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Abstract

Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial popula-

tions and often persist in the absence of selection due to efficient maintenance mechanisms.

We previously constructed non-conjugative high copy number plasmid vectors that effi-

ciently displace stable plasmids from enteric bacteria in a laboratory context by blocking

their replication and neutralising their addiction systems. Here we assess a low copy num-

ber broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cas-

settes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing

cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 rep-

lication origin that elevate copy number about two-fold are efficient. Verification of this in

mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the

parB gene, korB, that is central to its partitioning and gene control system, also needs to be

included. The resulting vector can displace target plasmids from a laboratory population

without selection and demonstrated activity in a mouse model although spread is less effi-

cient and requires additional selection pressure.

Introduction

Antibiotic resistance in bacteria is an increasingly urgent problem that is one of the key global

challenges to public health [1]. The rise of resistance is due to the selective pressure from

PLOS ONE | https://doi.org/10.1371/journal.pone.0225202 January 15, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lazdins A, Maurya AP, Miller CE,

Kamruzzaman M, Liu S, Stephens ER, et al. (2020)

Potentiation of curing by a broad-host-range self-

transmissible vector for displacing resistance

plasmids to tackle AMR. PLoS ONE 15(1):

e0225202. https://doi.org/10.1371/journal.

pone.0225202

Editor: Günther Koraimann, University of Graz,

AUSTRIA

Received: July 20, 2019

Accepted: October 29, 2019

Published: January 15, 2020

Copyright: © 2020 Lazdins et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was partly funded by a

Wellcome Trust ISSF translational grant awarded

to CMT, JUK and MAW and BBSRC grant BB/

S003533/1 to CMT that also funded GSL and ERS.

AL was funded by a studentship from the Darwin

Trust of Edinburgh and received a travel grant from

the UK Microbiology Society to work with JI in

http://orcid.org/0000-0002-2810-0455
https://doi.org/10.1371/journal.pone.0225202
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225202&domain=pdf&date_stamp=2020-01-15
https://doi.org/10.1371/journal.pone.0225202
https://doi.org/10.1371/journal.pone.0225202
http://creativecommons.org/licenses/by/4.0/


widespread use of antimicrobial agents, combined with the genetic plasticity of bacteria, allow-

ing resistance mechanisms to evolve and spread rapidly between bacteria. Once such resistance

mechanisms exist, it is very difficult to get rid of them. Plasmids, which are relatively small,

independently-replicating DNA elements, are a key part of the genetic arsenal of bacteria.

Many plasmids can transfer between bacteria via conjugation and help bacteria to acquire

advantageous genes from other bacteria [2]. In clinical contexts plasmids have often accumu-

lated resistance determinants to all the antimicrobial agents that their hosts have been exposed

to. One of the biggest clinical challenges is caused by Gram-negative bacteria resistant to car-

bapenems and third generation cephalosporin antibiotics due to plasmid-encoded enzymes. A

possible way to reverse this situation is to displace the resistance plasmids themselves from res-

ervoirs of resistance such as the gut [3] (Fig 1). Selectively removing plasmids, and the resis-

tance genes they carry, from an in-situ population should avoid causing disruption to the

commensal microbial community since this could have harmful consequences; for example,

antibiotics eradicating normal gut microbiota can allow Clostridium difficile to overgrow with

deadly effect in vulnerable patients [4].

Displacement of plasmids from bacteria, known as curing, commonly involves stresses

such as increased growth temperature or limiting thymine [5]. Such treatments are not feasible

in human or animal hosts, but specific interference with plasmid maintenance functions may

be practicable. For stable inheritance, plasmids have evolved a variety of mechanisms: con-

trolled replication, active partitioning, multimer resolution and “addiction” or post-segrega-

tional killing (PSK) systems [6]. PSK systems rely on expression from the plasmid of both an

unstable antitoxin or regulatory RNA and a stable toxin or metastable RNA encoding delayed

toxin expression: the toxin becomes active in the cell after plasmid loss [7].

When closely related plasmids are introduced into the same cell, they segregate into sepa-

rate lineages as the cells divide, a phenomenon known as incompatibility [8]. This has been fre-

quently used as a way to displace plasmids from bacteria. We previously used this approach,

creating conjugative ‘curing plasmids’ by deleting the PSK toxin gene and adding a different

selectable marker [9] thus creating an unstable plasmid that was incompatible with its target

resistance plasmid. The introduced resistance marker allowed spread into the target popula-

tion to be selected, causing displacement of the target plasmid. Once the target plasmid had

disappeared, selection was removed allowing the curing plasmid to also disappear (due to its

lack of functional addiction system) so that the host microbiome could recover. Unfortunately,

because incompatibility between competing replicons is generally symmetrical, this approach

depends on selection—which may affect bystander bacteria.

The work described here therefore uses a related, unidirectional approach where a repro-

ductively unrelated vector displaces the target plasmid because it carries genetic regions which

block all replication and addiction systems the target plasmid encodes. This is a complex task

when target plasmids carry multiple replicons and PSK systems, as in the very common F-like

plasmids of Enterobacteriaceae (Fig 2) [10,11, 12]. Efficient displacement of the F-like plas-

mids pO157 [13,14], p1658/97 [15] and pKDSC50 [16], as well as F0prolac [17] was previously

achieved using a high-copy number vector compatible with the target plasmid [12]. Into this

vector we inserted segments of the three F family replicons, FIA and FIB (encoding multiple

binding sites or iterons that bind Rep protein and may “handcuff” the target plasmid) and FII

(encoding the transcriptional repressor CopB and the anti-sense RNA CopA that blocks repA
translation) to shut off F-like plasmid replication. We also added either the antidote or the

repressor from relevant addiction systems to prevent them blocking growth and division of

bacteria that lose the target plasmid. Together these anti-replication and anti-addiction seg-

ments form the “Anti-F cassette” [12]. This approach has since been extended to other plasmid

groups, including IncI [18] and IncK (this work).

A broad-host-range conjugative vector for plasmid curing
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Our previous work used a vector that is mobilisable but not self-transmissible [12]. To dis-

place resistance plasmids from the microbiota of complex environments such as a human or

animal gut, a broad-host-range conjugative plasmid which can spread between many genera

of bacteria may provide a solution. We therefore chose the well-studied IncP-1 Birmingham

plasmid RK2 (essentially identical to RP1 and RP4) [19] as our starting point (Fig 2). IncP-1

plasmids, originally identified as responsible for the spread and maintenance of carbenicillin

resistance in skin and gut bacteria [20,21], can transfer to both Gram negative and positive

bacteria (even though they cannot replicate in Gram positives) [22]. Moreover, the copy num-

ber of RK2 has been determined as 3–7 per chromosome, which is higher than many large

conjugative plasmids that would be prime targets for displacement, so cloned segments could

be active in blocking their replication. Implementing this approach revealed that RK2 carrying

the anti-F cassette does not displace target IncF or IncK plasmids efficiently but that removal

Fig 1. Anticipated exploitation of pCURE as a probiotic treatment for at-risk individuals. Before treatment, plasmids

carrying antibiotic resistance genes are shown as purple circles. After treatment, target plasmids are replaced by pCURE (green

circle) which could be engineered to later “self-destruct”. Note that not all gut bacteria carry resistance plasmids but pCURE can

enter all Enterobacteriaceae as well as other bacteria. Reduced resistance levels in the gut decrease the chance of treatment failure

when infections elsewhere in the body (eg lungs or urinary tract) arise from gut bacteria.

https://doi.org/10.1371/journal.pone.0225202.g001

A broad-host-range conjugative vector for plasmid curing
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of a previously uncharacterised control element from the replication origin can increase copy

number and allows very efficient curing. Dissection of the curing plasmid also shows that the

RK2 global regulator KorB that binds multiple places on RK2 is needed for efficient curing.

The curing plasmids can spread and cure on solid medium without antibiotic selection but

selection is still needed to achieve target plasmid loss from a mouse gut. The results will help

define a strategy for building a successful conjugative pCURE plasmid.

Results

The anti-F cassette in RK2 displaces F plasmids inefficiently

The previously constructed anti-IncF cassette from pCURE2, designed to displace IncF plas-

mids, including loci that inhibit replication (repFIA, incC; repFIB; repFIC, copAB; repFIC/

repFIIA, copAB) and that neutralise addiction systems (flmB, sok; letA, ccdA; pemI, srnC, sok)

[12], was inserted into RK2 by recombination to replace the aph (KmR) gene (Fig 2) as

described in Methods, creating pCURE-F-RK2 (Fig 3; nomenclature indicates first that it

Fig 2. Map of RK2 showing region replaced by the anti-F cassette and showing the targets of the anti-F functions. The other functions marked are: oriV, the

vegetative replication origin; oriT, the transfer origin; tra and trb regions encoding proteins for DNA processing and mating bridge formation during transfer; trfA,

encoding the replication protein that activates oriV; ccr/par, the central control region that regulates transcription of RK2 backbone genes and also encodes active

partitioning functions; psk/mrs, encoding addiction and multimer resolution functions. Mobile elements Tn1 and IS21 are associated with ampicillin and kanamycin

resistance genes. Recombineering was used to replace aphA and IS21 in RK2 with the anti-F cassette that blocks the repFIA, repFIB and repFII replicons and neutralises

the effect of the flmABC and letAB addiction loci [12].

https://doi.org/10.1371/journal.pone.0225202.g002
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carries a curing cassette, second the plasmid group it targets, and third the plasmid it is based

on). This plasmid, along with RK2 as a control, was tested for the efficiency with which it can

displace F’prolac from E. coli JM109. This was detected by both loss of ability to grow on M9

medium without proline and by blue/white X-gal screening when JM109 carries a plasmid like

pUC18, selectable with ampicillin, that complements the lacZ defect in the lac operon carried

by the F’ so that the starting plasmid is phenotypically Lac+ (Fig 3 and Table 1).

With pCURE-F-RK2 none of the initial transconjugant colonies were completely free of

F’prolac (Fig 3B) but after growing cultures from single colonies and a second round of screen-

ing, displacement of F’prolac increased to>85% while RK2 without the anti-IncF cassette as

well as RK2Δaph did not affect F’prolac stability at all (Fig 3 and Table 1). This indicates that

the anti-IncF cassette, when inserted into the IncP-1 plasmid to give pCURE-F-RK2, is able to

sustain the unidirectional displacement of F-like plasmids but works less efficiently than when

carried by the high copy number (>40 copies per chromosome) pCURE2 plasmid [12] which

is based on the pMB1 replicon.

Removal of oriV segment with Rep binding site i10 potentiates curing

To investigate curing of resistance plasmids carrying β-lactamases we inserted the anti-F cassette

into a spontaneous deletion derivative of IncP-1 plasmid RP1 (indistinguishable from RK2),

pUB307 [23], that has lost the transposon Tn1 that includes the bla gene conferring ApR. We

had previously determined the ends of this deletion as running from position 5464..5466 to

12045..12047 (there are three bases at the junction that could come from either side of the dele-

tion) in the IncP-1 genome sequence (accession BN000925.1) [19, 24], removing the transposon

as well as flanking backbone sequences (Fig 3) [24]. Unexpectedly, this new plasmid (pCURE-F-

307) was very effective in causing displacement of F’prolac from JM109 (Fig 3 and Table 1). To

check whether the potentiation of curing activity is due to the known deletion rather than to

changes elsewhere in the plasmid, we recreated the pUB307 deletion starting from RK2, by

recombineering as described in Methods. The same potentiation of curing was observed (Table 1;

pCURE-F-RK2Δ307), confirming that the deletion in pUB307 is indeed responsible for this effect.

To explore the genetic basis for the potentiation we used plasmids with deletions that

remove sub-segments of the region deleted in pUB307. When the anti-F cassette was inserted

into plasmid pR9242 (a deletion derivative of IncP-1 plasmid R995, very similar to RK2), that

has an in-frame fusion of the first six codons of klcA to the stop codon of klcB [25], no potenti-

ation was seen (Fig 3). We also obtained a spontaneous deletion removing klcA, klcB and korC
(RK2Δ4340–11669) leaving the kleA operon under control of the klcAp [25,26] and this gave

curing efficiency similar to that of pCURE-F-RK2 (Fig 3). Thus, removal of all or part of the

klcA, klcB, korC operon is not the reason for the potentiation of curing observed in pUB307.

The other segment deleted in pUB307 is adjacent to oriV and contains a single repeated

sequence motif called an iteron (iteron 10, i10, Fig 3) that should bind the RK2 Rep protein,

TrfA [27]. The role of i10 has not been determined but deletion of the single iteron (i1) on the

opposite side of oriV increased copy number [28] so deletion of i10 may do so too, as predicted

by Larsen & Figurski [29] and this may explain the potentiation of curing ability. When we

reinserted the short region that contains i10, giving pUB307::i10, and then inserted the anti-F

cassette (giving pCURE-F-307::i10) potentiation was lost (Fig 3). copy numberDetermination

of kanamycin resistance conferred by the constitutively expressed aph gene in RK2 and

pUB307 showed that removal of the region with i10 increased resistance about 2-fold (S1 Fig)

consistent with increased copy number.

To determine whether the increased ability to cure is specific for F-like plasmids we

inserted the IncK replication control region of archetypal plasmid R387 [30,31] as an anti-K

A broad-host-range conjugative vector for plasmid curing
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cassette into both RK2 and pUB307 at the same location and tested for curing of R387. Once

again, low efficiency curing was observed with pCURE-K-RK2 and high efficiency with

pCURE-K-307 (Table 1). To check whether the potentiation is specific to delivery by

Fig 3. Conjugative IncP-1 derivatives and their effectiveness as vehicles for plasmid curing (panel A). The anti-F cassette inserted into RK2 caused limited

displacement, as indicated by the blue/white X-gal+IPTG phenotype (compare RK2Δaph and pCURE-F-RK2 in panel B), whereas when inserted into pUB307 (23), it

causes very efficient F’ plasmid loss and no trace of blue colour (compare pUB307Δaph with pCURE-F-307 in panel B). Introducing the pUB307 deletion (bases

5464..5467 to 12045..12047) into RK2 potentiated curing while the deletions ΔklcAB and ΔklcABC (bases 4340–11669) did not. Reintroducing the region with i10 (bases

11749 to 12048) into pUB307 destroyed the potentiation, showing that this region includes the critical sequence.

https://doi.org/10.1371/journal.pone.0225202.g003

A broad-host-range conjugative vector for plasmid curing
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conjugative transfer (which involves a single-stranded DNA intermediate) we introduced the

plasmids by transformation and observed the same potentiation.

IncP-1 global regulator KorB is also needed for efficient curing

Direct confirmation of a copy number difference associated with the presence/absence of i10

was obtained with mini-IncP-1 plasmid pCT549 [32] which, as constructed originally, does

not have i10 (Fig 4). We amplified the oriV region from RK2 with i10 and substituted it into

the pCT549 backbone. Comparison of plasmid DNA yield, with and without i10, using a com-

patible plasmid as internal control and nine samples per plasmid indicated that the copy num-

ber difference (statistically significant at<0.01 level in both an ordinary one tailed Student’s t-

test for small samples and a one-tailed Welch’s t-test) was approximately 2-fold (Fig 4, S2 Fig,

S1 Raw Images and S1 Table). This is consistent with the change in MIC for kanamycin

between RK2 and pUB307. The same change in plasmid curing ability was observed in these

mini-IncP-1 plasmids with anti-F cassette when the region with i10 was absent (Fig 4). We

also considered the possibility that the change in potency could be due to some other property

encoded in the region that contains i10 so with this region intact we deleted the region with i1

(bases 12928 to 12990 according to the complete IncP-1 backbone). This resulted in a similar

rise in copy number and potentiation of curing, suggesting that removing either single iteron

is sufficient for the change in curing activity (Fig 4).

As part of this analysis we also used as vector an even smaller derivative of RK2, pRK2501

[33] that does not include korB from the central control region and so is partially de-repressed

for expression of trfA (the rep gene) and has a higher copy number (about 2.5 compared to

pCT549 without i10)[32]. This did not support curing of the F’prolac from JM109 despite its

elevated copy number, suggesting that at least one additional factor in the RK2 backbone may

be necessary for the curing activity by the anti-F cassette in this context. We therefore deleted

Table 1. Curing by key conjugative anti-F and anti-K plasmids constructed in this study.

Target plasmid and % cured a

Curing plasmid or control (ctl) F’prolac initialb colonies F’prolac afterb re-culturing pEK499 (IncF) initial colonies R387 (IncK) initial colonies

RK2 (vector ctl) <1 <1 <1 <1

RK2Δaph (vector ctl) <1 <1 <1 <1

pCURE-F-RK2 <1 >85 <1 NDc

pUB307 (vector ctl) <1 <1 <1 <1

RK2Δ307 (vector ctl) <1 <1 NDc ND

pCURE-F-307 >99 NDc <1 NDc

pCURE-F-RK2Δ307 >99 NDc NDc NDc

pCURE-K-RK2 NDc NDc NDc <1

pCURE-K-307 NDc NDc NDc >99

pCURE-FEK499-307 >99 NDc >99 NDc

a. These tests were carried out a minimum of three times on separate occasions. Comparisons were done by replica plating 100 colonies. The phenotype was generally

very clear: <1 means 0/100 colonies had lost the target plasmid; >99 means 100/100 had lost the target plasmid; >85 means we saw significant curing but there were

always some colonies that retained the target plasmid and 85% cured was the lowest rate observed. Blue/white screening was also used and gave a clear cut difference

between efficient and inefficient curing as shown in Fig 2.

b. Stage 1 involved screening transconjugant colonies from initial selection plates for complete loss of Pro+ phenotype. Stage 2 involved re-culturing from initial colonies

into LB medium + tetracycline selective for RK2 or pCURE-F-RK2, growing O/N, plating on L-agar + tetracycline and then screening for retention of the Pro+

phenotype.

c. Not Done

https://doi.org/10.1371/journal.pone.0225202.t001

A broad-host-range conjugative vector for plasmid curing
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the major block of backbone genes in pCT549 that are not essential for replication and regula-

tion–from the trbB promoter to the start of the korF gene (removing kfrA, kfrB and the

remaining part of kfrC as well as korF and korG). This leaves just oriV, the trfA region (encod-

ing the Rep protein TrfA) plus the central control/active partitioning region [34](encoding

repressor KorA, partitioning ATPase IncC [a ParA homologue, the movement-generating

component of the mitotic-like apparatus] and centromere-binding protein and global repres-

sor KorB) and observed that this smaller plasmid still supports efficient curing.

Since the only major difference between this pCT549 derivative lacking the korF to trbB
region and pRK2501 is the absence of a functional korB in pRK2501, it appeared that korB
must be necessary for potentiation (Fig 4). We therefore made further deletions, up to the end

of incC and up to the end of korA creating a deletion of all of korB and all of incC2 (there are

two translational starts in incC, the second of which overlaps the stop codon of korA and

Fig 4. Mini-RK2 plasmids with the anti-F cassette and ability to displace F’prolac. Plasmid pCT549 consists of two segments from RK2: oriV to trbB’ and korA to

kfrC’ (apostrophe indicates a truncated gene). TrfA acts at oriV: monomers act positively through iterons 5–9 and dimers act negatively through all the iterons. Due to

its construction oriV of pCT549 excluded iteron 10 (i10) and with addition of the anti-F cassette efficient curing was seen. A derivative with iterons 1 to 10 gave a lower

relative copy number (data and statistics in S2 Fig, S1 Raw Images and S1 Table) and efficient curing was lost. Deletion of i1 restored efficient curing and relative copy

number rose approximately 2-fold. Deleting up to korB had no effect but deleting past it destroyed curing. Reinserting korB restored efficient curing.

https://doi.org/10.1371/journal.pone.0225202.g004
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defines a shorter polypeptide product called IncC2) and these, as expected, give no curing.

When we reinserted korB into the deletion derivative that had lost most of incC we found that

this derivative had regained the ability to displace the target F plasmid efficiently (Fig 4). This

indicates that the potent curing ability of an RK2–derived plasmid is not only dependent on

manipulation of the oriV region but also requires an intact korB gene although a complete set

of par functions is not essential (Fig 4).

pCURE-307 spreads and displaces target plasmids without selection

A critical test is whether pCURE can spread through a population and displace target plasmids

without selection. Our initial test targeted the F’ plasmid in E. coli JM109 because it is easy to

detect. Donor strains of E. coli (HB101 or MV10nalR worked equally well) with control or test

plasmids were mixed with E. coli JM109 at a ratio of 1 donor: 1000 recipients and 108 bacteria

of the mixture placed on a nylon filter on L-agar essentially as described by Fox et al. [35].

After overnight growth, bacteria on the filter were suspended in 2 ml saline and thoroughly

mixed before spreading on a fresh nylon filter on fresh L-agar and serially diluting the bacterial

suspension before spreading on selective and non-selective to determine plasmid carriage.

This was repeated to give 5 cycles of growth and spread of pCURE. The results showed that

pCURE plasmids spread rapidly and that pCURE-F-307 reduced the target F plasmid in a

reciprocal way, with F’-positive bacteria falling to less than 0.1% of the target population (Fig

5A).

The F’ plasmid in JM109 is non-self-transmissible so we repeated this experiment with the

self-transmissible IncK plasmid pCT::aph as the target in E. coli J53rifR (Fig 5B). The results

showed a similar spread of the pCURE plasmid and reduction of pCT::aph in J53rifR. In the

RK2Δaph and pUB307Δaph controls pCT::aph also spread efficiently into the donor strain but

the presence of both pCURE-K-RK2 and pCURE-K-307 prevented the formation of such

transconjugant colonies, although there were some pinprick colonies where pCURE-K-307

was in the donor (S3 Fig). This was expected for pCURE-K-307 but was a surprise for pCUR-

E-K-RK2, indicating that it is easier to stop a plasmid establishing itself than it is to get rid of it

once established. Overall these results demonstrate that the elements for efficient curing are

effective without selection.

Extension of the anti-F cassette specificity

Since F-like plasmids are the commonest plasmid types encountered among multi-resistant

Enterobacteriaceae and can also carry virulence functions [10,11], it is important that anti-F

pCURE plasmids can be adapted to displace all possible targets. To test this we chose pEK499

[36] which we found was not displaced by the anti-F cassette in pCURE2 and pCURE-F-307

(Table 1). Bioinformatic analysis showed that the copA antisense RNA of pEK499 has 3 mis-

matches to the specificity loop in the repFII segment in the anti-F cassette which could be

responsible for this. The copAB region of pEK499 was therefore amplified and incorporated

into the anti-F cassette before it was inserted into pUB307 to give pCURE-FEK499-307. As

predicted, the addition of this region allowed pEK499 displacement (Table 1). Thus the inabil-

ity of pCURE-F-307 to displace pEK499 was due to the lack of activity against the FIC replicon

and demonstrates the ease with which anti-F cassette specificity can be extended.

Plasmid displacement in a mouse gut

To determine whether our conjugative pCURE could spread without selection in an animal

gut model we chose IncK plasmid pCT::aph as the target for displacement since it persists in

diverse E. coli strains in different animals and humans [37]. It also possesses an active
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Fig 5. Unselected invasion assay to monitor displacement of target plasmids by pCURE plasmids or negative controls in bacteria introduced at a

donor:recipient ratio of approximately 1:1000. A. Donor bacteria (HB101 with pCURE-F plasmids or negative controls) were monitored by streptomycin

resistance, while target bacteria (JM109 initially with F’prolac) were monitored by nalidixic acid resistance. Presence of F’prolac was monitored on M9

Minimal medium without proline. The data is shown in the Tables in S1 Text. B. Donor bacteria (HB101 with pCURE-K plasmids or negative controls) were

monitored by streptomycin resistance, while target bacteria (J53rif initially with pCT::aph) were monitored by rifampicin resistance. Presence of pCT::aph
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conjugative transfer system (in contrast to either the F’prolac or pEK499, neither of which are

Tra+) thus representing a relevant in vivo challenge. The curing plasmid was pCURE-K-307

and the tests were performed in non-germ-free mice with normal gut microbiota to mimic a

real-world situation but all mice were confirmed as being free of kanamycin and tetracycline

resistant bacteria in their faeces before entering the experiment. After exploratory tests, we

established bacteria carrying pCT::aph in the mouse by isolating an E. coli strain from the mice

to be used. We selected a RifR mutant of this strain, and introduced pCT::aph into it (desig-

nated AL1) by conjugation and then fed AL1 (pCT::aph) to the mice as described in Materials

and Methods. A preliminary experiment showed that the strain established itself very effi-

ciently, reaching up to nearly 109 KanR cfu g-1 faeces, constituting initially between 1 and 10%

of the detectable E. coli. However, spread of pCT::aph to resident gut E. coli (which could be

detected as RifS) was not detected unless the mouse received kanamycin to select the plasmid

starting the day after adding AL1(pCT::aph) (Fig 6A). That these strains were not simply

mutants was confirmed by PCR with IncK-specific primers (see Methods). When feeding bac-

teria and antibiotic was stopped the number of E. coli decreased to about 106 cfu g-1 faeces. In

the main experiment (Fig 6B and 6C) in the control group of mice with no further treatment

the level of KanR E. coli stabilised and decreased slowly for the rest of the experiment (Fig 6B),

eventually becoming the minority of the E. coli detectable.

In the test group, once the level of pCT::aph was stable, we fed the mice with the E. coli Nis-

sle1917 strain (which is accepted as a safe probiotic for human use; [38]) carrying pCURE-K-

307. The temporary colonisation of the mouse gut by Nissle1917(pCURE-K-307) in the

absence of selection was also good (we detected ~107 TetR cfu g-1 faeces) although not as high

as for mouse-derived strain AL1(pCT::aph). However, efficient transfer of pCURE-K-307 and

displacement of pCT::aph was only detected in the group of mice that received Nissle1917

(pCURE-K-307) with subsequent tetracycline for 3 days (Fig 6C). In the absence of any tetra-

cycline selection the bacteria carrying pCURE-K-307 rose to about 106 cfu g-1 faeces but trans-

fer to the RifR E. coli already established was detected only transiently and at a low level (Panel

A in S4 Fig). This was not increased by feeding E. coli Nissle1917(pCURE-K-307) for an

extended period, although the TetR bacteria were shed for longer (Panel B in Figure in S4 Fig).

In both cases it took about 6 days for bacteria with this plasmid to clear the mouse gut once the

supply of bacteria to the mice was withdrawn.

Feeding E. coli Nissle1917(pCURE-K-307) followed by tetracycline resulted in a rapid

decline and disappearance of KanR bacteria by day 18 followed by a decline in TetR bacteria

(with pCURE-K-307). Superficially this was very encouraging but closer inspection indicates a

complex situation. The possibility that tetracycline selection simply eliminated the bacteria

lacking pCURE-F-307 was rejected by detection of RifRTetR bacteria at day 13 and this number

increased across days 14–16 before starting to fall again, suggesting that transfer was occurring

in the absence of selection (Fig 6C). The proportion of the TetR bacteria that are RifR rises with

time to nearly 100% (Fig 6C), suggesting that the donor strain disappears faster than the trans-

conjugants, possibly because the donor is a human-adapted strain whereas the RifR bacteria

are mouse-derived. This fits with disappearance of the TetR bacteria in S5 Fig, but persistence

of the KanR bacteria even in the absence of selection (Fig 6A). However, the numbers of trans-

conjugants where pCURE-K-307 has transferred into the RifR bacteria do not seem high

enough to explain all of the decrease in pCT::aph. In the unselected curing experiments on

agar (Fig 5A and 5B) the level of transconjugants with pCURE rose close to the original level of

was monitored by kanamycin resistance. The data is shown in the Tables in S2 Text. Spread of pCT::aph into donor bacteria was detected by selection of

kanamycin and streptomycin resistance as shown in the Figure in S3 Fig.

https://doi.org/10.1371/journal.pone.0225202.g005
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the target strain before curing was observed whereas in this experiment, E. coli (pCT::aph) is

already dropping when still>10-fold higher than the RifR transconjugants with pCURE (Fig

6C). Although pCT::aph has also transferred to RifS E. coli and pCURE can also transfer to Rifs

E. coli, so some loss of pCT::aph may be from RifS E. coli, the numbers suggest that a major

part of the drop in pCT::aph is likely due to the Tet treatment killing KanR TetS bacteria. Sig-

nificantly though, 10 to 20% of bacteria isolated on days 22 and 24, when KanR and TetR bacte-

ria had disappeared, were RifR indicating that an effective curing process has taken place, not

just the elimination of the strain carrying pCT::aph.

That the target plasmid had disappeared completely was shown by a period of kanamycin

selection on days 25–26 –this caused the E. coli counts to fall 100-fold but the remaining E. coli
were still kanamycin sensitive. The data in Fig 6 is the average of three mice for each treatment

so we also plotted the data for each individual mouse. Panels A, B and C in S5 Fig show the

individual mouse data for the experiment in Fig 6C. This demonstrates that the average pat-

tern observed is consistent with the observations at the individual mouse level and is remark-

ably reproducible. While the need for a period of antibiotic selection is not ideal, these results

do demonstrate that curing plasmids are able to be delivered to the mouse gut and can transfer

into target cells. The overall result is a gut that is free of the target bacteria and contains plas-

mid-free derivatives of the original plasmid-carrying bacteria. The use of a short selection with

antibiotics allows endogenous microbiota to survive, leaving the potential to recolonise the

gut.

Discussion

This paper explores construction of an effective broad-host-range conjugative plasmid vector

system to specifically displace target plasmids of different incompatibility groups, as an alter-

native strategy [39] to combat antimicrobial resistance. Although we previously explored such

an approach by directly using incompatibility between two related plasmids [9], here we chose

the well-studied IncP-1 plasmid RK2 as the basis for a more general vector to target plasmids

compatible with RK2.

We first inserted our anti-F cassette that can target plasmids of the commonest group of

conjugative plasmids in Enterobacteriaceae and found that wildtype RK2 is not a very effective

vector for this displacement process. Although we are also trying to establish whether this is

typical of other low copy number conjugative plasmids, we quickly discovered that a deletion-

derivative removing a non-essential part of the extended replication origin region has a dra-

matically increased potency. This potentiation correlated with an approximately two-fold

increase in copy number, resulting from loss of a region encoding a non-essential binding site

(i10) for the replication protein TrfA. This iteron was only discovered when we compiled the

whole IncP-1 plasmid sequence in the 1990s [19]: it was not included in the mini-derivatives

Fig 6. Testing ability of pCURE-F-307 to displace antibiotic resistance plasmids in the mouse gut. A. RifR mouse-

derived E. coli AL1 carrying pCT::aph was fed to six mice days 1–3. Three mice (group 1) also received kanamycin days

2–4. Plasmid transfer to endogenous RifS E. coli was only observed in group 1. The data for this experiment is shown in

the Tables in S3 Text. B. Baseline total endogenous KanSTetS E. coli were detected before introduction of E. coli AL1

(pCT::aph) days 3–5 and kanamycin days 4–6 before monitoring plasmid carriage until day 28. RifS E. coli cfu were

determined by subtracting RifR cfu from total E.coli cfu. The data for this experiment is shown in the Tables in S4 Text.

C. Mice treated as in B received E. coli Nissle 1917 carrying TetR curing plasmid, pCURE-K-307 days 10–12 and

tetracycline days 11–13 resulting in the appearance of TetR E. coli including RifR TetR indicating transfer to target

bacteria. pCURE-K-307 had disappeared by day 20 but about 10% of the E. coli were RifR indicating displacement of

pCT::aph rather than loss of the strain. Kanamycin was given days 25–26 but no KanR bacteria re-appeared and PCR

screening of faeces samples at the end of the experiment proved negative. Carriage of pCT::aph was determined by

KanR while carriage of pCURE-K-307 was determined by TetR. The data for this experiment is shown in the Tables in

S4 Text.

https://doi.org/10.1371/journal.pone.0225202.g006
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constructed in the 1970s [40,28]. Larsen & Figurski [29] speculated that this iteron may work

in copy number control alongside i1 (which we had shown to be an important control element;

28) since both have additional 6 bp repeats and are inverted relative to each other, suggesting

loop formation that might impact negatively on oriV activity. The IncP-1 plasmid family is

diverse, with at least six sub-families [41], but prompted by our findings, alignments of IncP-1

DNA sequences in Genbank show i10 is conserved across the IncP-1 sub-families (S6 Fig)

implying its importance as part of the core system. Here we show that the region with i10 is

part of the normal copy number control system with an effect equivalent to the region with i1

and that when this system is intact the plasmid is not a good vector for the curing cassettes,

most likely because of its lower copy number. It also indicates that such copy number control

should make this type of replicon highly evolvable by gain or loss of single iterons although

clearly the configuration seen in RK2 has been conserved over considerable evolutionary time.

While setting vector copy number above a critical level may be important, we found that

copy number alone is not sufficient for success. Finding that korB, but not an intact partition-

ing system, is also essential for potentiation of curing in the mini-RK2 plasmids, suggests that

a critical factor may be the complexes that KorB protein makes with plasmid DNA and the

effect they have on properties such as DNA topology. Unfortunately we cannot test whether

this conclusion applies in the intact conjugative plasmid because korB is essential to regulate

host-lethal functions on the plasmid [42] and thus cannot be deleted. KorB belongs to a broad

family of DNA-binding proteins, many of which are involved in genome partitioning [43] and

thus generically named ParB. Where structural studies have been carried out, it appears that

ParB proteins bind, spread and condense DNA in a way that involves multiple cis- and trans-

interactions [44,45]. In addition, it has recently been shown that ParB of P. aeruginosa binds to

many places across its cognate genome [46], not just the well-recognised parS sites. ParB-fam-

ily proteins may thus function more as Nucleoid-Associated Proteins (NAPs) than previously

thought and modulate the topology of their cognate genome. Therefore, the binding sites for

the replication protein TrfA and binding of KorB protein to RK2 DNA may need to be config-

ured correctly to achieve a level of supercoiling sufficient to activate key loci of the anti-F and

anti-K cassettes. Since the anti-K cassette is basically the antisense RNA regulatory elements of

the IncK replicon from R387 [31], if there is just one part of the anti-F cassette that needs to be

potentiated, it seems most likely to be the FII replicon [10,11], since this has the greatest simi-

larity to the IncK replication control region. This in turn points to the possibility that the dif-

ferent components of a plasmid’s backbone maintenance functions may interact in a

synergistic way to create the right genomic environment for optimal function of the plasmid’s

regulatory circuits, a general point about plasmid organisation not previously recognised [6].

Much of the resistance gene load carried in otherwise healthy individuals is within the gut

microbiota and plasmids carrying the resistance genes facilitate their dissemination through-

out human communities and the global population as a whole [47]. Being able to displace plas-

mids from a target population was therefore a key goal of this work. Gratifyingly our pCURE

based on pUB307 worked very efficiently on agar surfaces without selection so long as the bac-

terial community was remixed regularly in the way described by Fox et al [35]. The peristaltic

action in the gut is effectively a remixing process which should aid transfer if effective mating-

pairs between bacteria can occur. However, because it is well established that the thick, rigid

pili encoded by IncP-1 plasmids are more suited to solid-surface mating [48] we anticipated a

much greater challenge in an animal gut because this fluid or sludge-like environment is more

complex and presents higher shear forces. This pessimistic view is in line with some published

studies on the transfer of IncP-1 plasmids in the gut environment. For example, Licht et al (49)

observed that although recipient and then donor strains could be established to high levels in

the mouse gut while treating with sub-inhibitory concentrations of tetracycline, under the

A broad-host-range conjugative vector for plasmid curing

PLOS ONE | https://doi.org/10.1371/journal.pone.0225202 January 15, 2020 14 / 23

https://doi.org/10.1371/journal.pone.0225202


same regime, transfer did not occur at a detectable rate [49]. By contrast, comparison of loss

rate of WT and a Tra- mutant of IncP-1 plasmid pKJK5 indicate that its transfer system is

important for retention in the rat gut, implying that significant transfer is occurring in the

absence of selection [50]. This is consistent with our mouse experiments showing that once

our donor strain was established by a period of selection, transconjugants could be easily

detected and that their numbers rose at least ten-fold in the absence of selection while the

donors disappear (Fig 6). The fact that our experimental regime did not first eliminate the nat-

ural microbiota by streptomycin treatment may play a role in the difference. This may also be

encouraging for related use of IncP-1 plasmids such as the recent demonstration of RK2 as a

vehicle for targeting plasmids with CRISPR-cas9 [51]. Indeed combining both approaches into

a single plasmid might provide an even more powerful strategy for tackling antibiotic resis-

tance in the future.

Materials and methods

Bacterial strains, plasmids and growth conditions

Escherichia coli strains used were DH5α [52], C600 [53], MV10NalR [54], JM109 [17], HB101

[55], Nissle1917 [56], AL1 (this study, RifR mutant of mouse E. coli strain isolated by Alessan-

dro Lazdins in Sydney). Plasmids used are listed in the S2 Table. Bacteria were cultured aerobi-

cally, in either L-broth/L-agar [33], or M9 Minimal Medium [33] (supplemented with amino

acids at 50 μg ml-1) at 37˚C. Final antibiotic concentrations were: ampicillin (Ap or Amp),

100 μg ml-1; kanamycin (Km or Kan), 50 μg ml-1; chloramphenicol (Cm or Cam), 50 μg ml-1;

nalidixic acid (Nal), 25 μg ml-1; rifampicin (Rif) 100 μg ml-1; and tetracycline (Tc or Tet), 25 μg

ml-1. For the blue/white screening L-agar was supplemented with X-gal (20 μg ml-1) and IPTG

(0.5mM).

DNA analysis and manipulation

Restriction enzymes were purchased from New England Biolabs; T4 DNA ligase and Taq

DNA polymerase were from Invitrogen; Velocity proof-reading DNA polymerase was from

Bioline; Q5 high fidelity Taq polymerase was from NEB. PCR amplification of DNA was

achieved using the primers (AltaBioscience, University of Birmingham, UK; or Sigma Aldrich)

listed in S3 Table. Reactions were cycled in a SensoQuest Lab Cycler following standard proce-

dures [57]. PCR products were purified using the Illustra GFXTM PCR DNA and Gel Band

Purification Kit (GETM Healthcare). Small-scale plasmid DNA preparations were performed

using the AccuPrep Plasmid MiniPrep DNA Extraction Kit (Bioneer) adapted from the alka-

line lysis method of Birnboim and Doly [58]. DNA sequencing reactions were prepared and

run on an ABI 3730 DNA analyser (Functional Genomics Facility, University of Birmingham,

U.K.) following the chain termination method [59].

Comparison of plasmid copy number

At least triplicate selective overnight (16 h) cultures of E. coli carrying the query plasmids plus

2 kb pACYC194 derivative pDS3 as internal standard grown in LB with shaking at 200 rpm

and 37˚C were harvested and then plasmid DNA extracted as described above. Plasmid DNA

was digested with an enzyme that would cut just once, to linearise the DNA and make ethid-

ium bromide binding uniform. Band intensities were determined with QuantityOne software

from Biorad and normalised against the pDS3 band. Colonies from serial dilution of the cul-

tures were replica plated to determine % plasmid carriage.
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Conjugative transfer

Following overnight growth, 100 μl of donor was mixed with 1 ml of E. coli MV10 NalR recipi-

ent and filtered onto a 0.45 μm sterile Millipore filter. Filters were placed on L agar plates

which were incubated at 37˚C for 6 hours. Cells from the filter were resuspended in 1 ml of

0.85% (w/v) sterile saline solution each and serially diluted before spreading on selective agar

and incubation at 37˚C.

Recombinational engineering (recombineering) of conjugative IncP-1

plasmid genomes

For insertions, deletions or replacements, primers (S3 Table) were used to PCR-amplify

approximately 500 bp arms on either side of the point or region to be changed. The arms were

joined by designing the internal primers to have complementarity, sometimes incorporating

new restriction sites, to allow joining together by SOEing (Splicing by Overlap Extension)

PCR [60]. Initial PCR products were purified, mixed and then extended for three cycles before

adding the external primers for the remaining cycles. The product was routinely cloned

between HindIII and SalI sites of a pACYC184 derivative pMEL1 that has the sacB gene

(allowing counter-selection with sucrose) inserted between the XbaI and HindIII sites. To

incorporate the antiF and antiK cassettes into a conjugative plasmid the homology arms were

first inserted to give pMILL1 (S2 Table) and then the cassettes cloned between the arms (using

restriction sites designed in the inner primers) to give pMILL2 and pSLK1 respectively (S2

Table).

The recombineering plasmid was introduced into E. coli C600 already carrying the target

plasmid, selecting with Cam and an antibiotic appropriate for the target plasmid (routinely

Tet). Conjugative transfer to MV10nalR was then carried out selecting both markers and Nal–

the pMEL1-derived plasmid should not transfer unless it has recombined with the conjugative

plasmid. Individual colonies were purified by streaking to single colonies and these plates were

used to inoculate liquid cultures which were grown overnight without Cam. Selection of reso-

lution products was then achieved either by spreading on L-agar with sucrose (5% w/v) or by

isolating plasmid DNA and cutting with XbaI that cuts in pMEL1 but not in the IncP-1 back-

bone to linearise the unwanted plasmids so that they will not transform bacteria.

Testing curing efficiency

For transfer by conjugation, overnight liquid cultures of E. coli C600 carrying the pCURE plas-

mid to be tested, or an appropriate control, were washed to remove any selective antibiotics,

then mixed 1:1 and 1:10 with a strain carrying the target plasmid and a standard filter mating

carried out at 37˚C for 1 h. Bacteria from the membrane were then resuspended in 1 ml sterile

saline (0.85% w/v) and serially diluted before plating on selective agar to determine the total

number of transconjugants and transconjugants still carrying the target plasmid. Displacement

of F’prolac was determined in two ways: first, by spreading on M9 medium supplemented

appropriately with and without proline to determine % loss of Pro+ phenotype; second, by

growth on L-agar with IPTG and X-gal when the target strain additionally carried pUC18

(selected for with Amp) to give a Lac+ phenotype due to the presence of the lacZ–fragment

encoded by pUC18, so that loss of F’prolac gave a Lac- phenotype. When introducing the cur-

ing plasmid by transformation the target bacteria were made competent by standard CaCl2

treatment and transformation was done with purified pCURE DNA.

The unselected invasion assay was carried out by repeated mixing on nylon membranes as

described by Fox et al., [35]. Donor bacteria were mixed with target strain to give
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approximately 106 donors and 109 recipient bacteria before spreading 100 μl on a nitrocellu-

lose filter (25mm diameter, 0.45μm pore size, EMD-Millipore, Darmstad, Germany) on an L-

agar plate. After 24 h incubation at 37˚C the bacteria were resuspended in 1 ml saline, mixed

thoroughly and serially diluted to determine both transfer and curing. The undiluted suspen-

sion (100 μl) was spread on a fresh nylon membrane on an L-agar plate to start the next mating

period.

Manipulation of mini-RK2 plasmids

Making pCT549 derivatives was awkward because insertion of EcoRI-BglII oriV fragments or

BglII-PacI fragments into this plasmid proved difficult. To insert EcoRI-BglII oriV fragments

without the antiF cassette the oriV segment was generated by PCR, joined to pGEM-T Easy

and sequenced. The pGEMT-derivative and pCT549 were then cut with BglII and ligated

before transformation into E. coli C2110, which is DNA polI deficient so does not allow repli-

cation of the pMB1 replicon in the pGEM-T, thus selecting cointegrants which also contain

the IncP replicon that is PolI independent. Plasmid DNA from transformants was checked for

the relative orientation of the joined segments and the one chosen that could be cut with

EcoRI and recircularised by ligation to replace the old oriV with the new one.

To insert the antiF cassette beside oriV, primers were designed to put XbaI + EcoRI sites

downstream of oriV and MfeI + PacI sites upstream, where BglII is normally. After cloning the

MfeI-XbaI oriV fragment in pGEM-T Easy and checking the sequence it was ligated with the

pACYC184 derivative pLAZ2 that had been cut with EcoRI and XbaI. In pLAZ2 EcoRI defines

one end of the antiF cassette and the XbaI site is on the same side separated by one homology

arm and the sacB gene. The other end of the antiF cassette in pLAZ2 is defined by a BglII site.

The MfeI/EcoRI ends can join but do not regenerate either site so this construction generates

a BglII-antiF-PacI-oriV-EcoRI-XbaI segment and this was inserted into pCT549 as described

above involving BglII cutting, ligation and transformation into C2110. The antiF cassette was

similarly inserted into mini-RK2 plasmid pRK2501 that already lacked korB.

To remove parts of the korA-incC-korB-korF-korG-kfrABC region and remnants of trbB
near trfA, inverse PCR was carried out on pCT549+antiF cassette with primers incorporating

an XbaI site since XbaI does not cut the RK2 backbone or the antiF cassette. Long range PCR

was carried out with Q5 high fidelity Taq polymerase using their recommended primer design

and conditions removing korF-trbB, korB-trbB and incC-trbB. The product was purified, cut

with XbaI, recircularised and transformed into DH5α. To remove incC but not korB the korB
orf was amplified and it plus the ΔkorF-trbB plasmid were ligated after cutting with XbaI (cuts

upstream of trbBp) and SphI which cuts in incC.

Mouse experiments

All animal care procedures and experiments were approved by the Animal Ethics Committee

of Western Sydney Local Health District (protocol 4276.08.17) in accordance with the ‘Austra-

lian Code of Practice for the Care and Use of Animals for Scientific Purposes’ and carried out

essentially as described previously [9]. Five week old female BALB/c mice (Animal Resource

Centre; Perth, WA, Australia) were housed in groups of three in open-lid M1 polypropylene

cages (Able Scientific, Australia) on a 12 h light/dark cycle, with food and water available ad

libitum (Biological Services Facility, Westmead Institute for Medical Research). Each different

treatment involved groups of 3 mice. Mice were acclimatised (d-6 to d0) before experiments,

followed by run-in (d1-d3) in the experimental room to establish the baseline. Mice were

fasted for 6 h before being given access to sucrose water and then normal food was continu-

ously available. Bacterial cultures carrying a plasmid were resuspended in sucrose water (8%,
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w/v) to an OD600 of ~0.4±0.05 and fed to mice on specified days and / or antibiotics (10–50

mg L-1) as appropriate. On the specified days each mouse was briefly transferred into a sepa-

rate plastic box for weighing and to collect fresh faeces. Faeces (100 mg per mouse) were sus-

pended in 1 ml phosphate buffered saline (PBS), dilutions plated on CHROMagar with

appropriate antibiotics and colonies counted after incubation O/N at 37 ºC. Periodically 100

colonies were picked onto further plates to determine accurate proportions of resistance phe-

notypes. PCR to detect the IncK plasmid replicon in RifS E. coli was done using primers

AL_IncK_F and AL_IncK_R (S3 Table). Mouse faeces solutions (100 mg in 1 ml saline) were

diluted 1:100 times in water and 3 μl used as template in 50 μl reaction and E. coli carrying

pCT::aph was used as positive control. At the end of the experiment PCR was carried out to

determine whether any pCT::aph plasmid DNA could be detected if that was not evident by

direct plating. Mice were euthanised by an overdose of CO2 immediately after completion of

experiments.

The groups of mice were as follows. Group 1 (control group): received normal food and

drink plus sucrose water when other groups received it but without bacteria or antibiotics.

Group 2 (antibiotic control group): received normal food and drink plus sucrose water with

antibiotics when groups 3 & 4 received antibiotics. Group 3 (colonisation control group):

received E. coli AL1 (pCT::aph) in sucrose water for days 3–5 plus Kanamycin for days 4–6,

then normal food and water for the rest of the experiment, monitoring E. coli AL1(pCT::aph)

in faeces until end of experiment. Group 4 (curing experimental group A): received E. coli
AL1(pCT::aph) in sucrose water for 3 days plus Kan (3 days) as group 3, then challenged with

E. coli Nissle1917(pCURE-K-307) for days 10–12 and Tet for days 11–13 and monitored faeces

for different sets of E. coli (endogenous coloniser, curing strains and challenger). Group 5

(curing experimental group B): received E. coli AL1 (pCT::aph) in sucrose water for 3 days

plus Kan (3 days), then challenged with E. coli Nissle1917 (pCURE-K-307) for 3 days but no

antibiotics and monitored faeces as above. Group 6 (curing experimental group C): received

E. coli AL1 (pCT::aph) in sucrose water for 3 days plus Kan (3 days), then challenged with E.

coli Nissle1917 (pCURE-K-307) every day for 8 days (d10-17) and monitored faeces as above.

Data and material availability

Data for all experiments can be obtained from the corresponding author. Curing plasmids can

be purchased from Plasgene via the corresponding author on receipt of a signed Material

Transfer Agreement for non-commercial use only. Other materials are available on request

from the corresponding author.

Supporting information

S1 Table. Copy number comparison for plasmids shown in Fig 4 and S2 Fig.
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S2 Table. Plasmids used and constructed during this study.
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S3 Table. Primers designed and used during this study.

(DOCX)

S1 Fig. Growth of E. coli C600 with different plasmids at increasing concentrations of

kanamycin. A) Comparison of kanamycin resistance of C600, C600[RK2] and C600[pUB307].

C600[RK2] has an MIC of 600μg ml-1, whereas C600[pUB307] is giving an MIC of 1000–

1200μg ml-1. B) Comparison of kanamycin resistance of the same strains as tested in panel A

but including additional plasmids. C600[pUB307] is still showing higher resistance than C600
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S2 Fig. Comparison of plasmid copy number for key plasmids after curing with EcoRI. A.

All plasmids compared in triplicate. B. Six isolates pCT549 and pCT549+i10 compared in

pairs, overexposed to make the RK2-derived plasmid bands more visible. Band intensities

were determined using Quantity One software after adjusting the exposure to ensure that the

image was not saturated and then normalised by taking the ratio to the control pDS3 band–

numerical data is shown in S1 Table. To give maximum confidence in the pCT549 v pCT549

+i10 comparison these two plasmids were also compared alone with multiple samples paired

to ensure identical conditions. S1 Table shows the signal for each band after subtracting back-

ground. Means and standard deviations were calculated and statistical analysis performed for

the critical pCT549 v pCT549+i10 comparison. S1 Raw Images shows the uncropped images

used in this Figure.

(DOCX)

S3 Fig. Invasion of the donor strain in the unselected invasion assay with pCT::aph as the

target plasmid. Both HB101 and MV10nalR were successfully used as E. coli donor host

strains. Transfer into the donor in the experiment with MV10nalR as the host was detected by

selecting resistance to nalidixic acid for the host and kanamycin for the plasmid. Mating mix-

tures were re-suspended in saline and after serial dilution 20 μl aliquots were spotted in a circle

round the plate. The numbers are low so it was not easy to plot them on the same log scale as

the data shown in Fig 5.

(DOCX)

S4 Fig. Effect of pCURE-K-307on carriage of pCT::aph in the absence of selection with tet-

racycline for comparison with the data in Fig 6C and S5 Fig. The key points are that the fre-

quency of RifR E. coli (pCURE-K-307) is very low and that pCT::aph persists throughout the

experiment. The data is shown in the Tables in S4 text.

(DOCX)

S5 Fig. Effect of pCURE-K-307 on presence of target plasmid pCT::aph in bacteria in the

mouse gut when accompanied with a short period of tetracycline treatment after

pCURE-K-307 was administered. In the mouse experiments three mice were used for each

treatment and the mean at each time point plotted but the data in this Figure is for each indi-

vidual mouse that was used to generate Fig 6C. The data is shown in the Tables in S4 text.

(DOCX)

S6 Fig. Alignment of the oriV regions of plasmids representing IncP-1 subgroups α (RK2,

BN000925.1), β (pRWC72a, JX486125.1; R751, NC_001735.4), γ (pQKH54, AM157767.1),

δ (pEST4011, NC_005793.2) and ε (pKJK5, AM261282.1) to show the conservation of

Iteron 10 in all five groups. The initial alignment was constructed in Clustal Omega but then

optimised manually since the sequence divergence, particularly for pQKH54, makes some of

the initial alignments unreliable. The Iteron consensus for pQKH54 is also slightly different

from that of the other plasmids. Plasmid pRWC72a was chosen as the IncP-1β plasmid because

it is like the other plasmids chosen in not having addition system genes between the klcA pro-

moter and Iteron 10. The numbers at the right hand end of the lines refer to the coordinates in

the Genbank files for these plasmids. The sequence is not extended as far as Iteron 1 because

the size of the Figure then becomes too cumbersome.

(DOCX)
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