a101−a001a111). (8)

The signature |f〉 has W type if the above polynomial is zero, and furthermore each of the
following three expressions is satisfied:

(a000a011 6= a001a010) ∨ (a101a110 6= a100a111) (9)
(a001a100 6= a000a101) ∨ (a011a110 6= a010a111) (10)
(a011a101 6= a001a111) ∨ (a010a100 6= a000a110). (11)

If the polynomial (8) is zero and at least one of the above expressions evaluates to false, then
the signature is not genuinely entangled.

There are many other classes of entangled signatures for higher arities [21, 15, 16, 3], but
those are not directly relevant to this paper.

Given a set of signatures that contains multipartite entanglement in the Holantc

framework, we can assume without loss of generality that we have a genuinely multipartite-
entangled signature. To see this, consider a non-zero signature |ψ〉 that has multipartite
entanglement, and suppose |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Then at least one of the tensor factors must
have multipartite entanglement, assume this is |ψ1〉. Now, |ψ〉 is non-zero, so 〈x|ψ2〉 must be
non-zero for some bit string x. Thus we can realise |ψ1〉 by connecting all inputs associated
with |ψ2〉 to |0〉 or |1〉, as appropriate.

3 Existing results

It is difficult to determine the complexity of the general Holant problem. Thus, all existing
dichotomies make use of one or more simplifying assumptions: either they assume the
availability of certain signatures in all signature sets considered [7, 6, 2], or they only consider
signature sets containing functions taken from more restricted families, e.g. symmetric
functions [9, 5] or functions taking only real [11] or even non-negative real values [18].

Among others, the following variants of the Holant problem have been considered:
Holant∗ (F) = Holant (F ∪ U), where U is the set of all unary signatures [6],
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Holant+ (F) = Holant (F ∪ {δ0, δ1, δ+, δ−}), where δ+(x) = 1 and δ−(x) = (−1)x [2],
and
Holantc (F) = Holant (F ∪ {δ0, δ1}) [9, 11].

Several variants of complex-weighted Boolean counting constraint satisfaction problems
(#CSP) have also been expressed in the Holant framework. These include:

#CSP(F) = Holant (F | G), where G = {=n |n ∈ N≥1} is the set containing all equality
signatures [10], and
#CSPc

2(F) = Holant(F | {δ0, δ1} ∪ {=2n| n ∈ N≥1}) [11].
The #CSPc2 problems assume availability of the signatures pinning inputs to 0 or 1, respect-
ively, as well as equality signatures of even arity.

Existing results include full dichotomies for Holant∗ [6], Holant+ [2], #CSP [10],
and #CSPc

2 [11]. There are also dichotomies for Holantc with symmetric complex-valued
signatures [6], Holantc with arbitrary real-valued signatures [11], Holant with symmetric
complex-valued signatures [5], and Holant with arbitrary non-negative real-valued signatures
[18].

3.1 Preliminary definitions
The following definitions will be used throughout the dichotomy theorems. Write:

T =
(

1 0
0 eiπ/4

)
, X =

(
0 1
1 0

)
and K =

(
1 1
i −i

)
, (12)

where i2 = −1. Then let:
T be the set of all unary and binary signatures,
E be the set of all signatures that are non-zero only on two inputs x and x̄, where x̄
denotes the bit-wise complement of x, also called generalised equality signatures,
M be the set of all signatures that are non-zero only on inputs of Hamming weight at
most 1,
A be the set of all affine signatures, i.e. functions of the form f(x) = cil(x)(−1)q(x)χ,
where c ∈ C, l(x) is a linear Boolean function, q(x) is a quadratic Boolean function, and
χ is the indicator function for an affine space, and
L be the set of all signatures f with the property that, for any bit string x in the support
of f :arity(f)⊗

j=1
T xj

 |f〉 ∈ A, (13)

where xj is the j-th bit of x. Elements of L are called local affine signatures.
Denote by 〈F〉 the closure of the signature set F under tensor products. It is straightforward
to see that A = 〈A〉 and L = 〈L〉, i.e. these signature sets are already closed under tensor
products. If n is a positive integer, we denote by [n] the set {1, 2, . . . , n}.

3.2 Dichotomies for Holant variants
The Holant dichotomies generally build upon each other. Dichotomies with fewer freely-
available signatures refer to dichotomies for problems with more freely-available signatures,
as all tractable cases of the latter must also be tractable cases of the former: removing
signatures can never make the problem harder.

ICALP 2018
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I Theorem 1 (Theorem 2.2, [6]). Let F be any set of complex valued functions in Boolean
variables. The problem Holant∗ (F) is polynomial time computable if:
F ⊆ 〈T 〉, or
F ⊆ 〈O ◦ E〉, where O is a complex orthogonal 2 by 2 matrix, or
F ⊆ 〈K ◦ E〉, or
F ⊆ 〈K ◦M〉 or F ⊆ 〈KX ◦M〉.

In all other cases, Holant∗ (F) is #P-hard.

I Theorem 2 (Theorem 6, [9]). Let F be a set of complex symmetric signatures. Holantc (F)
is #P-hard unless F satisfies one of the following conditions, in which case it is tractable:

Holant∗ (F) is tractable, or
there exists a 2 by 2 matrix S ∈ S such that F ⊆ S ◦ A, where:

S =
{
S
∣∣ (ST )⊗2(=2), ST δ0, S

T δ1 ∈ A
}
. (14)

I Theorem 3 (Theorem 4.1, [11]). A #CSPc
2(F) problem has a polynomial time algorithm

if one of the following holds: F ⊆ 〈E〉, F ⊆ A, F ⊆ T ◦ A, or F ⊆ L. Otherwise, it is
#P-hard.

The preceding results all apply to complex-valued signatures, but the following theorem
is restricted to real-valued ones.

I Theorem 4 (Theorem 5.1, [11]). Let F be a set of real-valued signatures. Then Holantc (F)
is #P-hard unless F is a tractable family for Holant∗ or #CSPc

2.

3.3 Complexity results for ternary signatures
In addition to the above-mentioned Holant dichotomies, there are also some dichotomies
specific to symmetric signatures on three-regular graphs. For signature sets containing a
ternary GHZ-type signature, there is furthermore a direct relationship to #CSP, which
allows a more general complexity classification. When deriving the Holantc dichotomy, our
general approach will be to attempt to construct a gadget for a genuinely entangled ternary
signature and then use the following results.

I Theorem 5 (Theorem 3.4, [9]). Holant([y0, y1, y2]|[x0, x1, x2, x3]) is #P-hard unless the
signatures [x0, x1, x2, x3] and [y0, y1, y2] satisfy one of the following conditions, in which case
the problem is in FP:

[x0, x1, x2, x3] is degenerate, or
there is a 2 by 2 matrix M such that:

[x0, x1, x2, x3] = M ◦ [1, 0, 0, 1] and (MT )−1 ◦ [y0, y1, y2] is in A ∪ 〈E〉,
[x0, x1, x2, x3] = M ◦ [1, 1, 0, 0] and (MT )−1 ◦ [y0, y1, y2] is of the form [0, ∗, ∗],
[x0, x1, x2, x3] = M ◦ [0, 0, 1, 1] and (MT )−1 ◦ [y0, y1, y2] is of the form [∗, ∗, 0],

with ∗ denoting an arbitrary complex number.

The signature |000〉+ |111〉 is invariant under holographic transformations of the form
( 1 0

0 ω ), where ω3 = 1. Therefore, a binary signature is considered to be ω-normalised if y0 = 0,
or there does not exist a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that
y2 = λy0. Similarly, a unary signature [a, b] is ω-normalised if a = 0, or there does not exist
a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that b = λa [9].
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I Theorem 6 (Theorem 4.1, [9]). Let G1,G2 be two sets of signatures and let [y0, y1, y2] be a
ω-normalised and non-degenerate signature. In the case of y0 = y2 = 0, further assume that
G1 contains a unary signature [a, b] which is ω-normalised and satisfies ab 6= 0. Then:

Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) ≡T #CSP({[y0, y1, y2]} ∪ G1 ∪ G2). (15)

More specifically, Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) is #P-hard unless

{[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ 〈E〉 or {[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ A, (16)

in which cases the problem is in FP.

The following lemmas show how to realise symmetric genuinely entangled ternary signa-
tures from non-symmetric ones. They do not rely on any unary signatures.

I Lemma 7 (Lemma 18, [2]). Let |ψ〉 be a ternary GHZ-type signature, i.e. |ψ〉 = (A⊗B ⊗
C) |GHZ〉 for some invertible 2 by 2 matrices A,B,C. Then at least one of the three possible
symmetric triangle gadgets constructed from three copies of |ψ〉 is non-degenerate, unless
|ψ〉 ∈ K ◦ E and is furthermore already symmetric.

I Lemma 8 (Lemma 19, [2]). Let |ψ〉 be a ternaryW -type signature, i.e. |ψ〉 = (A⊗B⊗C) |W 〉
for some invertible 2 by 2 matrices A,B,C. If |ψ〉 ∈ K ◦M (or |ψ〉 ∈ KX ◦M), assume that
we also have a binary entangled signature |φ〉 that is not in K ◦M (or KX ◦M, respectively).
Then we can realise a symmetric genuinely entangled ternary signature.

3.4 Results about 4-ary signatures
Besides the above results about ternary signatures, we will also make use of the following
result about realising or interpolating the 4-ary equality signature from a more general 4-ary
signature.

I Lemma 9 (Lemma 2.38, [8]). Suppose F contains a signature f of arity 4 with:

|f〉 = a |0000〉+ b |0011〉+ c |1100〉+ d |1111〉 , (17)

where M =
(
a b
c d

)
has full rank. Then Pl-Holant({=4} ∪ F) ≤T Pl-Holant(F).

Here, Pl-Holant refers to the Holant problem for planar graphs; the lemma can also be
used in the non-planar setting.

I Lemma 10 (Lemma 5.2, [11]). Suppose F contains a 4-ary generalised equality signature f ,
i.e. f ∈ F ∩ E and arity(f) = 4. Then Holant (F) ≡T #CSP2(F), the counting constraint
satisfaction problem in which each variable appears an even number of times.

4 The dichotomy

Our dichotomy proof uses techniques from the Holant+ dichotomy [2] and from the
real-valued Holantc dichotomy [11], as well as some new results.

The core strategy in the hardness part of the Holant+ dichotomy proof is to realise
a symmetric genuinely entangled ternary signature f and a symmetric entangled binary
signature g for which Holant ({f} | {g}) is known to be #P-hard. The techniques for
realising low-arity signatures utilise knowledge from quantum information theory. They rely
crucially on having access to the four unary signatures δ0, δ1, δ+ and δ−, and do not seem
directly adaptable to the Holantc setting.
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The dichotomy proof for real-valued Holantc contains arity-reduction techniques that
require only δ0, δ1, and self-loops. Yet there are two main barriers to extending this result
to complex-valued signatures: firstly, some of the hardness results for genuinely entangled
ternary signatures in [11] only apply to real values. Secondly, some cases of the dichotomy
proof rely on being able to interpolate all unary signatures using techniques that have only
been shown to work for real-valued signatures.

In the present work, our strategy is similar to that in the Holant+ dichotomy: we
attempt to realise symmetric genuinely entangled ternary signatures. There are now two
cases in which this is not possible: either there is no multipartite entanglement, in which
case the problem is in FP, or all genuinely entangled signatures in the closure of F ∪ {δ0, δ1}
under gadgets have even arity, in which case the smallest signature that can give hardness
has arity 4. For arity reduction, we adapt techniques from [11], modifying them to work for
complex values. If all genuinely entangled signatures have even arity, we show analogously
to [11] that is is always possible to realise a 4-ary signature of a specific form, which can
then be used to realise or interpolate =4. Furthermore, we adapt symmetrisation techniques
for genuinely entangled ternary signatures from [2] to work in the Holantc setting. Thus,
we never need to interpolate arbitrary unary signatures. In one subcase, we do require unary
signatures other than δ0 and δ1, but we give a new construction for realising sufficiently
many such signatures by gadgets.

In this extended abstract, we give sketch proofs of the new results; full proofs may be
found in the full version of the paper [1].

4.1 Hardness proofs involving a genuinely entangled ternary signature
First, we prove two lemmas that give a complexity classification for Holantc problems in
the presence of any genuinely entangled ternary signature with complex coefficients.

I Lemma 11. Let f ∈ F be a genuinely entangled ternary signature. Then Holantc (F) is
#P-hard unless:

Holant∗ (F) is tractable, or
F ⊆ S ◦ A for some S ∈ S, as defined in (14).

In both of those cases, the problem Holantc (F) is tractable.

Proof (sketch). Let F ′ = F ∪ {δ0, δ1}. We distinguish cases according to whether f is
symmetric or not, and according to its entanglement class.

If f is symmetric and has GHZ type, there exists an invertible holographic transformation
M that maps f to =3. Transform the Holant problem to bipartite form by adding an extra
vertex carrying the signature =2 in the middle of each edge. It is straightforward to see that
allowing the signatures δ0 and δ1 on both partitions does not affect the complexity, i.e.:

Holantc (F) ≡T Holant ({=2} | F ′) ≡T Holant ({=2, δ0, δ1} | F ′) . (18)

Apply Valiant’s Holant theorem with the holographic transformation M identified above:

Holant ({=2, δ0, δ1} | F ′) ≡T Holant
(
(M−1)T ◦ {=2, δ0, δ1} |M ◦ F ′

)
. (19)

As (=3) ∈M ◦ F ′ by construction, the problem now has the same form as the LHS of (15),
with [y0, y1, y2] = (M−1)T ◦ (=2), G1 = (M−1)T ◦ {δ0, δ1}, and G2 = M ◦ F ′. With a bit
of effort, it can be shown that the conditions of Theorem 6 regarding ω-normalisation and
unary signatures are always satisfiable by choosing M appropriately; hence:

Holantc (F) ≡T #CSP
(
(M−1)T ◦ {=2, δ0, δ1} ∪M ◦ F ′

)
. (20)
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Now, as stated in Theorem 6, this problem is #P-hard unless (M−1)T ◦ {=2, δ0, δ1}∪M ◦F ′
is a subset of 〈E〉 or a subset of A. With some additional work, these conditions can be
shown to correspond to Holantc (F) being tractable if F ⊆ 〈O ◦ E〉 for some orthogonal
2× 2 matrix O, if F ⊆ 〈K ◦ E〉, or if F ⊆ S ◦ A for some S ∈ S. For all other F containing
a symmetric GHZ-type signature, Holantc (F) is #P-hard.

If f is symmetric and has W type, then:
If f /∈ K ◦M∪KX ◦M, Holant ({=2} | {f}) is #P-hard by Theorem 5.
If F ⊆ K ◦M or F ⊆ KX ◦M, the problem is tractable by the Holant∗ dichotomy.
If f ∈ K ◦ M but F 6⊆ K ◦ M, the problem is #P-hard by Lemma 12 below, and
analogously with KX instead of K.

If f is not symmetric and f /∈ K ◦M ∪KX ◦M, it is possible to realise a symmetric
genuinely entangled ternary signature using Lemmas 7 and 8, so the case reduces to the
above.

Finally, if f is not symmetric and f ∈ K ◦M (or f ∈ KX ◦M), then either F ⊆ K ◦M
(or F ⊆ KX ◦M) and Holantc (F) is in FP, or the problem is hard by Lemma 12 below.
This covers all cases. J

I Lemma 12. Let f ∈ F ∩K ◦M be a genuinely entangled ternary signature, and assume
F 6⊆ K ◦ M. Then Holantc (F) is #P-hard. The same holds if f ∈ F ∩ KX ◦ M and
F 6⊆ KX ◦M.

Proof (sketch). We show hardness by either realising a symmetric genuinely entangled
ternary signature that is not in K ◦ M ∪ KX ◦ M or by realising a symmetric binary
entangled signature g such that Holant ({f} | {g}) is #P-hard according to Theorem 5.

The basic approach is the same as in [2], but the techniques need some modification to
work in the Holantc setting. In particular, we show how to realise new unary signatures by
gadgets using f , δ0, δ1, and self-loops. With these gadgets, we then realise the signatures
given above. J

These two lemmas show that we can classify the complexity of Holantc (F) whenever
F contains a genuinely entangled ternary signature.

4.2 Main theorem
We now have all the components required to prove the main dichotomy for Holantc. The
proof strategy is to realise certain genuinely entangled signatures of low arity. Then:

If F ⊆ 〈T 〉, the problem is known to be tractable.
If F contains a genuinely entangled ternary signature, its complexity can be determined
by Lemmas 11 and 12.
If =4 can be realised or interpolated over F , then Holantc (F) ≡T #CSPc

2(F) by
Lemma 10, so its complexity is determined by Theorem 3.

The arity reduction technique is adapted from that used in the real-valued Holantc dichotomy
[11], with modifications that ensure it works for all complex-valued signatures.

I Theorem 13. Let F be a set of complex-valued signatures. Then Holantc (F) is #P-hard
unless:
F is a tractable family for Holant∗,
there exists S ∈ S such that F ⊆ S ◦ A, or
F ⊆ L.

In all of the exceptional cases, Holantc (F) is tractable.
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Proof (sketch). If F is one of the tractable families for Holant∗, F ⊆ S ◦A for some S ∈ S,
or F ⊆ L, tractability of Holantc (F) follows using the same algorithms as employed in the
dichotomy proofs for Holant∗ [6], #CSP [10] (possibly after a holographic transformation),
or #CSPc

2 [11]. So assume otherwise. In particular, this implies that F 6⊆ 〈T 〉, i.e. F has
multipartite entanglement.

Without loss of generality, we may focus on genuinely entangled signatures (cf. Section
2.2). So assume that there is some genuinely entangled signature f ∈ F of arity n ≥ 3. If
the signature has arity 3, we are done by Lemma 11. Hence assume n ≥ 4.

As in [11], we now determine the minimum Hamming distance between any pair of bit
strings in the support of f , and distinguish cases according to this value. We show that,
using f , δ0, δ1, and self-loops, it is always possible to realise either a genuinely entangled
ternary signature or a 4-ary signature of the form a |0000〉 + b |1100〉 + c |0011〉 + d |1111〉
where a, b, c, d ∈ C and ad− bc 6= 0. In the former case, we can determine the complexity
by Lemmas 11 and 12. In the latter case, we can realise or interpolate the 4-ary equality
signature by Lemma 9; then, by Lemma 10, Holantc (F) ≡T #CSPc

2(F).
Thus, whenever F is not one of the tractable families listed in the theorem statement,

the problem is #P-hard. J

5 Conclusions

Building on the existing dichotomies for real-valued Holantc and for complex-valued
Holant+, we have derived a dichotomy for complex-valued Holantc. The tractable cases
are the complex generalisations of the tractable cases of the real-valued Holantc dichotomy.
The question of a dichotomy for complex-valued, not necessarily symmetric Holantc had
been open since the definition of the family Holantc in 2009. Several steps in the dichotomy
proof use knowledge from quantum information theory, particularly about entanglement.
We expect this approach of bringing together Holant problems and quantum information
theory to yield further insights into both areas of research in the future. The ultimate goals
include a dichotomy for general Holant problems on the one hand, building up on existing
results for symmetric functions [5] and non-negative real-valued, not necessarily symmetric
functions [18]. On the other hand, we hope to gain further understanding of the complexity
of classically simulating quantum circuits.
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