

University of Birmingham

Deep Multiphysics and Particle–Neuron Duality: A
Computational Framework Coupling (Discrete)
Multiphysics and Deep Learning
Alexiadis, Alessio

DOI:
10.3390/app9245369

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Alexiadis, A 2019, 'Deep Multiphysics and Particle–Neuron Duality: A Computational Framework Coupling
(Discrete) Multiphysics and Deep Learning', Applied Sciences, vol. 9, no. 24, 5369.
https://doi.org/10.3390/app9245369

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Apr. 2024

https://doi.org/10.3390/app9245369
https://doi.org/10.3390/app9245369
https://birmingham.elsevierpure.com/en/publications/59852f38-ee34-475a-a35e-a00055f869cd

applied
sciences

Article

Deep Multiphysics and Particle–Neuron Duality:
A Computational Framework Coupling (Discrete)
Multiphysics and Deep Learning

Alessio Alexiadis
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; a.alexiadis@bham.ac.uk;
Tel.: +44-(0)-121-414-5305

Received: 11 November 2019; Accepted: 6 December 2019; Published: 9 December 2019
����������
�������

Featured Application: Coupling First-Principle Modelling with Artificial Intelligence.

Abstract: There are two common ways of coupling first-principles modelling and machine learning.
In one case, data are transferred from the machine-learning algorithm to the first-principles model;
in the other, from the first-principles model to the machine-learning algorithm. In both cases,
the coupling is in series: the two components remain distinct, and data generated by one model are
subsequently fed into the other. Several modelling problems, however, require in-parallel coupling,
where the first-principle model and the machine-learning algorithm work together at the same
time rather than one after the other. This study introduces deep multiphysics; a computational
framework that couples first-principles modelling and machine learning in parallel rather than in
series. Deep multiphysics works with particle-based first-principles modelling techniques. It is shown
that the mathematical algorithms behind several particle methods and artificial neural networks
are similar to the point that can be unified under the notion of particle–neuron duality. This study
explains in detail the particle–neuron duality and how deep multiphysics works both theoretically
and in practice. A case study, the design of a microfluidic device for separating cell populations with
different levels of stiffness, is discussed to achieve this aim.

Keywords: mathematical modelling; discrete multiphysics; coupling artificial intelligence with
first-principle modelling; computer simulations

1. Introduction

Today, machine learning is used in a variety of fields. However, it normally produces black-box
models that are not based on the underlying physics, chemistry or biology of the system under
investigation. To alleviate this issue, a variety of approaches combine first-principle modelling (FPM)
with machine learning (ML). Examples are data-driven modelling and clustering. In Ibañez et al. [1],
for instance, ML was used to extract constitutive relationships in solid mechanics directly from data,
while in Snyder et al. [2], ML was used to learn density functionals. Other methodologies include
reduce-order modelling and field-reconstruction. The idea is to use ML to learn from data generated
by expensive computational models and produce a black-box model capable of imitating the output
of the FPM with lower computational costs. This approach is used in turbulence [3], where the ML
algorithm is trained with data generated by direct numerical simulations (DNS) and is used as an
additional term in less expensive Reynolds-averaged Navier–Stokes (RANS) models. Liang et al. [4]
used a similar idea in solid mechanics: stress distribution data generated by finite element analysis
were fed into neural networks to train the network to quickly estimate stress distributions.

In all the examples above, the coupling between FPM and ML is in series: the two components
remain distinct, and data generated by one model are subsequently fed into the other. However,

Appl. Sci. 2019, 9, 5369; doi:10.3390/app9245369 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/24/5369?type=check_update&version=1
http://dx.doi.org/10.3390/app9245369
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5369 2 of 14

as explained in [5], in-series coupling is not satisfactory for problems such as in-silico modelling of
human physiology. Computer simulations of human organs, for instance, should account for the active
intervention of the autonomous nervous system (ANS) that responds dynamically to environmental
stimuli, ensuring the correct functioning of the body. Since it is not currently possible to model the
ANS by first-principles, Alexiadis [5] used Artificial Intelligence (AI)to replicate the activity of the
ANS in the case of peristalsis in the oesophagus. This approach requires a constant and localized
exchange of information between the first-principles (FP) model and the ML algorithm. Biological
neurons, in fact, are dispersed all over the surface of the oesophagus, and their activation is temporarily
and spatially dependent on the physical interaction between the food and the oesophagus, which are
calculated by the FP model and evolve continuously during the simulation. For this reason, in this case
we cannot adopt in-series coupling, where the FP simulation and the ML algorithm occur separately
(i.e., in series (one after the other)); we need a different approach, where the two models work together
(i.e., in parallel (at the same time)). In this study, this new approach is called ‘in parallel’ as opposite to
the traditional approach defined as ‘in series’; the reader should not confuse this terminology with
the parallel or serial programming paradigms that can be used to numerically implement both FPM
and ANNs.

Deep multiphysics is a computational framework that allows for this type of parallel coupling
between FPM and ML. It is based on the so-called particle–neuron duality and has discrete multiphysics
(DMP) and artificial neural networks (ANNs) as special cases. In Alexiadis 2019 [5], deep multiphysics
was applied to human physiology, but since that study was based on reinforcement learning [6] rather
than ANNs, the particle–neuron duality stayed in the background and was not discussed in detail.
The present paper fills this gap by focusing on the framework rather than the application. A practical
example (cell sorting based on the rigidity of the external membrane) is presented as a mean to facilitate
the understanding of how particle duality works.

This article is divided into three parts: the first provides an introduction to discrete multiphysics,
the second introduces the general framework for coupling discrete multiphysics (DMP) with artificial
neural networks (ANN) and the third applies this concept to a practical application (e.g., design of
microfluidic devices for the identification and separation of leukemic cells).

2. Discrete Multiphysics

Different from traditional multiphysics, discrete multiphysics is a mesh-free multiphysics
technique based on ‘computational particles’ rather than on computational meshes [7,8]. It is a
hybrid approach that combines different particle methods such as smoothed particle hydrodynamics
(SPH), the lattice-spring model (LSM) and the discrete element method (DEM). The algorithm of
particle methods, such as SPH, LSM and DEM, follows the same flowchart (Figure 1a), with the only
difference being how the internal forces are calculated. In solid-liquid flows, for instance, there are three
types of forces: (i) pressure and viscous forces occurring in the liquid, (ii) elastic forces occurring in the
solid and (iii) contact forces occurring when two solids collide with each other. In discrete multiphysics,
these forces are achieved by means of three different particle-based methods (Figure 1b): (i) SPH
for the liquid, (ii) LSM for the solid and (iii) DEM for the contact forces. Boundary conditions (BC)
are also represented by forces: non-compenetration, for instance, is achieved by means of repulsive
forces preventing particles overlapping [8]. DMP, therefore, is a metamodel, i.e., a framework for
coupling different models within multiphysics simulations. SPH, LSM and DEM are the most common
models in DMP, but other choices are possible as long as they follow the flowchart of Figure 1a.
Fluctuating hydrodynamics, for instance, could include Brownian dynamics (BD) to account for
Brownian fluctuations in the flow.

Appl. Sci. 2019, 9, 5369 3 of 14
Appl. Sci. 2019, 11, x 3 of 14

Figure 1. (a): Typical flow-chart of particle methods; (b): Internal forces used in Discrete

Multiphysics (DMP)

Discrete multiphysics has proven to be more than just an alternative to traditional multiphysics.
There is a variety of situations where DMP tackles problems that are very difficult, if not impossible,
for traditional multiphysics. In traditional multiphysics, domains are assigned during pre-
processing: the user establishes, before the simulation, which part of the domain belongs to the solid
domain and which part to the fluid domain: this choice cannot change during the simulation. In DMP,
the distinction between solid and fluid only depends on the type of force applied to the computational
particles and, by changing the type of force, we can change the behaviour of the particles from solid
to liquid and vice versa, during the simulation. In the case of solidification, for instance, when the
internal energy of a particle goes below a given value, the model used to simulate that particular
particle is switched from SPH to LMS. This confers an advantage to discrete multiphysics in a variety
of cases (Figure 2) such as cardiovascular flows with blood agglomeration [9–11], phase transitions
[12], capsules and cells breakup [13,14] and dissolution problems [8,15].

Figure 1. (a): Typical flow-chart of particle methods; (b): Internal forces used in Discrete
Multiphysics (DMP).

Discrete multiphysics has proven to be more than just an alternative to traditional multiphysics.
There is a variety of situations where DMP tackles problems that are very difficult, if not impossible, for
traditional multiphysics. In traditional multiphysics, domains are assigned during pre-processing: the
user establishes, before the simulation, which part of the domain belongs to the solid domain and which
part to the fluid domain: this choice cannot change during the simulation. In DMP, the distinction
between solid and fluid only depends on the type of force applied to the computational particles and,
by changing the type of force, we can change the behaviour of the particles from solid to liquid and
vice versa, during the simulation. In the case of solidification, for instance, when the internal energy of
a particle goes below a given value, the model used to simulate that particular particle is switched
from SPH to LMS. This confers an advantage to discrete multiphysics in a variety of cases (Figure 2)
such as cardiovascular flows with blood agglomeration [9–11], phase transitions [12], capsules and
cells breakup [13,14] and dissolution problems [8,15].

Appl. Sci. 2019, 11, x 3 of 14

Figure 1. (a): Typical flow-chart of particle methods; (b): Internal forces used in Discrete

Multiphysics (DMP)

Discrete multiphysics has proven to be more than just an alternative to traditional multiphysics.
There is a variety of situations where DMP tackles problems that are very difficult, if not impossible,
for traditional multiphysics. In traditional multiphysics, domains are assigned during pre-
processing: the user establishes, before the simulation, which part of the domain belongs to the solid
domain and which part to the fluid domain: this choice cannot change during the simulation. In DMP,
the distinction between solid and fluid only depends on the type of force applied to the computational
particles and, by changing the type of force, we can change the behaviour of the particles from solid
to liquid and vice versa, during the simulation. In the case of solidification, for instance, when the
internal energy of a particle goes below a given value, the model used to simulate that particular
particle is switched from SPH to LMS. This confers an advantage to discrete multiphysics in a variety
of cases (Figure 2) such as cardiovascular flows with blood agglomeration [9–11], phase transitions
[12], capsules and cells breakup [13,14] and dissolution problems [8,15].

Figure 2. Examples of applications of discrete multiphysics: cardiovascular flow (a), capsules breakup
(b), phase transitions (c) and dissolution of solid particles (d).

Appl. Sci. 2019, 9, 5369 4 of 14

In addition, the particle framework of DMP has proven to be particularly effective when coupled
with artificial intelligence (AI) algorithms. In [5], DMP was coupled with reinforcement learning
(RL) to account for the effect of the autonomic neural system in multiphysics simulations of human
physiology. As a benchmark case, the DMP + RL approach was used for a computer model of the
oesophagus with the ability to learn by itself how to coordinate its contractions and propel food in the
right direction. In this article, I show that, by establishing particle–neuron duality, DMP can also be
effectively coupled with another type of AI algorithm: artificial neural networks.

3. From Discrete Multiphysics to Deep (Discrete) Multiphysics

This section provides a brief introduction to artificial neural networks followed by the description
of the particle–neuron duality.

3.1. Artificial Neural Networks

Artificial neural networks (ANN) are computer systems used to solve complex problems.
The building block of an ANN is the McCulloch–Pitts neuron [16], a mathematical function vaguely
inspired by the functioning of biological neurons (Figure 3a).

Appl. Sci. 2019, 11, x 4 of 14

Figure 2. Examples of applications of discrete multiphysics: cardiovascular flow (a), capsules breakup
(b), phase transitions (c) and dissolution of solid particles (d).

In addition, the particle framework of DMP has proven to be particularly effective when coupled
with artificial intelligence (AI) algorithms. In [5], DMP was coupled with reinforcement learning (RL)
to account for the effect of the autonomic neural system in multiphysics simulations of human
physiology. As a benchmark case, the DMP + RL approach was used for a computer model of the
oesophagus with the ability to learn by itself how to coordinate its contractions and propel food in
the right direction. In this article, I show that, by establishing particle–neuron duality, DMP can also
be effectively coupled with another type of AI algorithm: artificial neural networks.

3. From Discrete Multiphysics to Deep (Discrete) Multiphysics

This section provides a brief introduction to artificial neural networks followed by the
description of the particle–neuron duality.

3.1. Artificial neural networks

Artificial neural networks (ANN) are computer systems used to solve complex problems. The
building block of an ANN is the McCulloch–Pitts neuron [16], a mathematical function vaguely
inspired by the functioning of biological neurons (Figure 3a).

Figure 3. (a): A single artificial neuron; (b): An example of a (deep) artificial neural network with two
hidden layers.

Several inputs xn enter the neuron; each of these inputs is multiplied by a weight wn, summed
together, and fed to an activation function σ, which produces the output y. When many of these

Figure 3. (a): A single artificial neuron; (b): An example of a (deep) artificial neural network with two
hidden layers.

Several inputs xn enter the neuron; each of these inputs is multiplied by a weight wn, summed
together, and fed to an activation function σ, which produces the output y. When many of these
neurons are interconnected, they form an artificial neural network [17]. Typically, these networks are

Appl. Sci. 2019, 9, 5369 5 of 14

organized in layers: input data are introduced via an input layer, which communicates to one or more
hidden layers and, finally, to an output layer (Figure 3b). The weighted output of each layer is fed as
input of the next layer until the output layer calculates the final output of the network. An artificial
neural network (ANN) with multiple layers between the input and output layers is called a deep
neural network.

Deep neural networks are universal approximate functions, meaning that, given a large enough
number of neurons in the hidden layer, they can approximate almost any function, no matter how
complicated. To achieve this goal, the ANN needs to be trained. We provide the machine with
real-word data (xn, y) and, by using a learning rule (e.g., backpropagation [18]), the ANN modifies its
weights to correctly map xn to y.

3.2. The Particle–Neuron Duality

As mentioned above, discrete models, such SPH, LSM and DEM, work by exchanging forces
among computational particles (Figure 4a). These forces change the velocity and the position of the
particles and, by doing that, the model achieves a discrete representation of the mechanics.

Appl. Sci. 2019, 11, x 5 of 14

neurons are interconnected, they form an artificial neural network [17]. Typically, these networks are
organized in layers: input data are introduced via an input layer, which communicates to one or more
hidden layers and, finally, to an output layer (Figure 3b). The weighted output of each layer is fed as
input of the next layer until the output layer calculates the final output of the network. An artificial
neural network (ANN) with multiple layers between the input and output layers is called a deep
neural network.

Deep neural networks are universal approximate functions, meaning that, given a large enough
number of neurons in the hidden layer, they can approximate almost any function, no matter how
complicated. To achieve this goal, the ANN needs to be trained. We provide the machine with real-
word data (xn, y) and, by using a learning rule (e.g., backpropagation [18]), the ANN modifies its
weights to correctly map xn to y.

3.2. The particle–neuron duality

As mentioned above, discrete models, such SPH, LSM and DEM, work by exchanging forces
among computational particles (Figure 4a). These forces change the velocity and the position of the
particles and, by doing that, the model achieves a discrete representation of the mechanics.

Figure 4. (a): Solid and fluid particles exchange mechanical forces; (b): Hot and cold particles
exchange heat; (c): Layers of neurons exchange information.

Besides velocity and position, computational particles can have other properties. In heat transfer
problems, for instance, particles require a new property called ‘temperature’. If we want this property
to behave like the physical temperature, we must link it to the heat transfer equation. In this case, the
particles do not exchange forces, but rather more general interactions that simulate the physical
process of heat transfer from one computational particle to another (Figure 4b). This can be
generalized to any conservation law: we assign a new property to the particles, and the corresponding
transfer equation calculates the interactions that dynamically evolve this property with time.

Interactions are more general than forces. If we only account for forces, we have a ‘discrete
mechanics’ tool that is limited to momentum-conservation problems. If we include interactions, we
have a ‘discrete multiphysics’ tool that applies to a wider variety of conservation problems. Discrete
multiphysics, therefore, is a generalization of discrete mechanics (Figure 5).

The next question, at this point, would be: can we generalize this idea even further? In addition,
to achieve this, what concept, more general than ‘interaction’, can we use?

Figure 4. (a): Solid and fluid particles exchange mechanical forces; (b): Hot and cold particles exchange
heat; (c): Layers of neurons exchange information.

Besides velocity and position, computational particles can have other properties. In heat transfer
problems, for instance, particles require a new property called ‘temperature’. If we want this property
to behave like the physical temperature, we must link it to the heat transfer equation. In this case,
the particles do not exchange forces, but rather more general interactions that simulate the physical
process of heat transfer from one computational particle to another (Figure 4b). This can be generalized
to any conservation law: we assign a new property to the particles, and the corresponding transfer
equation calculates the interactions that dynamically evolve this property with time.

Interactions are more general than forces. If we only account for forces, we have a ‘discrete
mechanics’ tool that is limited to momentum-conservation problems. If we include interactions, we
have a ‘discrete multiphysics’ tool that applies to a wider variety of conservation problems. Discrete
multiphysics, therefore, is a generalization of discrete mechanics (Figure 5).

Appl. Sci. 2019, 9, 5369 6 of 14

Appl. Sci. 2019, 11, x 6 of 14

Information is the most general exchange of ‘something’ we can think of. Whenever two
computational particles exchange forces, interactions or any other property, they exchange
information.

The exchange of information is exactly what happens in ANNs, where information is transferred
from one neuron to another (Figure 4c). In the case of ANNs, this information has no direct connection
with any physical property. However, ‘physical interactions’ or ‘physical forces’ can be seen as a form
of information transfer and, as such, a subset of the more general concept of ‘information’ (Figure 5).

Figure 5. Mutual relations between ‘forces’ and discrete mechanics, ‘interactions’ and discrete
multiphysics, and ‘information’ and deep multiphysics.

This idea constitutes the basis of the particle–neuron duality we use to establish the general
framework of deep discrete Multiphysics (or simply deep multiphysics). The elemental building
block of deep multiphysics is a particle–neuron hybrid: it behaves like a DMP particle when it carries
out physical interactions and like a neuron when it exchanges non-physical information, and, like a
neuron, it can be trained.

To illustrate and clarify this point, the rest of the article focuses on a case study where practical
implementation of deep multiphysics is presented.

4. Practical implementation: identification and separation of leukemic cells from healthy ones

As a practical example, I use deep multiphysics to design a microfluidic device that, potentially,
can be used to separate leukemic cells from healthy ones in the peripheral circulation system.

In Section 4.1, I describe the biomedical rationale for such a device, while in Sections 4.2 and 4.3,
I explain the deep multiphysics model used for the calculations.

4.1. Leukemic cell detection: biomedical rationale

Acute myeloid leukaemia is a malignant neoplasm of the bone marrow accounting for 10% of
all haematological disorders. Although in recent years new therapeutic approaches have been
devised, the overall survival of patients is less than 30%. This is mostly due to the high rate of disease
relapse that is observed in patients treated with standard targeted chemotherapy. After treatment,
the disease is often not completely eradicated, and leukemic cells still persist although in numbers
that are below detectable levels by standard means. A microfluidic device that can easily distinguish
malignant from healthy cells, therefore, would be extremely useful. Most common microfluidics
separation techniques, however, work with cells of different sizes, but, in the present case, this would
not work since malignant and healthy cells are approximately the same size.

The proposed solution takes advantage of the fact that malignant cells are more flexible than
healthy ones. A microchannel is lined with several hair-like flexible structures that, in the rest of the
paper, are called cilia. When cells move along the channel, the cilia bend to allow the passage of the
cells. When cilia bend, stresses are generated at their base. The idea of the microfluidic separator is

Figure 5. Mutual relations between ‘forces’ and discrete mechanics, ‘interactions’ and discrete
multiphysics, and ‘information’ and deep multiphysics.

The next question, at this point, would be: can we generalize this idea even further? In addition,
to achieve this, what concept, more general than ‘interaction’, can we use?

Information is the most general exchange of ‘something’ we can think of. Whenever two
computational particles exchange forces, interactions or any other property, they exchange information.

The exchange of information is exactly what happens in ANNs, where information is transferred
from one neuron to another (Figure 4c). In the case of ANNs, this information has no direct connection
with any physical property. However, ‘physical interactions’ or ‘physical forces’ can be seen as a form
of information transfer and, as such, a subset of the more general concept of ‘information’ (Figure 5).

This idea constitutes the basis of the particle–neuron duality we use to establish the general
framework of deep discrete Multiphysics (or simply deep multiphysics). The elemental building block
of deep multiphysics is a particle–neuron hybrid: it behaves like a DMP particle when it carries out
physical interactions and like a neuron when it exchanges non-physical information, and, like a neuron,
it can be trained.

To illustrate and clarify this point, the rest of the article focuses on a case study where practical
implementation of deep multiphysics is presented.

4. Practical Implementation: Identification and Separation of Leukemic Cells from Healthy Ones

As a practical example, I use deep multiphysics to design a microfluidic device that, potentially,
can be used to separate leukemic cells from healthy ones in the peripheral circulation system.

In Section 4.1, I describe the biomedical rationale for such a device, while in Sections 4.2 and 4.3,
I explain the deep multiphysics model used for the calculations.

4.1. Leukemic Cell Detection: Biomedical Rationale

Acute myeloid leukaemia is a malignant neoplasm of the bone marrow accounting for 10% of all
haematological disorders. Although in recent years new therapeutic approaches have been devised,
the overall survival of patients is less than 30%. This is mostly due to the high rate of disease relapse
that is observed in patients treated with standard targeted chemotherapy. After treatment, the disease
is often not completely eradicated, and leukemic cells still persist although in numbers that are below
detectable levels by standard means. A microfluidic device that can easily distinguish malignant
from healthy cells, therefore, would be extremely useful. Most common microfluidics separation
techniques, however, work with cells of different sizes, but, in the present case, this would not work
since malignant and healthy cells are approximately the same size.

The proposed solution takes advantage of the fact that malignant cells are more flexible than
healthy ones. A microchannel is lined with several hair-like flexible structures that, in the rest of the

Appl. Sci. 2019, 9, 5369 7 of 14

paper, are called cilia. When cells move along the channel, the cilia bend to allow the passage of the
cells. When cilia bend, stresses are generated at their base. The idea of the microfluidic separator is
to distinguish between rigid or flexible cells by looking at the stress patterns occurring during their
passage. In a real device, these stresses could be measured by using a piezoelectric material at the base
of the cilia. AI is used to associate specific stress patterns with the stiffness of the cell.

The geometry of the microfluidic device is shown in Figure 6: the length of the channel is 200 µm,
and the width is 50 µm. In the channel, there are 11 flexible cilia: 6 on the upper wall and 5 on the
lower wall. The distance between two contiguous cilia is 20 µm. At the right end of the channel, there
are two gates, one that connects the channel with a chamber where soft cells are collected and another
that connects with a chamber where rigid cells are collected. In a real device, a magnet can be used to
open or close these gates. However, this study focuses on the modelling aspects, and I do not deal here
with the more technical aspects of building the microchannel.

Appl. Sci. 2019, 11, x 7 of 14

to distinguish between rigid or flexible cells by looking at the stress patterns occurring during their
passage. In a real device, these stresses could be measured by using a piezoelectric material at the
base of the cilia. AI is used to associate specific stress patterns with the stiffness of the cell.

The geometry of the microfluidic device is shown in Figure 6: the length of the channel is 200
μm, and the width is 50 μm. In the channel, there are 11 flexible cilia: 6 on the upper wall and 5 on
the lower wall. The distance between two contiguous cilia is 20 μm. At the right end of the channel,
there are two gates, one that connects the channel with a chamber where soft cells are collected and
another that connects with a chamber where rigid cells are collected. In a real device, a magnet can
be used to open or close these gates. However, this study focuses on the modelling aspects, and I do
not deal here with the more technical aspects of building the microchannel.

In Section 4.2, the DMP model of the device is introduced. In Section 4.3, the model is coupled
with an ANN to obtain a deep multiphysics model.

Figure 6. The concept of the proposed microfluidic separator.

4.2. The DMP model

Figure 6 shows the (two-dimensional) domain used in the simulations. The lattice spring model
(LSM), which models the mechanical properties of solid material by means of linear bonds and
angular springs, is used for both the cilia and the cell. In this study, all bonds are rigid (i.e.,
inextensible) with fixed distance Δr = 2 μm, while the force F generated by an angular spring that
connects three consecutive particles is given by the gradient of the potential

()2
0

1
2aU k θ θ= −

,
 (1)

where k is the stiffness of the spring, θ0 the equilibrium angle at rest, and θ the angle after
deformation. In a real microfluidic application, liquid would flow into the device and convey the cells
by means of drag forces. To simplify the model, liquid is not directly considered in this work, and
the effect of drag is accounted for by Stokes’ law

3vF dvπμ=
, (2)

where μ is the dynamic viscosity, d the radius of the cell and v the flow velocity relative to the
object. This force is distributed among all the computational particles that compose the cell. A body
force is applied to the cell (a = 4 × 10-3 m·s-2) to move it along the channel with velocities typical of
microfluidic channels (~1 mm s-1 without cilia). Non-penetration among computational particles is
achieved by a soft repulsive potential of the type

1 cos ()c
c

rE A r r
r

π
= + <

 ,
 (3)

where r is the distance between the two particles, rc is a cut-off distance and A is an energy
constant. In the simulation, the same repulsion force and cut-off (A = 4 × 10 - 5 J, rc = 2 μm) are used for
all particles.

Figure 6. The concept of the proposed microfluidic separator.

In Section 4.2, the DMP model of the device is introduced. In Section 4.3, the model is coupled
with an ANN to obtain a deep multiphysics model.

4.2. The DMP Model

Figure 6 shows the (two-dimensional) domain used in the simulations. The lattice spring model
(LSM), which models the mechanical properties of solid material by means of linear bonds and angular
springs, is used for both the cilia and the cell. In this study, all bonds are rigid (i.e., inextensible)
with fixed distance ∆r = 2 µm, while the force F generated by an angular spring that connects three
consecutive particles is given by the gradient of the potential

Ua =
1
2

k(θ− θ0)
2, (1)

where k is the stiffness of the spring, θ0 the equilibrium angle at rest, and θ the angle after deformation.
In a real microfluidic application, liquid would flow into the device and convey the cells by means of
drag forces. To simplify the model, liquid is not directly considered in this work, and the effect of drag
is accounted for by Stokes’ law

Fv = 3πµdv, (2)

where µ is the dynamic viscosity, d the radius of the cell and v the flow velocity relative to the object.
This force is distributed among all the computational particles that compose the cell. A body force
is applied to the cell (a = 4 × 10−3 m·s−2) to move it along the channel with velocities typical of
microfluidic channels (~1 mm s−1 without cilia). Non-penetration among computational particles is
achieved by a soft repulsive potential of the type

E = A
(
1 + cos

πr
rc

)
(r < rc), (3)

Appl. Sci. 2019, 9, 5369 8 of 14

where r is the distance between the two particles, rc is a cut-off distance and A is an energy constant.
In the simulation, the same repulsion force and cut-off (A = 4 × 10−5 J, rc = 2 µm) are used for
all particles.

Different types of computational particles are used to represent the system. A schematic
representation is shown in Figure 7. Type-1 (red) particles represent the wall and are stationary
during the simulation.

Appl. Sci. 2019, 11, x 8 of 14

Different types of computational particles are used to represent the system. A schematic
representation is shown in Figure 7. Type-1 (red) particles represent the wall and are stationary
during the simulation.

Figure 7. Schematic representation of the particle types used in the simulations.

Type-2 (blue) particles represent the cilia and are connected by rigid bonds and angular springs
with k = 2.5 × 10-14 J and θ0 = 180°. Type-3 (white) particles represent the cell membrane and are
connected with rigid bonds and angular springs with k variables (depending on the cell population)
and θ0 = 172°; the cytoplasm is neglected and all its mechanical properties are attributed to the
membrane. Type-4 (yellow) particles represent the root of the cilium. They are connected with rigid
bonds and angular springs similar to type-2 particles. These are the particles where the stress caused
by the bending of the cilia is measured. Type-4 particles are, therefore, anchored to their initial
position by means of a self-tethered linear bond

s sF k r=
, (4)

where ks = 0.01 N m-1 is the stiffness of the bond, and r is the distance between the actual position
of the particle and its initial position. The force Fs generated by this bond is recorded during the
simulation and is used to train the ANN. There is also a type-5 particle, which is used for the gates in
Figure 6, but is not represented in Figure 7. Type-5 particles are interconnected with rigid bonds and
angles. They are also connected with the closest wall particles with an angular spring. This spring
can be switched on and off to allow for the opening of the gate according to the output of the ANN.
Overall, in the model there are 776 particles of type-1, 154 particles of type-2, 44 particles of type-3,
47 particles of type-4 and 48 particles of type-5.

4.3. Coupling with ANN

The DMP model accounts for the physics and mechanics of the system, but, by itself, cannot
discriminate between flexible and rigid cells. To achieve this goal, several additional particles (type-
6) are added to the model. By taking advantage of the particle–neuron duality, we can make these
particles behave like artificial neurons and, by connecting them in layers, we can make these neurons
behave like an ANN. Figure 8 illustrates the logic behind the resulting deep multiphysics (DMP +
ANN) model.

Types 1–3 particles (DMP particles) only exchange forces, i.e., not information. They possess the
property of position (which changes by the effect of forces), but do not have a neuron-like output.
Type 1–3 particles, therefore, are pure DMP particles.

Type-4 particles represent, at the same time, the root of the cilia and the input layer of the ANN.
They exchange forces with the other particles in the computational domain (types 1–5) and

Figure 7. Schematic representation of the particle types used in the simulations.

Type-2 (blue) particles represent the cilia and are connected by rigid bonds and angular springs
with k = 2.5 × 10−14 J and θ0 = 180◦. Type-3 (white) particles represent the cell membrane and are
connected with rigid bonds and angular springs with k variables (depending on the cell population)
and θ0 = 172◦; the cytoplasm is neglected and all its mechanical properties are attributed to the
membrane. Type-4 (yellow) particles represent the root of the cilium. They are connected with rigid
bonds and angular springs similar to type-2 particles. These are the particles where the stress caused
by the bending of the cilia is measured. Type-4 particles are, therefore, anchored to their initial position
by means of a self-tethered linear bond

Fs = ksr, (4)

where ks = 0.01 N m−1 is the stiffness of the bond, and r is the distance between the actual position
of the particle and its initial position. The force Fs generated by this bond is recorded during the
simulation and is used to train the ANN. There is also a type-5 particle, which is used for the gates in
Figure 6, but is not represented in Figure 7. Type-5 particles are interconnected with rigid bonds and
angles. They are also connected with the closest wall particles with an angular spring. This spring
can be switched on and off to allow for the opening of the gate according to the output of the ANN.
Overall, in the model there are 776 particles of type-1, 154 particles of type-2, 44 particles of type-3,
47 particles of type-4 and 48 particles of type-5.

4.3. Coupling with ANN

The DMP model accounts for the physics and mechanics of the system, but, by itself, cannot
discriminate between flexible and rigid cells. To achieve this goal, several additional particles (type-6)
are added to the model. By taking advantage of the particle–neuron duality, we can make these particles
behave like artificial neurons and, by connecting them in layers, we can make these neurons behave like
an ANN. Figure 8 illustrates the logic behind the resulting deep multiphysics (DMP + ANN) model.

Types 1–3 particles (DMP particles) only exchange forces, i.e., not information. They possess the
property of position (which changes by the effect of forces), but do not have a neuron-like output.
Type 1–3 particles, therefore, are pure DMP particles.

Appl. Sci. 2019, 9, 5369 9 of 14

Type-4 particles represent, at the same time, the root of the cilia and the input layer of the ANN.
They exchange forces with the other particles in the computational domain (types 1–5) and information
with the neuron particles (type-6). Type 4 particles, therefore, are hybrid particles with both DMP and
neural properties.

Appl. Sci. 2019, 11, x 9 of 14

information with the neuron particles (type-6). Type 4 particles, therefore, are hybrid particles with
both DMP and neural properties.

Type-5 particles, and in particular the particles next to the wall separating the two chambers (see
Figure 6), are also hybrid. On the one hand, they constitute the output layer of the ANN and, as such,
exchange information with the hidden layers. On the other hand, they belong to the DMP
computational domain and exchange forces with other DMP particles. The particle–neuron duality
integrates these two properties and, according to the information coming from the hidden layer, the
forces acting on type-5 particles are switched on or off to open or close the separating gates.

Finally, type-6 particles are pure neurons and are used to represent the hidden layers of the
network. They exchange information with (i) other type-6 particles from another hidden layer, (ii)
type-4 particles from the input layer and (iii) type 5 particles from the output layer. Since they do not
exchange forces, they do not possess a position or a velocity property that can be modified by the
forces.

Figure 8. Deep multiphysics model of the separation device. The number of neurons/layers is not
representative of the actual Artificial Neural Network (ANN) used but is only for illustrative
purposes.

In the next section, I call ANN the combination of type-6 particles plus type-4 and type-5 when
they act as respective input and output layers. I call ‘DMP model’ the combination of type 1–3
particles plus type-4 and type-5 when they act as DMP-particles.

5. Results and discussion

Before the ANN can predict the cell stiffness, it must be trained with known data. I used the
DMP model to simulate cell populations with different levels of stiffness and, at the same time, train
the ANN. I ran three hundred simulations: half of these were used for training and half for validation.
Since these data allow for effective training of the ANN, how the accuracy of the ANN changes with
the number of simulations is not specifically investigated in this study.

Under real conditions, both the stiffness k and the diameter d of the population are not constant
but vary within a certain range. To account for this, at the beginning of each simulation, both the k
and d are randomly selected (uniform distribution) within ±10% of their given values. Another
random variable is the initial position of the cell in the channel. In Figure 6, the cell is initially placed
at the centre of the channel height, but, in reality, it can be located at any height compatible with its
diameter. The initial position of the cell, therefore, is also randomly allocated.

In order to move along the channel, the cell must bend the cilia. When the cilia bend, they
generate stress at their bases. The value of the total force acting at the base of each of the 11 cilia is

Figure 8. Deep multiphysics model of the separation device. The number of neurons/layers is not
representative of the actual Artificial Neural Network (ANN) used but is only for illustrative purposes.

Type-5 particles, and in particular the particles next to the wall separating the two chambers
(see Figure 6), are also hybrid. On the one hand, they constitute the output layer of the ANN and,
as such, exchange information with the hidden layers. On the other hand, they belong to the DMP
computational domain and exchange forces with other DMP particles. The particle–neuron duality
integrates these two properties and, according to the information coming from the hidden layer,
the forces acting on type-5 particles are switched on or off to open or close the separating gates.

Finally, type-6 particles are pure neurons and are used to represent the hidden layers of the network.
They exchange information with (i) other type-6 particles from another hidden layer, (ii) type-4 particles
from the input layer and (iii) type 5 particles from the output layer. Since they do not exchange forces,
they do not possess a position or a velocity property that can be modified by the forces.

In the next section, I call ANN the combination of type-6 particles plus type-4 and type-5 when
they act as respective input and output layers. I call ‘DMP model’ the combination of type 1–3 particles
plus type-4 and type-5 when they act as DMP-particles.

5. Results and Discussion

Before the ANN can predict the cell stiffness, it must be trained with known data. I used the DMP
model to simulate cell populations with different levels of stiffness and, at the same time, train the
ANN. I ran three hundred simulations: half of these were used for training and half for validation.
Since these data allow for effective training of the ANN, how the accuracy of the ANN changes with
the number of simulations is not specifically investigated in this study.

Under real conditions, both the stiffness k and the diameter d of the population are not constant
but vary within a certain range. To account for this, at the beginning of each simulation, both the k and
d are randomly selected (uniform distribution) within ±10% of their given values. Another random
variable is the initial position of the cell in the channel. In Figure 6, the cell is initially placed at the

Appl. Sci. 2019, 9, 5369 10 of 14

centre of the channel height, but, in reality, it can be located at any height compatible with its diameter.
The initial position of the cell, therefore, is also randomly allocated.

In order to move along the channel, the cell must bend the cilia. When the cilia bend, they generate
stress at their bases. The value of the total force acting at the base of each of the 11 cilia is recorded
every 0.2 s for 15 timeframes. After the cell passes through the ciliated section, therefore, we have
15 × 11 stress values that can be stored in a matrix F. If the force f is normalized according to

f ∗ =
f − fmin

fmax − fmin
, (5)

the normalized matrix F* can be seen as a greyscale image (Figure 9). Each cell produces a slightly
different image according to its stiffness, size and initial position. This image represents a sort of
fingerprint of the cell, and the ANN is trained to distinguish between soft and rigid fingerprints.

Appl. Sci. 2019, 11, x 10 of 14

recorded every 0.2 s for 15 timeframes. After the cell passes through the ciliated section, therefore,
we have 15x11 stress values that can be stored in a matrix F. If the force f is normalized according to

* min

max min

f ff
f f

−=
− ,

 (5)

the normalized matrix F* can be seen as a greyscale image (Figure 9). Each cell produces a slightly
different image according to its stiffness, size and initial position. This image represents a sort of
fingerprint of the cell, and the ANN is trained to distinguish between soft and rigid fingerprints.

Figure 9. The ‘stress’ fingerprint of a cell with stiffness k = 4.5 × 10-15 J.

In all the simulations, I assume the two populations have the same average diameter d = 30 μm
(±3 μm) and their only difference consists of their stiffness (and initial position). I consider three
different cases where the stiffness of the two populations becomes gradually closer (Table 1).

Table 1. Minimal, average and maximal stiffness of the two populations for the three cases
considered. Err is the percentage of soft cells erroneously classified as rigid by the ANN, and vice
versa, in the validation set.

 k soft population [J∙1015] k rigid population [J∙1015]
Case Min. Ave. Max Min. Ave. Max Err %

1 1.8 2 2.2 18 20 22 0
2 3.6 4 4.4 9 10 11 0
3 4.05 4.5 4.95 4.5 5 5.5 11

The same ANN, with one hidden layer, is used in all three cases. The input layer has 165 nodes
(the size of the matrix F*), the hidden layer has 3 nodes and the output layer has 1 node. All the layers
are fully connected, and the logistic function is used as activation for all the nodes. The output of the
ANN is the normalized stiffness

* min

max min

k kk
k k

−=
− ,

 (6)

where k is the stiffness of the cell, and kmin and kmax are, respectively, the minimal and maximal
stiffness of the set. The reader should not confuse the max. and min. stiffnesses in Table 1 and in

Figure 9. The ‘stress’ fingerprint of a cell with stiffness k = 4.5 × 10−15 J.

In all the simulations, I assume the two populations have the same average diameter d = 30 µm
(±3 µm) and their only difference consists of their stiffness (and initial position). I consider three
different cases where the stiffness of the two populations becomes gradually closer (Table 1).

Table 1. Minimal, average and maximal stiffness of the two populations for the three cases considered.
Err is the percentage of soft cells erroneously classified as rigid by the ANN, and vice versa, in the
validation set.

k Soft Population [J·1015] k Rigid Population [J·1015]

Case Min. Ave. Max Min. Ave. Max Err %

1 1.8 2 2.2 18 20 22 0

2 3.6 4 4.4 9 10 11 0

3 4.05 4.5 4.95 4.5 5 5.5 11

The same ANN, with one hidden layer, is used in all three cases. The input layer has 165 nodes
(the size of the matrix F*), the hidden layer has 3 nodes and the output layer has 1 node. All the layers
are fully connected, and the logistic function is used as activation for all the nodes. The output of the
ANN is the normalized stiffness

k∗ =
k− kmin

kmax − kmin
, (6)

Appl. Sci. 2019, 9, 5369 11 of 14

where k is the stiffness of the cell, and kmin and kmax are, respectively, the minimal and maximal stiffness
of the set. The reader should not confuse the max. and min. stiffnesses in Table 1 and in Equation (6):
the former are the maximal and minimal values of the population, the latter of the data set, which include
instances of both populations.

The training occurs together with the simulations in batch mode (batch size 100) for 1,000 epochs.
Figure 10 shows the comparison between the data and the ANN output for both the training and the
validation sets in case 1: when k* < 0.5, the cell is classified as soft; when k* > 0.5, the cell is classified
as rigid.

Appl. Sci. 2019, 11, x 11 of 14

Equation (6): the former are the maximal and minimal values of the population, the latter of the data set,
which include instances of both populations.

The training occurs together with the simulations in batch mode (batch size 100) for 1,000 epochs.
Figure 10 shows the comparison between the data and the ANN output for both the training and the
validation sets in case 1: when k* < 0.5, the cell is classified as soft; when k* > 0.5, the cell is classified as
rigid.

Figure 10. (a): Comparison between data and the ANN results for both the training and (b): The
validation sets in case 1. In both cases, the first 50 simulations refer to cells from the soft population
and the other 50 from the rigid population.

When the difference in stiffness of the two populations is one order of magnitude (case 1 in Table
1), the ANN correctly identifies all the cells with 100% accuracy. In case 2, the stiffness of the rigid
cells is only 2.5 times higher than that of the soft cells (Figure 11). The difference is lower than the
previous case, but the model is still capable of distinguishing between the two populations with 100%
accuracy. In case 3, the stiffness of the two populations only differs by 10%, and the stiffness of the
two populations partially overlaps. The output of the ANN is reasonably accurate, and it fails to
correctly classify only 11% of the cells.

Figure 11. Comparison between data and the ANN results for both the validation sets in case 2.

After the neural component of the deep multiphysics model is trained, the model acquires the
ability to separate cells with unknown stiffness (Figure 12). As a new cell moves into the device, the
ANN reads the ‘stress fingerprint’ and classifies it as rigid or solid. In the first case, it opens the lower
gate so the cell goes in the lower chamber; in the second case, it opens the upper gate, and the cell

Figure 10. (a): Comparison between data and the ANN results for both the training and (b):
The validation sets in case 1. In both cases, the first 50 simulations refer to cells from the soft population
and the other 50 from the rigid population.

When the difference in stiffness of the two populations is one order of magnitude (case 1 in
Table 1), the ANN correctly identifies all the cells with 100% accuracy. In case 2, the stiffness of the
rigid cells is only 2.5 times higher than that of the soft cells (Figure 11). The difference is lower than the
previous case, but the model is still capable of distinguishing between the two populations with 100%
accuracy. In case 3, the stiffness of the two populations only differs by 10%, and the stiffness of the two
populations partially overlaps. The output of the ANN is reasonably accurate, and it fails to correctly
classify only 11% of the cells.

Appl. Sci. 2019, 11, x 11 of 14

Equation (6): the former are the maximal and minimal values of the population, the latter of the data set,
which include instances of both populations.

The training occurs together with the simulations in batch mode (batch size 100) for 1,000 epochs.
Figure 10 shows the comparison between the data and the ANN output for both the training and the
validation sets in case 1: when k* < 0.5, the cell is classified as soft; when k* > 0.5, the cell is classified as
rigid.

Figure 10. (a): Comparison between data and the ANN results for both the training and (b): The
validation sets in case 1. In both cases, the first 50 simulations refer to cells from the soft population
and the other 50 from the rigid population.

When the difference in stiffness of the two populations is one order of magnitude (case 1 in Table
1), the ANN correctly identifies all the cells with 100% accuracy. In case 2, the stiffness of the rigid
cells is only 2.5 times higher than that of the soft cells (Figure 11). The difference is lower than the
previous case, but the model is still capable of distinguishing between the two populations with 100%
accuracy. In case 3, the stiffness of the two populations only differs by 10%, and the stiffness of the
two populations partially overlaps. The output of the ANN is reasonably accurate, and it fails to
correctly classify only 11% of the cells.

Figure 11. Comparison between data and the ANN results for both the validation sets in case 2.

After the neural component of the deep multiphysics model is trained, the model acquires the
ability to separate cells with unknown stiffness (Figure 12). As a new cell moves into the device, the
ANN reads the ‘stress fingerprint’ and classifies it as rigid or solid. In the first case, it opens the lower
gate so the cell goes in the lower chamber; in the second case, it opens the upper gate, and the cell

Figure 11. Comparison between data and the ANN results for both the validation sets in case 2.

After the neural component of the deep multiphysics model is trained, the model acquires the
ability to separate cells with unknown stiffness (Figure 12). As a new cell moves into the device,

Appl. Sci. 2019, 9, 5369 12 of 14

the ANN reads the ‘stress fingerprint’ and classifies it as rigid or solid. In the first case, it opens the
lower gate so the cell goes in the lower chamber; in the second case, it opens the upper gate, and the
cell goes in the upper chamber. More details are given in the supplementary material: see the videos
rigid_cell.avi and soft_cell.avi.

Appl. Sci. 2019, 11, x 12 of 14

goes in the upper chamber. More details are given in the supplementary material: see the videos
rigid_cell.avi and soft_cell.avi.

Figure 12. The final deep multiphysics model in action (a): rigid cell; (b): soft cell.

It is interesting to compare the performance of the model with respect to visual observation.
Figure 12 shows two cells from case 1, where the stiffness difference is one order of magnitude. The
different behaviour of the two cells can be clearly identified by visual observation. In case 3, in
contrast, the cells stiffness is very close. As Figure 13 shows, visually the difference is minimal.
However, the ANN is able to correctly separate the two cells in 89% of the cases.

Figure 13. (a): soft cell; (b): rigid cell in case 3.

6. Conclusions

There are two common ways of coupling FPM and ML. In one case, data are transferred from
the ML algorithm to the FPM; in the other, from the FPM to the ML algorithm. In both cases, the
coupling is in series: the two components remain distinct, and data generated by one model are
subsequently fed into the other. This study introduces deep multiphysics; a computational
framework that couples FPM and ML in parallel rather than in series. Deep multiphysics is based
upon the concept of particle–neuron duality and only works with a particle-based FPM (discrete
multiphysics) and a specific ML algorithm (ANNs) and, as a case study, it is applied here to the
design of a microfluidic device for separating cell populations with different levels of stiffness.

A computational framework that couples FPM and ML in parallel can lead to computational
methods that are well-grounded on the physics/chemistry/biology of the system under investigation
but, at the same time, have the ability to ‘learn’ and ‘adapt’ during the simulation. In Alexiadis [5], a
similar idea was applied to in-silico modelling of human physiology: DMP provided the physics of
the system, while AI learned to replicate the regulatory intervention of the autonomic nervous
system. This study generalizes that study by clearly defining the deep multiphysics framework and
the particle–neuron duality.

This framework can lead to new ways of coupling first-principle modelling with AI. An idea,
for instance, could be fluid neural networks: ANNs that are not organized within a fixed layered
structure, but, similar to a fluid, change their local structure and connectivity with time. Additionally,
the particle–neuron duality could also find application in swarm-intelligence, where agents, akin to
particle–neuron hybrids, interact with each other following rules determined by (i) the (multi)physics
of the environment and (ii) the information they exchange with each other.

Besides the applications mentioned above, there is an aspect of deep multiphysics that has deep
theoretical implications. As discussed above, DMP combines particle methods such as SPH, LSM or
DEM. The particle–neuron duality shows that, if we look at physical interactions as a form of

Figure 12. The final deep multiphysics model in action (a): rigid cell; (b): soft cell.

It is interesting to compare the performance of the model with respect to visual observation.
Figure 12 shows two cells from case 1, where the stiffness difference is one order of magnitude.
The different behaviour of the two cells can be clearly identified by visual observation. In case 3,
in contrast, the cells stiffness is very close. As Figure 13 shows, visually the difference is minimal.
However, the ANN is able to correctly separate the two cells in 89% of the cases.

Appl. Sci. 2019, 11, x 12 of 14

goes in the upper chamber. More details are given in the supplementary material: see the videos
rigid_cell.avi and soft_cell.avi.

Figure 12. The final deep multiphysics model in action (a): rigid cell; (b): soft cell.

It is interesting to compare the performance of the model with respect to visual observation.
Figure 12 shows two cells from case 1, where the stiffness difference is one order of magnitude. The
different behaviour of the two cells can be clearly identified by visual observation. In case 3, in
contrast, the cells stiffness is very close. As Figure 13 shows, visually the difference is minimal.
However, the ANN is able to correctly separate the two cells in 89% of the cases.

Figure 13. (a): soft cell; (b): rigid cell in case 3.

6. Conclusions

There are two common ways of coupling FPM and ML. In one case, data are transferred from
the ML algorithm to the FPM; in the other, from the FPM to the ML algorithm. In both cases, the
coupling is in series: the two components remain distinct, and data generated by one model are
subsequently fed into the other. This study introduces deep multiphysics; a computational
framework that couples FPM and ML in parallel rather than in series. Deep multiphysics is based
upon the concept of particle–neuron duality and only works with a particle-based FPM (discrete
multiphysics) and a specific ML algorithm (ANNs) and, as a case study, it is applied here to the
design of a microfluidic device for separating cell populations with different levels of stiffness.

A computational framework that couples FPM and ML in parallel can lead to computational
methods that are well-grounded on the physics/chemistry/biology of the system under investigation
but, at the same time, have the ability to ‘learn’ and ‘adapt’ during the simulation. In Alexiadis [5], a
similar idea was applied to in-silico modelling of human physiology: DMP provided the physics of
the system, while AI learned to replicate the regulatory intervention of the autonomic nervous
system. This study generalizes that study by clearly defining the deep multiphysics framework and
the particle–neuron duality.

This framework can lead to new ways of coupling first-principle modelling with AI. An idea,
for instance, could be fluid neural networks: ANNs that are not organized within a fixed layered
structure, but, similar to a fluid, change their local structure and connectivity with time. Additionally,
the particle–neuron duality could also find application in swarm-intelligence, where agents, akin to
particle–neuron hybrids, interact with each other following rules determined by (i) the (multi)physics
of the environment and (ii) the information they exchange with each other.

Besides the applications mentioned above, there is an aspect of deep multiphysics that has deep
theoretical implications. As discussed above, DMP combines particle methods such as SPH, LSM or
DEM. The particle–neuron duality shows that, if we look at physical interactions as a form of

Figure 13. (a): soft cell; (b): rigid cell in case 3.

6. Conclusions

There are two common ways of coupling FPM and ML. In one case, data are transferred from the
ML algorithm to the FPM; in the other, from the FPM to the ML algorithm. In both cases, the coupling is
in series: the two components remain distinct, and data generated by one model are subsequently fed
into the other. This study introduces deep multiphysics; a computational framework that couples FPM
and ML in parallel rather than in series. Deep multiphysics is based upon the concept of particle–neuron
duality and only works with a particle-based FPM (discrete multiphysics) and a specific ML algorithm
(ANNs) and, as a case study, it is applied here to the design of a microfluidic device for separating cell
populations with different levels of stiffness.

A computational framework that couples FPM and ML in parallel can lead to computational
methods that are well-grounded on the physics/chemistry/biology of the system under investigation
but, at the same time, have the ability to ‘learn’ and ‘adapt’ during the simulation. In Alexiadis [5],
a similar idea was applied to in-silico modelling of human physiology: DMP provided the physics
of the system, while AI learned to replicate the regulatory intervention of the autonomic nervous
system. This study generalizes that study by clearly defining the deep multiphysics framework and
the particle–neuron duality.

This framework can lead to new ways of coupling first-principle modelling with AI. An idea,
for instance, could be fluid neural networks: ANNs that are not organized within a fixed layered
structure, but, similar to a fluid, change their local structure and connectivity with time. Additionally,
the particle–neuron duality could also find application in swarm-intelligence, where agents, akin to

Appl. Sci. 2019, 9, 5369 13 of 14

particle–neuron hybrids, interact with each other following rules determined by (i) the (multi)physics
of the environment and (ii) the information they exchange with each other.

Besides the applications mentioned above, there is an aspect of deep multiphysics that has deep
theoretical implications. As discussed above, DMP combines particle methods such as SPH, LSM
or DEM. The particle–neuron duality shows that, if we look at physical interactions as a form of
information exchanged between particles, the mathematics behind these particle-methods and ANNs
can be unified under the same computational paradigm. Within this paradigm, particle-based FPM
(such SPH, LSM or DEM) and ANN-based ML algorithms are just two faces of the same coin: the AI
algorithm does not need to be linked to the physical model anymore because the AI algorithm and
the physical model are the same algorithm. One of the main conclusions of this work, therefore, is
that, thanks to the particle–neuron duality, the coupling between ANNs and particle methods is more
promising than the coupling of ANNs with mesh-based models. This study only scratches the surface
of the possible implications of deep multiphysics, but, considering the recent upsurge of research
activity dedicated to the coupling of FPM with ML, I believe it can have a far-reaching impact in
the field.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/24/5369/s1,
video 1: rigid_cell.avi, video 2: soft_cell.avi.

Funding: This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant
number: EP/S019227/1.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Ibañez, R.; Abisset-Chavanne, E.; Aguado, J.V.; Gonzalez, D.; Cueto, E.; Chinesta, F. A Manifold Learning
Approach to Data-Driven Computational Elasticity and Inelasticity. Arch. Comput. Methods Eng. 2016, 25,
1–11. [CrossRef]

2. Snyder, J.C.; Rupp, M.; Hansen, K.; Müller, K.R.; Burke, K. Finding Density Functionals with Machine
Learning. Phys. Rev. Lett. 2012, 108, 253002. [CrossRef] [PubMed]

3. Zhang, Z.J.; Duraisamy, K. Machine Learning Methods for Data-driven turbulence modeling. In Proceedings
of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June 2015.

4. Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and
accurate surrogate of finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [CrossRef] [PubMed]

5. Alexiadis, A. Deep multiphysics: Coupling discrete multiphysics with machine learning to attain self-learning
in-silico models replicating human physiology. Artif. Intell. Med. 2019, 98, 27–34. [CrossRef] [PubMed]

6. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA,
USA, 2018.

7. Alexiadis, A. A smoothed particle hydrodynamics and coarse-grained molecular dynamics hybrid technique
for modelling elastic particles and breakable capsules under various flow conditions. Int. J. Numer. Methods Eng.
2014, 100, 713–719. [CrossRef]

8. Alexiadis, A. The Discrete Multi-Hybrid System for the simulation of solid-liquid flows. PLoS ONE 2015,
10, e0124678. [CrossRef] [PubMed]

9. Ariane, M.; Allouche, M.H.; Bussone, M.; Giacosa, F.; Bernard, F.; Barigou, M.; Alexiadis, A. Discrete
multiphysics: A mesh-free approach to model biological valves including the formation of solid aggregates.
PloS ONE 2017, 12, e0174795. [CrossRef] [PubMed]

10. Ariane, M.; Wen, W.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Modelling and simulation
of flow and agglomeration in deep veins valves using Discrete Multi Physics. Comput. Biol. Med. 2017, 89,
96–103. [CrossRef] [PubMed]

11. Ariane, M.; Vigolo, D.; Brill, A.; Nash, F.G.B.; Barigou, M.; Alexiadis, A. Using Discrete Multi-Physics for
studying the dynamics of emboli in flexible venous valves. Comput. Fluids 2018, 166, 57–63. [CrossRef]

12. Alexiadis, A.; Ghraybeh, S.; Qiao, G. Natural convection and solidification of phase-change materials in
circular pipes: A SPH approach. Comput. Mater. Sci. 2018, 150, 475–483. [CrossRef]

http://www.mdpi.com/2076-3417/9/24/5369/s1
http://dx.doi.org/10.1007/s11831-016-9197-9
http://dx.doi.org/10.1103/PhysRevLett.108.253002
http://www.ncbi.nlm.nih.gov/pubmed/23004593
http://dx.doi.org/10.1098/rsif.2017.0844
http://www.ncbi.nlm.nih.gov/pubmed/29367242
http://dx.doi.org/10.1016/j.artmed.2019.06.005
http://www.ncbi.nlm.nih.gov/pubmed/31521250
http://dx.doi.org/10.1002/nme.4782
http://dx.doi.org/10.1371/journal.pone.0124678
http://www.ncbi.nlm.nih.gov/pubmed/25961561
http://dx.doi.org/10.1371/journal.pone.0174795
http://www.ncbi.nlm.nih.gov/pubmed/28384341
http://dx.doi.org/10.1016/j.compbiomed.2017.07.020
http://www.ncbi.nlm.nih.gov/pubmed/28797741
http://dx.doi.org/10.1016/j.compfluid.2018.01.037
http://dx.doi.org/10.1016/j.commatsci.2018.04.037

Appl. Sci. 2019, 9, 5369 14 of 14

13. Alexiadis, A. A new framework for modelling the dynamics and the breakage of capsules, vesicles and cells
in fluid flow. Procedia IUTAM 2015, 16, 80–88. [CrossRef]

14. Rahmat, A.; Barigou, M.; Alexiadis, A. Deformation and rupture of compound cells under shear: A discrete
multiphysics study. Phys. Fluids 2019, 31, 051903. [CrossRef]

15. Rahmat, A.; Barigou, M.; Alexiadis, A. Numerical simulation of dissolution of solid particles in fluid flow
using the SPH method. Int. J. Numer. Methods Heath Fluid Flow 2019. [CrossRef]

16. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent to nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

17. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization In The Brain.
Psychol. Rev. 1958, 65, 386–408. [CrossRef] [PubMed]

18. Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences; Harvard University:
Cambridge, MA, USA, 1975.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.piutam.2015.03.010
http://dx.doi.org/10.1063/1.5091999
http://dx.doi.org/10.1108/HFF-05-2019-0437
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Discrete Multiphysics
	From Discrete Multiphysics to Deep (Discrete) Multiphysics
	Artificial Neural Networks
	The Particle–Neuron Duality

	Practical Implementation: Identification and Separation of Leukemic Cells from Healthy Ones
	Leukemic Cell Detection: Biomedical Rationale
	The DMP Model
	Coupling with ANN

	Results and Discussion
	Conclusions
	References

