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ABSTRACT 110 

The evolutionary processes that drive universal therapeutic resistance in adult patients with 111 

diffuse glioma remain unclear1,2. Here, we analyzed temporally separated DNA sequencing data 112 

and matched clinical annotation from 222 patients with glioma. Through mutational and copy 113 

number analyses across the three major subtypes of diffuse glioma, we observed that driver 114 

genes detected at initial disease were retained at recurrence, while there was little evidence of 115 

recurrence-specific gene alterations. Treatment with alkylating-agents resulted in a 116 

hypermutator phenotype at different rates across glioma subtypes, and hypermutation was not 117 

associated with differences in survival. Acquired aneuploidy was frequently detected in recurrent 118 

gliomas characterized by presence of an IDH mutation but without 1p/19q codeletion and further 119 

converged with acquired cell cycle alterations and poor outcomes. We show that the clonal 120 

architecture of each tumor remains similar over time and that absence of clonal selection was 121 

associated with increased survival. Finally, we did not observe differences in immunoediting 122 

levels between initial and recurrent glioma. Our results collectively argue that the strongest 123 

selective pressures occur early during glioma development and that current therapies shape this 124 

evolution in a largely stochastic manner. 125 

  126 
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INTRODUCTION 127 

Diffuse glioma is the most common malignant brain tumor in adults and invariably relapse 128 

despite treatment with surgery, radiotherapy, and chemotherapy. The molecular landscape of 129 

glioma at diagnosis has been extensively characterized 3-9. While these efforts have led to the 130 

identification of driver genes and clinically relevant subtypes10,11, it is unknown how the glioma 131 

genetic landscape evolves over time and in response to therapy.  132 

Intratumoral heterogeneity is a well-recognized characteristic of gliomas and results from 133 

selective pressures such as a limited availability of nutrients, clonal competition, and 134 

treatment12-15. Tumors are thought to circumvent these growth bottlenecks via dynamic 135 

competition of subclones resulting in the most favorable environment for tumor sustenance1. 136 

Recent studies have suggested that stochastic changes in clone frequency (i.e. neutral 137 

evolution) and immunogenic surveillance may further contribute to the observed intratumoral 138 

heterogeneity16 17. An understanding of evolutionary dynamics at multiple time points is needed 139 

to develop strategies aimed at delaying or preventing the onset of tumor progression. 140 

To investigate clonal dynamics over time and in response to therapeutic pressures, we 141 

established the Glioma Longitudinal Analysis (GLASS) Consortium. GLASS is a community-142 

driven effort that seeks to overcome the logistical challenges in constructing adequately 143 

powered longitudinal genomic glioma datasets by pooling datasets from patients treated at 144 

institutions worldwide 18. We have analyzed longitudinal profiles across the three molecular 145 

glioma subtypes to identify the molecular processes active at initial and recurrent time points. 146 

These analyses identified few common features of glioma evolution across subtypes, and 147 

instead pointed toward highly variable and patient-specific trajectories of genomic alterations. 148 

RESULTS 149 

GLASS cohort  150 

We pooled existing and newly generated longitudinal DNA sequencing datasets from 288 151 

patients treated at 35 hospitals (Supplementary Table 1, Extended Data Fig. 1).  After applying 152 

quality filters, tumor samples from 222 patients with high-quality data in at least two time points 153 

were classified according to molecular markers into three major glioma subtypes: 1. IDH-mutant 154 

and chromosome 1p/19q co-deleted (IDHmutant-codel; n = 25) 2. IDH-mutant without 155 

chromosome 1p/19q codeletion (IDHmutant-noncodel; n = 63) and 3. IDH wild type (IDHwt; n = 156 

134), in alignment with the World Health Organization classification of Central Nervous System 157 

tumors 10,11. For each patient we selected two time-separated tumor samples, henceforth initial 158 

and recurrence, for further analysis.  159 
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Mutational burdens and processes over time 160 

We first evaluated temporal changes in mutational burden and processes to understand general 161 

patterns of glioma evolution. Mutation burdens in initial tumors were comparable with previously 162 

reported rates 6,7,19. 2.20 mutations (single-nucleotide variants and small insertions/deletions) 163 

per Megabase (Mutations/Mb) for IDHmutant-codels; 2.52 Mutations/Mb for IDHmutant-164 

noncodels; and 2.85 Mutations/Mb for IDHwt glioma (Fig. 1a; Extended Data Fig. 2a). Excluding 165 

DNA hypermutation cases (> 10 Mutations/Mb, n = 35), the mutation burden increased after 166 

recurrence in 70% of the cohort (Extended Data Fig. 2a). To study changes during tumor 167 

progression, we separated mutations into three fractions: initial only, recurrence only, or shared. 168 

Interestingly, private fraction but not shared fraction mutation burdens were comparable 169 

between subtypes (Extended Data Fig. 2b). Patient age at diagnosis was significantly 170 

associated with the shared mutational burden and to a lesser extent the mutation burden private 171 

to the initial tumor (Extended Data Fig. 2c). On average, tumors with longer time to recurrence 172 

had slightly higher mutation burdens (Extended Data Fig. 2d).  173 

These fraction-specific differences in mutation burden suggested that the activity of 174 

distinct mutational processes may also be time-dependent. We therefore classified mutations in 175 

each fraction according to the Catalogue of Somatic Mutations in Cancer (COSMIC) signature 176 

database20. As expected, signature activity was closely related to subtype and fraction (Fig. 1b, 177 

Extended Data Fig. 3a). Signature 1 (aging) was nearly always the dominant signature amongst 178 

shared mutations in IDHwt tumors, whereas the shared fraction in IDHmut-noncodel and 179 

IDHmut-codel tumors - tumor subtypes associated with a younger age of diagnosis - additionally 180 

showed a strong presence of signature 16 (unknown etiology). Signatures 3 (double strand 181 

break repair) and 15 (mismatch repair) along with signature 8 (unknown etiology) were mostly 182 

confined to the private fractions, suggesting that these processes were of lesser importance to 183 

tumor maintenance than those associated with aging.  184 

Treatment of glioma includes alkylating agents that can induce post-treatment 185 

hypermutation21-23. We observed enrichment of the associated signature 11 in recurrent tumors 186 

with a mutational load exceeding 10 Mutations/Mb and treated with alkylating agents (Fig. 1a, 187 

Extended Data Fig. 3b). Treatment-associated hypermutation occurred most frequently among 188 

IDHmutant-noncodels (47%), followed by IDHmutant-codels (25%), and IDHwt gliomas (16%) 189 

(Fig. 1c). The difference in the proportion of hypermutation events was significantly different 190 

between the three glioma subtypes (Fisher’s exact-test P = 2.0e-03), suggesting that IDHmutant 191 

noncodels are most sensitive to developing a hypermutator phenotype 24. 192 



6 
 

Treatment-induced hypermutation has been associated with disease progression23. We 193 

did not find overall survival differences between alkylating agent-treated hypermutators and 194 

alkylating agent-treated non-hypermutators independent of age, subtype, and MGMT 195 

methylation status (Fig. 1d, Supplementary Table 2a-b). In order to further assess the 196 

pathogenicity of acquired mutations, we studied their clonality25. Newly acquired clonal 197 

mutations have penetrated most of the tumor (i.e., a selective sweep) between initial and 198 

recurrence and mark clonal expansion 26. Conversely, acquired subclonal mutations are less 199 

prevalent, and therefore less likely to drive disease progression. Previous reports have 200 

suggested that alkylating agent-associated mutations hypermutation are frequently clonal27. We 201 

found that in 48% of hypermutated tumors a majority of the recurrence-only mutations were 202 

clonal, potentially reflecting cases where a selective sweep occurred (Extended Data Fig. 4a). 203 

However, IDHmut-noncodel hypermutators with predominantly clonal mutations did not show 204 

differences in survival compared with those harboring predominantly subclonal mutations (log-205 

rank test P = 0.38, Extended Data Fig. 4b). Alkylating agents such as temozolomide prolong 206 

survival of adult patients with glioma28,29. Our results show that treatment-induced 207 

hypermutation is common across subtypes and does not associate with a reduced overall 208 

survival supporting the noted benefit of alkylating agent therapy.  209 

Selective pressures during glioma evolution  210 

Environmental and treatment-induced pressures may drive changes in clonal architecture at 211 

recurrence. To evaluate selection over time we clustered copy number changes and mutations 212 

based on their cancer cell fraction (CCF). CCF values represent the fraction of cancer cells 213 

harboring a given alteration and reflect the relative timing of events, since alterations that are 214 

present in a subset of cancer cells likely occurred later than events present in all cancer cells 215 

(Fig. 2a). Most tumors (84%) demonstrated a mutational cluster with CCF > 50% that persisted 216 

from the initial tumor into recurrence, likely reflecting the tumor trunk and harboring the tumor-217 

initiating driver mutations (Fig. 2b, Extended Data Fig. 5a)30. To determine changes in clonal 218 

dominance over time we ranked clusters within each sample by their CCF and found similarities 219 

in clonal architecture throughout the course of disease (Kendall rank correlation, tau = 0.20, P = 220 

3.76E-24, Fig. 2b, Extended Data Fig. 5b-d). These results suggested that the clonal structure 221 

at initial disease mostly persisted into recurrence.  222 

To deepen our assessment of selective pressures, we evaluated selection in initial and 223 

recurrent tumors by determining the normalized ratio between non-synonymous and 224 

synonymous mutations (dNdScv). Higher ratios (> 1) suggest positive selection, and ratios less 225 

than one suggest negative selection . We found evidence for positive selection at both time 226 
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points despite differences between subtypes (Fig. 2c). Separating mutations into mutational 227 

fractions demonstrated that shared but not private mutations showed positive dN/dS ratios in all 228 

three glioma subtypes indicating that only shared mutations (including truncal mutations) are 229 

likely subject to positive selection (Fig. 2c). The dN/dS ratio of initial-only mutations showed that 230 

these are neither positively nor negatively selected for, while recurrence-only mutations were 231 

subject to negative selection in IDHwt.  232 

To verify the reduced selective pressure in the private mutations we used an orthogonal 233 

method to test for evidence of selection (neutralitytestr)31. The method uses variant allele 234 

frequency distributions and estimated mutation rates to detect whether profiles significantly 235 

deviate from a model of neutral evolution (i.e. as depicted by a linear relationship in Fig. 2d). In 236 

accordance with dNdScv results, private mutations demonstrated dynamics consistent with 237 

neutral evolution (Fig. 2d). Shared subclonal mutations deviated from linearity and were 238 

consistent with selection both in non-hypermutators and hypermutators (Fig. 2d, Extended Data 239 

Fig. 6a-b), providing additional evidence that the strongest selective forces occur early in 240 

gliomagenesis. 241 

 Cohort-level analysis of selection masks the heterogeneity that exists in individual 242 

evolutionary trajectories. To determine the selective effects at each tumor time point we used a 243 

Bayesian framework (SubClonalSelection) which simultaneously provides sample-specific 244 

probabilities for both selection and neutrality while modeling sources of noise in sequencing 245 

data. The classification of a sample as “selection” or “neutral” is determined by whichever model 246 

has the greater probability. Classification as “neutral” reflects the accumulation of random 247 

mutations that are not subject to selection. Given the stringent algorithm requirements, 183 248 

patients were included in this analysis with at least one time point, and 104 patients with both 249 

time points (16 IDHmutant-codels, 29 IDHmutant-noncodels, 59 IDHwt, Supplementary Table 250 

3). Neutral to neutral was the most common evolutionary trajectory across all three subtypes 251 

(52%), and IDHwt tumors displayed the highest observed selection at any time point with 252 

selection detected in 64% of tumors (Fisher’s exact test P = 0.01, Fig. 2e, Supplementary Table 253 

3). IDHwt gliomas with evidence for selection at recurrence had a shorter overall survival than 254 

IDHwt gliomas classified as neutral at recurrence (P = 2.7E-02; log-rank statistic, Fig. 2f), 255 

suggesting that subclonal competition associates with more aggressive tumor behavior. To 256 

address the limitations of smaller sample sizes in the IDH-mutant subtypes, we performed a 257 

Cox proportional hazards model including age at first diagnosis, all three glioma subtypes, and 258 

mode of selection at recurrence. This analysis revealed that selection at recurrence was 259 

significantly associated with shorter survival across subtypes (HR = 1.53 95% CI 1.00-2.41, P = 260 
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4.8E-02, Supplementary Table 4). We next investigated whether radiation and chemotherapy 261 

imposed a selective effect, by comparing the evolutionary status at recurrence with treatment 262 

and other clinical variables. We did not observe significant associations between subclonal 263 

selection and radiation therapy or chemotherapy (Fisher’s exact-test P > 0.05, Supplementary 264 

Table 5), suggesting that standard therapeutic approaches for glioma have limited impact on the 265 

subclonal tumor architecture. While high-depth sequencing datasets may be required to detect 266 

subtle selective effects26, our analyses raise the possibility that the survival benefit derived from 267 

standard chemoradiation results from tumor cell elimination where treatment sensitivity of 268 

individual cells is not determined by genetic factors.  269 

Driver alteration frequencies across time 270 

We evaluated how stability, acquisition, and loss of mutation and copy number drivers6 over 271 

time impact glioma evolution. We used dNdScv to nominate 12 candidate mutation driver genes 272 

at both time points (Q < 0.05, Fig. 3a, Extended Data Fig. 7a) and determined significant copy 273 

number alterations that recapitulated previously identified drivers (Extended Data Fig. 7b). 274 

Mutations in IDH1 and co-occurring 1p/19q chromosome-arm loss have been suggested as 275 

glioma-initiating events1, which was corroborated by the observation that these events were 276 

never lost or acquired during the surgical interval (Fig. 3a, Extended Data Fig. 8a). Similarly, we 277 

observed that TERT promoter mutations were almost always shared in the IDHmutant-codel 278 

and IDHwt, though many samples lacked sufficient coverage in this GC-rich region. 279 

Chromosome 7 gains and chromosome 10 losses were present in a large majority of IDHwt 280 

initial tumors and persisted into recurrence.  281 

Shifts in the fraction of cancer cells harboring an event may also indicate a time 282 

dependency of drivers. We determined changes in cellular prevalence of shared driver events 283 

by ordering events in each sample by their CCF (Extended Data Fig. 9). ATRX mutations in 284 

IDHmutant-noncodel initial tumors demonstrated lower CCFs than TP53 (P = 0.03) and IDH1 (P 285 

= 0.10) mutations, suggesting IDH1 and TP53 mutations precede ATRX inactivation1. There 286 

was no difference in CCF between IDH1 and TP53 amongst initial gliomas (P = 0.98), however, 287 

IDH1 mutations demonstrated significantly lower CCFs compared with TP53 (P = 0.0018) in 288 

recurrent gliomas. We did not observe any CCF differences among driver mutations detected in 289 

IDHwt tumors at either time point. Chromosome 10 deletion CCFs were higher compared to 290 

chromosome 7 amplifications (P = 0.0036) implying that chromosome 10 deletions arise earlier 291 

32. Similarly, there was no difference in CCF between CDKN2A deletion and EGFR amplification 292 

(P = 0.70). EGFR and chromosomal arm events significantly differed (i.e. 10p del vs EGFR 293 

amp, P = 0.0019) but not CDKN2A deletion and chromosomal events (i.e. 10p del vs CDKN2A 294 
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del, P = 0.33). The consistently high CCF for EGFR amplifications could indicate that these 295 

events precede even some larger chromosomal aberrations, while not excluding the possibility 296 

that high levels of extrachromosomal EGFR 33 artificially inflate CCF. 297 

 Longitudinal changes in CCF values provide additional insights into evolutionary 298 

dynamics. For instance, the CCF value may increase when a driver event is linked to clonal 299 

expansion, or conversely, decrease when a clone is outcompeted. Most individual drivers did 300 

not demonstrate significant consistent CCF changes between the initial tumor and recurrence 301 

(Extended Data Fig. 10a). A notable exception was the TP53 mutation CCF that increased over 302 

time (P = 0.037) in IDHmut-noncodels, but not IDHwt gliomas (P = 0.13, Extended Data Fig. 303 

10b). We did not observe any differences in IDH1 CCF over time among IDHmut-noncodel 304 

tumors, possibly because the general trend of these tumors to increase in CCF is counteracted 305 

by the biological loss of relevance of mutant IDH1 over time (Extended Data Fig. 10c). Indeed, a 306 

gross comparison of all shared mutation CCFs revealed an increase in recurrent IDHmut-307 

noncodel tumors (P < 0.0001), which may reflect increased clonality and a reduction in 308 

intratumoral heterogeneity (Extended Data Fig. 10d). In contrast, shared CCFs decreased in 309 

IDHwt tumors, potentially indicating a general increase in intratumoral heterogeneity at 310 

recurrence (P < 0.0001, Extended Data Fig. 10d). We confirmed that IDHmutant-noncodel CCF 311 

increases and IDHwt decreases were not biased by patients with high mutation burden through 312 

the classification of patient-specific shared mutation CCF change (Extended Data Fig. 10e). 313 

We next investigated whether specific somatic alterations were acquired or lost over 314 

time. Gene-specific enrichment of many recurrence-only mutations was found in hypermutated 315 

tumors, but there was no enrichment for somatic gene alterations in non-hypermutators 316 

suggesting that glioma recurrence is not directed by particular sets of mutations (Extended Data 317 

Fig. 8b). Within subtypes we detected an enrichment in CDKN2A homozygous deletions (Fig. 318 

3a, Extended Data Fig. 8a) in recurrent IDHmutant-noncodels, which was corroborated by 319 

additional cell cycle gene alterations (focal gain of CCND2, CDK4, CDK6, and mutation or 320 

homozygous loss of RB1). Mutations in cell cycle checkpoint control genes are associated with 321 

genomic instability 34. Therefore, we analyzed aneuploidy levels by determining the proportion of 322 

the genome that had undergone aneuploidy events (Extended Data Fig. 11a-b). We observed 323 

that IDHmutant-noncodel tumors had a higher level of aneuploidy at recurrence (Wilcoxon rank 324 

sum test P = 1.4E-06 total aneuploidy, p = 8.6E-03 arm-level aneuploidy, Extended Data Fig. 325 

11c-d) with tumors carrying acquired cell cycle gene alterations displaying the largest increases 326 

in aneuploidy (P = 7.6E-06; Wilcoxon rank sum test, Fig. 3b). We reasoned that CDKN2A 327 

deletions may precede aneuploidy. Homozygous CDKN2A deletions had significantly higher 328 
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CCFs compared to average CNV CCF across the genome (as a surrogate for aneuploidy 329 

related copy number changes), suggesting that CDKN2A loss occurred prior to aneuploidy (Fig. 330 

3c). These alterations may hasten disease progression as patients with either cell cycle 331 

alterations or the largest increases in aneuploidy at recurrence demonstrated significantly 332 

shorter survival than patients without these alterations (log-rank test P < 0.0001, Fig. 3d). Taken 333 

together, the persistence of drivers over time and the paucity of consistent change imply that 334 

therapy does not result in selection of specific sets of molecular changes.  335 

Immunoediting activity in glioma 336 

We next investigated how the immune microenvironment affects evolutionary trajectories. The 337 

immune system may prune tumor cells carrying immunogenic (neo-)antigens, resulting in the 338 

selection of subclones capable of evading the immune response. Evidence of this 339 

immunoediting process has been shown in several cancer types, including glioma 35-38, and 340 

suggests active immunosurveillance that may be therapeutically exploited 39. We 341 

computationally predicted neoantigen-causing mutations40. As expected, the neoantigen load 342 

across the GLASS cohort was strongly correlated with exonic mutation burden (Spearman’s 343 

Rho = 0.89), with 42% of nonsynonymous exonic mutations giving rise to neoantigens on 344 

average. This fraction did not significantly differ by glioma subtype or between initial and 345 

recurrent tumors (P > 0.05, Wilcoxon rank-sum test; Fig. 4a). The most common neoantigen 346 

arose from the clonal R132H mutation in IDH1 and was present in of 22 out of 88 IDH-mutant 347 

initial and recurrent tumors. Beyond mutations in IDH1, no mutations gave rise to a neoantigen 348 

found in more than three tumors at a given timepoint (Supplementary Table 6). Across the 349 

dataset, neoantigens and non-immunogenic mutations exhibited similar changes in cancer cell 350 

fractions between initial and recurrent tumors indicating a lack of neoantigen-specific selection 351 

processes over time (Extended Data Fig. 12a). 352 

We then examined the extent to which immunoediting occurred by comparing each 353 

sample’s observed neoantigen rate to an expected rate that was empirically derived from our 354 

dataset. The output of this approach is a normally distributed set of ratios centered at 1. 355 

Samples with an observed-to-expected neoantigen ratio < 1 exhibit evidence of neoantigen 356 

depletion relative to the rest of the dataset, and thus are more likely to have been 357 

immunoedited. We found that none of the three glioma subtypes harbored observed-to-358 

expected ratios that significantly differed from 1 (P > 0.05, one sample t-test), though IDHwt 359 

tumors exhibited significantly lower scores compared to IDHmut-noncodels (t-test, P = 0.04; Fig. 360 

4b). We additionally did not observe an association between the observed-to-expected ratio and 361 

survival when adjusting for subtype and age (Wald test, P > 0.05), nor was there a difference 362 
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between samples with neutral evolution dynamics compared to those exhibiting evidence of 363 

subclonal selection. When comparing samples longitudinally, we found that the observed-to-364 

expected neoantigen ratio was strongly correlated between initial and recurrent tumors of each 365 

patient (Pearson’s R = 0.73, P = 5E-38), suggesting that the neoantigen depletion level in the 366 

recurrence reflects that of the initial tumor (Fig. 4c).  367 

Immunoediting is most likely to take place in the tumors with high cytolytic activity and 368 

low levels of immunosuppressive activity38. Hypermutators, which have high neoantigen loads, 369 

have previously been associated with highly cytolytic microenvironments 37. However, we did 370 

not observe any differences in the observed-to-expected neoantigen ratio between 371 

hypermutated recurrent tumors and their initial counterparts, nor did we observe differences 372 

between hypermutated and non-hypermutated recurrent tumors, indicating that immunoediting 373 

activity is not related to the total number of mutations in a sample (Wilcoxon rank-sum test P > 374 

0.05; Extended Data Fig. 12b). To more directly determine whether there were immunologic 375 

factors associated with neoantigen depletion, we analyzed CIBERSORT immune cell fractions 376 

from a subset of samples that had undergone expression profiling in a previous study (n = 84 377 

from 42 tumor pairs) 37,41. Initial tumors with an observed-to-expected neoantigen ratio >1 378 

exhibited significantly higher levels of CD4+ T cells than those with a ratio < 1, while recurrent 379 

tumors with a ratio > 1 exhibited significantly higher levels of macrophages, neutrophils, and 380 

significantly lower levels of plasma cells relative to those with ratio < 1 (P < 0.05, Wilcoxon rank-381 

sum test; Extended Data Fig. 12c).  382 

While we did not detect many factors associated with the observed-to-expected 383 

neoantigen ratio, we did observe that the ratio was significantly associated with the total number 384 

of unique HLA loci in a patient (Spearman’s Rho = 0.28, P = 2E-9), reflecting similar findings in 385 

lung cancer42. This may bias analyses comparing the ratio across patients. To determine 386 

whether immunoediting varies over time in a patient-agnostic manner, we compared the 387 

observed-to-expected neoantigen ratio derived from a sample’s clonal mutations, which likely 388 

arose earlier in tumor evolution, to that derived from their subclonal mutations, which likely 389 

arose later. We did not observe a significant difference in the observed-to-expected neoantigen 390 

ratio of each patient’s clonal and subclonal neoantigens, regardless of glioma subtype or 391 

whether the sample was an initial tumor or recurrence (P > 0.05, paired t-test; Fig. 4d). 392 

Together, these analyses suggest that neoantigens in glioma are not exposed to differing levels 393 

of selective pressure throughout their development.  394 

DISCUSSION 395 
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We reconstructed the evolutionary trajectories of 222 patients with glioma to better understand 396 

treatment failures and tumor progression. The longitudinal molecular profiles revealed common 397 

features such as acquired hypermutation and aneuploidy, but highlighted the individualistic 398 

paths of post-treatment glioma evolution. Our results provide evidence that current standard of 399 

care therapies do not frequently coerce glioma down predictable paths. Instead, an unexpected 400 

number of gliomas appeared to stochastically evolve following early driver events. We expect 401 

that continuing to profile patient tumors over time using comprehensive sequencing approaches 402 

will identify additional common evolutionary paths. Our results here highlight the exciting 403 

prospects of several ongoing efforts that may inform new glioma therapies.  404 

The observation that treatment-induced hypermutation occurred across subtypes, but 405 

did not confer a detrimental effect on patient survival leaves the clinical significance of glioma 406 

hypermutation uncertain21-24,27. Future analyses that consider the number of therapy cycles and 407 

MGMT DNA methylation status will help to elucidate factors that predispose tumors to 408 

hypermutation and identify therapies that effectively exploit this phenotype’s vulnerabilities (e.g., 409 

high mutation burden). Acquired cell cycle alterations and aneuploidy in recurrent IDHmut-410 

noncodel gliomas also provide a rationale to target these more aggressive phenotypes with 411 

CDK inhibitors43 or with compounds that disrupt microtubule dynamics44. Finally, our analyses 412 

revealed that immunoediting activity does not vary in glioma over time, though we did observe 413 

variation between individual patients. Additional molecular and immunological data are needed 414 

to fully understand the impact this variability has on glioma evolution and to devise therapies 415 

directed at a glioma’s immunogenicity17. To this end, we found that clonal neoantigens arising 416 

from the IDH1 R132H mutation persisted from the initial tumor into the recurrence, justifying 417 

neoantigen vaccine approaches as treatments for initial and recurrent glioma45,46. 418 

 Collectively, these findings help shape our perspective on what constitutes an optimal 419 

treatment, and what approaches would result in the greatest removal or killing of glioma cells 420 

possible. Genomic characterization efforts such as TCGA have greatly increased our 421 

understanding of glioma biology, but were limited to a single snapshot in evolutionary time. The 422 

GLASS resource provides a framework to study the patterns of glioma evolution and treatment 423 

response. 424 

 425 
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Data reporting No statistical methods were used to predetermine sample size.  496 

DNA sequencing and data collection The GLASS dataset consists of both unpublished and 497 

published sequencing data as outlined in Supplementary Table 1. Among the cohort were 498 

exomes from 436 glioma samples (200 patients), whole-genome from 165 glioma samples (78 499 

patients), with overlapping exome/whole-genome data on 78 glioma samples (38 patients). A 500 

matching germline sequence was available for all patients. The dataset includes 257 sets of at 501 

least two time-separated tumor samples, seventeen standalone recurrences, and 19 patients 502 

with at least two geographically distinct tumor portions. More specifically, the dataset includes 503 

exome or whole-genome sequencing data on 211 primary gliomas, 234 first recurrences, 32 504 

second recurrences, 11 third recurrences and one fourth recurrence (Supplementary Table 7). 505 

Newly generated whole genome sequencing data for the Chinese University of Hong Kong 506 

(HK), Northern Sydney Cancer Centre (NS) and MD Anderson Cancer Center (MD) cohorts 507 

were subjected to 150 base paired-end sequencing. The HK samples were sequenced using a 508 

HiSeqX while the NS and MD cohorts were sequenced using a NovaSeq according to Illumina’s 509 

protocols. Whole exome capture was performed using the following platforms as reported in 510 

previous publications. Agilent SureSelect Human All Exon 50Mb capture kit was used for 511 

patients SF-0001- SF-0021, Agilent SureSelect Human All Exon V4 capture kit was used for 512 

patients SF-0024 – SF-0029 in the UC San Francisco cohort. Agilent SureSelect Human All 513 

Exon v4 or v5 was used to capture samples in the Kyoto University cohort. Samsung Medical 514 

Center cohort reported using Agilent SureSelect kit for patients SM-R056 – SM-R071, SM-515 

R075, SM-R076, SM-R095- SM-R114 while Illumina TruSeq Exome-capture kit was used for 516 

patient SM-R072. Exome capture was performed using Agilent SureSelect Human All Exon 50 517 

Mb in The Cancer Genome Atlas (TCGA)-GBM cohort and Agilent SureSelect Human All Exon 518 

v2.0, 44Mb kit in the TCGA-LGG cohort. Columbia University cases were captured using Agilent 519 

V3 50M kit, sequencing 90bp PE for samples R009-TP, R009R1, R011TP, R011R1, R014TP, 520 

R014R1, R017-R1, R018-R1, R019-R1. Mapping files of initial tumor and normal samples of 521 

patients R017 – R019 were obtained from TCGA through CG-hub. All other samples were 522 

captured using Agilent SureSelect XT Human All Exon v4 Kit, PE, 80M reads, 150X on target 523 

coverage. Samples in the Henry Ford Hospital cohort were multiplexed and sequenced using 524 

Illumina HiSeq 2000 by the Sequencing and Microarray Facility at an average target exome 525 

coverage of 100× using 76-bp paired-end reads. Samples in the HK cohort were subjected to 75 526 

base paired-end sequencing for HK-0001 – HK-0004 as performed NextSeq in high output 527 

mode. In the Leeds Cohort (LU) SureSelectXT V5 kit (PE100) was used to construct exome 528 

libraries. Illumina TruSeq Exome capture kit was used for samples at the Medical University of 529 

Vienna – CeMM. 530 

GLASS identifiers A GLASS barcode system was created, based on TCGA barcode design, in 531 

an effort to de-identify patient information and provide an organized framework for the different 532 

pieces of the dataset. 533 

GLASS barcodes are composed of 24 characters. The first four characters specify the 534 

project (either GLSS or TCGA). All datasets submitted to the GLASS consortium, published and 535 

unpublished, were given the GLSS project ID. Samples that were part of the TCGA cohorts 536 

(TCGA GBM and TCGA LGG) were given a TCGA designation. The next two characters 537 

designate the center where the samples were either acquired or sequenced (Supplementary 538 
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Table 7). This is followed by the four-character center specific patient identification that was kept 539 

as close as possible to the patient identification provided by the collaborators to allow a 540 

simplified trace back process. Patient data is divided by a relative sample type, such as initial 541 

tumor (TP), recurrent tumor (R1), normal tissue (NB, NM, etc), or metastatic tumor sample (M1). 542 

If there was more than one recurrence the relative number was specified following “R”.  Some 543 

patients had surgeries for which a biospecimen was unavailable. Thus, a surgical number was 544 

also provided to indicate temporal ordering (Supplementary Table 8). To include spatially 545 

separated samples the portion designation was added, which is followed by one character 546 

specifying the type of analyte, either DNA (D) or RNA (R). As there is variation in the 547 

sequencing analysis, a three-character designation represents either whole genome (WGS) or 548 

whole exome sequencing (WXS). The last part of the GLASS barcode is a six-character 549 

designation unique to each barcode that was randomly generated.  550 

 551 

Computational pipelines All pipelines were developed using snakemake 5.2.2 47. Unless 552 

otherwise stated, all tools mentioned are part of the GATK 4 suite 48. All data was collected at a 553 

central location (The Jackson Laboratory) and was analyzed using homogenous pipelines 554 

capable of processing both raw fastq files as well as re-process previously analyzed bam files.  555 

Alignment and pre-processing Data pre-processing was conducted in accordance to the 556 

GATK Best Practices using GATK 4.0.10.1. Briefly, aligned BAM files were separated by read 557 

group, sanitized and stripped of alignments and attributes using ‘RevertSam’, giving one 558 

unaligned BAM (uBAM) file per readgroup. Uniform readgroups were assigned to uBAM files 559 

using ‘AddOrReplaceReadgroups’. Similarly, unaligned fastq files were assigned uniformly 560 

designated readgroup attributes and converted to uBAM format using 'FastqToSam'. uBAM files 561 

underwent quality control using 'FastQC 0.11.7'. Sequencing adapters were marked using 562 

‘MarkIlluminaAdapters’. uBAM files were finally reverted to interleaved fastq format using 563 

‘SamToFastq’, aligned to the b37 genome ('human_g1k_v37_decoy') using 'BWA MEM 0.7.17', 564 

attributes were restored using 'MergeBamAlignment'. 'MarkDuplicates' was then used to merge 565 

aligned BAM files from multiple readgroups and to mark PCR and optical duplicates across 566 

identical sequencing libraries. Lastly, base recalibration was performed using 'BaseRecalibrator' 567 

followed by 'ApplyBQSR'. Coverage statistics were gathered using 'CollectWgsMetrics'. 568 

Alignment QC was performed running 'ValidateSamFile' on the final BAM file and QC results 569 

were inspected using 'MultiQC 1.6a0' 49. A haplotype database for fingerprinting was generated 570 

using a modified version of the code on https://github.com/naumanjaved/fingerprint_maps. The 571 

tool ‘CrosscheckFingerprints’ was used to confirm that all readgroups within a sample belong to 572 

the same individual, and that all samples from one individual match. Any mismatches were 573 

marked and excluded from further analysis. 574 

Variant detection Variant detection was performed in accordance to the GATK Best practices 575 

using GATK 4.1.0.0. Germline variants were called from control samples using Mutect2 in 576 

artifact detection mode and pooled into a cohort-wide panel of normals. Somatic variants were 577 

subsequently called in individual tumor samples (single-sample mode) and in entire patients 578 

using GATK 4.1 Mutect2 in multi-sample mode. Mutect2 was given matched control samples, 579 

the aforementioned panel of normals and the gnomAD germline resource as additional controls. 580 

Cross-sample contamination was evaluated using ‘GetPileupSummaries’ and 581 
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‘CalculateContamination’ run for both tumor and matching control samples. Read orientation 582 

artifacts were evaluated using ‘CollectF1R2Counts’ and ‘LearnReadOrientationModel’. Somatic 583 

likelihood, read orientation, sequence context, germline and contamination filters were applied 584 

using ‘FilterMutectCalls’.  585 

Variant post-processing BCFTools 1.9 was used to normalize, sort and index variants50. A 586 

consensus VCF was generated from all variants in the cohort, removing any duplicate variants. 587 

The consensus VCF file was annotated using GATK 4.1 Funcotator and the v1.6.20190124s 588 

annotation data source. Allele frequencies (AFs) from multi-sample Mutect2 were used to 589 

compare AFs between related samples. Multi-sample Mutect2 calls and filters mutations across 590 

a patient as a whole and does not determine mutation calls in a single samples. Single-sample 591 

mutation calls were overlaid on the multi-sample calls to infer whether variants were called in 592 

individual samples. Single-sample called variants that were not present in the multi-sample 593 

callset were discarded.  594 

Mutational burden Mutational burden was calculated as the number of mutations per 595 

megabase (Mb) sequenced. A minimum coverage threshold of 15x was required for each base. 596 

DNA hypermutation was defined for recurrent tumors with greater than 10 mutations per Mb 597 

sequenced as these values were considered outliers (1.5 times the interquartile range above 598 

the upper quartile). Notably, there were a few initial gliomas that demonstrated a mutational 599 

frequency above 10 mutations per Mb. However, the “hypermutation” classification was 600 

restricted to only patients with this level at recurrence since these likely reflect different 601 

evolutionary paths. 602 

Mutational signatures The relative contributions of the COSMIC mutational signatures were 603 

determined from a patient’s initial-only, recurrence-only, and shared mutations by solving the 604 

non-negative-least squares (NNLS) problem for each set of mutations using the 30 signatures 605 

from version 2 (March 2015). Six signatures were dominantly enriched in at least 3% of the 606 

fractions and we resolved the NNLS using the reduced six-signature model to increase 607 

accuracy and reduce noise. 608 

Copy number segmentation Copy number identification was performed according to the 609 

GATK Best Practices and is outlined briefly here. The pipeline differs slightly for whole genomes 610 

and whole exomes. For genomes, the genome was segmented into 10kb bins using 611 

‘PreprocessIntervals’. For exomes, overlapping regions between several commonly used 612 

capture kits (Broad Human Exome b37, Nextera Rapid Capture, TruSeq Exome, SeqCap EZ 613 

Exome V3, Agilent SureSelect V4, Agilent SureSelect V7) were identified using ‘bedtools 614 

multiIntersectBed’. The tool ‘PreprocessIntervals’ was used to apply 1kb padding and to merge 615 

overlapping intervals. In parallel, ‘SelectVariants’ was used to subset the gnomAD resource of 616 

germline variants to variants with a population AF greater than 5%. Next, ‘CollectReadcounts’ 617 

was used to count reads in the bins generated by ‘PreprocessIntervals’ separately for 618 

autosomes and allosomes. In parallel, ‘CollectAllelicCounts’ was used to count reference and 619 

alternate reads at gnomAD variant sites with a population AF greater than 5%. The cohort was 620 

subsequently split into batches determined by sequencing center and 621 

‘CreateReadCountPanelOfNormals’ was used to create a panel of normal (PON) for each batch. 622 

PONs were created separately for allosomes and autosomes, and allosomes were separated 623 

further by sex. To further improve the panel of normals, GC content annotation of each interval 624 
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as determined by ‘AnnotateIntervals’ were given. Next, ‘DenoiseReadCounts’ was used to 625 

denoise the binned readcounts output by ‘CollectReadCounts’, given a PON determined by 626 

batch, chromosomes (allosomes or autosomes) and sex. Denoised copy ratios were plotted and 627 

inspected for quality concerns using ‘PlotDenoisedCopyRatios’. The tool ‘ModelSegments’ is an 628 

implementation of a gaussian-kernel binary-segmentation algorithm and was used to merge 629 

contiguous segments and assign copy and allelic ratios. The results of this segmentation were 630 

plotted using ‘PlotModeledSegments’ and inspected for quality concerns. 631 

 Copy number calling A copy number caller loosely based on GATK ‘CallCopyRatioSegments’ 632 

(which in turn is based off of ReCapSeg) and GISTIC was implemented to call both arm-level 633 

and high-level copy number changes, respectively51,52. 634 

 Segments (from ‘ModelSegments’) with a non-log2 copy ratio between 0.9 and 1.1 were 635 

determined to be neutral. These segments were then weighted by length and a weighted mean 636 

and standard deviation (sd) non-log2 copy ratio (once-filtered) were determined again. Outlier 637 

segments are removed and once again a weighted mean and sd non-log2 copy ratio (twice-638 

filtered) were determined. Segments with a non-log2 copy ratio between 0.9 and 1.1 and 639 

segments within two standard deviations of the twice-filtered mean were determined to be 640 

neutral, and segments outside of these boundaries were determined to have a low-level 641 

amplification or deletion, depending on the direction. 642 

 The weighted mean and sd of the non-log2 copy ratio (once-filtered) was then 643 

determined individually for each chromosome arm. Outlier segments were removed and the 644 

weighted mean and sd of the non-log2 copy ratio (twice-filtered) was determined again. In order 645 

to determine a high-level amplification and deletion threshold, the most highly amplified and 646 

deleted chromosome arms were selected, respectively. The twice-filtered mean plus (high level 647 

amplification) or minus (high level deletion) two times the sd of the selected arms were used as 648 

high-level thresholds. 649 

 Gene level copy number were called by intersecting the gene boundaries with the 650 

segment intervals and by calculating the weighted non-log2 copy ratio for that gene. The copy 651 

number call for that gene was then determined by comparing the gene-level non-log2 copy ratio 652 

to the previously determined thresholds. 653 

dNdScv The R package dNdScv53 (https://github.com/im3sanger/dndscv) was run using the 654 

default and recommended parameters for all mutations in initial tumor samples, recurrent tumor 655 

samples, and for each mutational fraction (unique to initial, unique to recurrent and shared). All 656 

analyses were conducted separately within the three main tumor subtypes.  657 

Aneuploidy calculation The most reductive metric of aneuploidy was computed by taking the 658 

size of all non-neutral segments divided by the size of all segments. The resulting aneuploidy 659 

value indicates the proportion of the segmented genome that is non-diploid. 660 

In parallel, an arm-level aneuploidy score modeled after a previously described method was 661 

computed54. Briefly, adjacent segments with identical arm-level calls (-1, 0 or 1) were merged 662 

into a single segment with a single call. For each merged/reduced segment, the proportion of 663 

the chromosome arm it spans was calculated. Segments spanning greater than 80% of the arm 664 

length resulted in a call of either -1 (loss), 0 (neutral) or +1 (gain) to the entire arm, or NA if no 665 

contiguous segment spanned at least 80% of the arm’s length. For each sample the number of 666 

arms with a non-neutral event was finally counted. The resulting aneuploidy score is a positive 667 
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integer with a minimum value of 0 (no chromosomal arm-level events detected) and a maximum 668 

value of 39 (total number of autosomal chromosome arms excluding the short arms for 669 

chromosomes 13, 14, 15, 21, and 22). 670 

Estimates of evolutionary pressures Evolutionary pressures were evaluated both by variant 671 

status and glioma subtype using the neutralitytestr algorithm as previously described (R-672 

package: neutralitytestr version: 0.0.2, https://github.com/marcjwilliams1/neutralitytestr)31. 673 

Individual variant allele frequency vectors were merged at the level of glioma subtype by variant 674 

status. Only mutations found in copy-neutral regions should were included in these analyses. 675 

For all else, default parameters were used. Merged VAF distributions were deemed to be 676 

selected when the neutral null hypothesis was rejected using several metrics. Tests for 677 

neutrality required that both R2 values < 0.98 and the area between the two curves of 1) merged 678 

VAF data and 2) a normalized distribution expected under neutrality to be significantly different. 679 

The SubclonalSelection algorithm was applied to GLASS mutation data to measure the 680 

selection strength in individual tumor samples (Julia package: SubclonalSelection, 681 

https://github.com/marcjwilliams1/SubClonalSelection.jl)16. Patients that had samples at both 682 

timepoints with a TITAN-defined purity estimate >= 0.5 and >= 25 subclonal mutations in non-683 

diploid regions were included. Mean coverage across all mutations was used as the 684 

“read_depth” input parameter and the model was run with the recommended 106 iterations and 685 

1000 particles. Samples were classified as neutral or selected based on the model that had the 686 

highest probability, in line with the prior applications to TCGA data16. Classification based on the 687 

highest model probability yielded stable results there was not a significant change in proportions 688 

when setting a higher classification probability threshold (P > 0.05, Pearson’s Chi-square test, 689 

for both probability thresholds of 0.6 and 0.7). At all three probability thresholds (0.5, 0.6, and 690 

0.7), Kaplan-Meier survival analyses between selection at recurrence and overall survival 691 

continued to indicate that patients with IDHwt tumors that were selected had a worse overall 692 

survival (P = 0.03 (n=81), P = 0.01 (n=66), P = 0.01 (n=56) respectively). 693 

Mutation clonality Each patient’s clonal architecture was inferred using PyClone (version 694 

0.13.1) by grouping SNVs into clonal clusters (https://github.com/aroth85/pyclone)55. The 695 

patient-level input mutation matrix was reduced by limiting to sites with at least 30x coverage 696 

across all samples. PyClone was subsequently ran using a binomial density model, connected 697 

initiation, and 10000 iterations. Sample purities were provided for each patient and parental 698 

copy number (minor and major allele counts) from TITAN were given. PyClone results were 699 

post-processed using a burn-in of 1000, thin of 1, minimum cluster size of 2 and a maximum 700 

number of clusters per patient of 12. Individual mutations were determined to be clonal if the 701 

PyClone cancer cell fraction (CCF) values were >= 0.5, subclonal for mutations with CCF >= 0.1 702 

and CCF <0.5, mutations were considered non-clonal when CCF < 0.1 as previously described 703 
56. 704 

CNV clonality Allele specific copy number, tumor purity and ploidy estimates were derived 705 

using a probabilistic model (TITAN, version 1.19.1) for both whole genome and whole exome 706 

sequencing samples 57. TITAN was supplied with the tumor denoised readcounts output by 707 

GATK DenoiseReadCounts and the tumor allelic counts at loci found to be heterozygous in 708 

control samples output by ModelSegments. An ‘alphaK’ (and ‘alphaKHigh’) parameter of 2500 709 

and 10000 was used for exomes and genomes, respectively. The patient sex was provided in 710 
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order to improve fitting allosomes. For each tumor-control pair TITAN was ran assuming an 711 

initial ploidy of two or three, and assuming 1 to 3 clusters, resulting in a total of six possible 712 

solutions per tumor/control pair. To select the optimal solution, TITAN’s internal selectSolution 713 

function was used with a threshold of 0.15 giving additional weight to diploid solutions. 714 

Timing analysis The CCF values output by TITAN or PyClone were used for separately timing 715 

copy number changes or mutations. To time specific copy number changes in genes, the 716 

average CCF for that gene was calculated. When timing mutations in genes, the highest CCF 717 

amongst the non-synonymous mutations was taken.  718 

Neoantigen analyses Neoantigens in this analysis were defined as all 8-11-mer peptides that 719 

arose from an exonic nonsynonymous SNV or indel and bound their respective patient’s HLA 720 

class I molecules at a binding affinity score (IC50) that was ≤ 500 nM and better than or equal to 721 

the wild-type form of the peptide. Each patient’s 4-digit HLA class I types were inferred using 722 

OptiType (version 1.3.1, https://github.com/FRED-2/OptiType) run on each patient’s matched 723 

normal sample58. VCF files for each tumor sample were annotated using Variant Effect Predictor 724 

(ensembl) with the Downstream and Wildtype plugins. Neoantigens from these VCFs were then 725 

called using pVACseq (version 4.0.10, https://github.com/griffithlab/pVAC-Seq)40 run using 726 

netMHCpan (version 2.8, http://www.cbs.dtu.dk/services/NetMHCpan-2.8/)59. For each 727 

pVACseq run, epitope length was set to 8, 9, 10, or 11, minimum binding affinity fold-change 728 

was set to 1, and downstream sequence length was set to full, with default parameters used for 729 

all other settings.  730 

Downstream neoantigen analyses were performed using the pVACseq output linked to its 731 

respective mutation information. Neoantigen-causing mutations were defined as all mutations 732 

that gave rise to at least one neoantigen. The observed-to-expected neoantigen ratio was 733 

calculated using a previously developed approach that compares each tumor’s observed 734 

neoantigen rate to an empirically derived expected rate that assumes no selection against 735 

neoantigen-causing mutations38: From the gold set samples in the GLASS cohort (n = 222), 736 

define 𝑁̅𝑠 to be the expected number of nonsynonymous missense SNVs per synonymous SNV 737 

with trinucleotide context 𝑠. 𝐵̅𝑠 is then defined as the expected number of neoantigen-generating 738 

missense SNVs per nonsynonymous missense SNV with trinucleotide context 𝑠. For a given 739 

sample 𝑖, define 𝑌𝑖 as the sample’s set of synonymous SNVs and 𝑠(𝑚) to be a synonymous 740 

SNV with trinucleotide context 𝑚. The expected number of nonsynonymous missense SNVs, 741 

𝑁𝑝𝑟𝑒𝑑, and neoantigen-causing mutations, 𝐵𝑝𝑟𝑒𝑑, can then be calculated as follows:  742 

𝑁𝑝𝑟𝑒𝑑,𝑖 = ∑ 𝑁̅𝑠(𝑚)

𝑚∈𝑌𝑖

 743 

𝐵𝑝𝑟𝑒𝑑,𝑖 = ∑ 𝑁̅𝑠(𝑚)𝐵̅𝑠(𝑚)

𝑚∈𝑌𝑖

 744 

To obtain sample 𝑖’s final neoantigen depletion ratio 𝑅𝑖, the observed number of neoantigen-745 

causing mutations in the sample, 𝐵𝑜𝑏𝑠,𝑖 is divided by the sample’s observed number of 746 

nonsynonymous missense SNVs, 𝑁𝑜𝑏𝑠,𝑖, and then this ratio is divided by the ratio of 𝐵𝑝𝑟𝑒𝑑,𝑖 and 747 

𝑁𝑝𝑟𝑒𝑑,𝑖. Thus: 748 
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𝑅𝑖 =  
𝐵𝑜𝑏𝑠,𝑖 𝑁𝑜𝑏𝑠,𝑖⁄

𝐵𝑝𝑟𝑒𝑑,𝑖 𝑁𝑝𝑟𝑒𝑑,𝑖⁄
 749 

For analyses examining clonal/subclonal neoantigen ratios, the observed and expected 750 

numbers were calculated by subsetting a sample’s SNVs by the respective criteria and then 751 

recalculating the ratio as described above. To mitigate overfitting, all analyses presented here 752 

utilized samples from patients with at least 3 neoantigen-causing mutations in their primary and 753 

recurrent tumors.  754 

Immune cell analyses CIBERSORT relative immune cell fraction data used in downstream 755 

neoantigen analyses were downloaded from a previous publication37. 756 

Statistical methods All data analyses were conducted in R 3.4.2, Python 2.7.15, PostgreSQL 757 

10.5, and Julia 0.7. All survival analyses including Kaplan-Meier plots and Cox proportional 758 

hazards models were conducted using the R packages survival and survminer. 759 

Data availability All deidentified, non-protected access somatic variant profiles and clinical data 760 

are accessible via Synapse (http://synapse.org/glass). Raw data of the various sequencing 761 

datasets can be obtained per the overview provided in the Supplement.  762 

Code availability All custom scripts and pipelines are available on the project’s github page 763 

(https://github.com/TheJacksonLaboratory/GLASS). 764 
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 907 

Figure Legends 908 

Fig. 1 | Temporal changes in glioma mutational burden and processes. a. Each column 909 

represents a single patient (n = 222) at two separate timepoints grouped by glioma subtype and 910 

ordered left-to-right by decreasing mutation frequency at recurrence. Top, mutation frequency 911 

differences between initial and recurrent tumors. Blue dotted line indicates increased mutation 912 

frequency while a red dotted line indicates decreased mutational frequency. Stacked bar plot 913 

reflects the proportion of total mutations shared (mustard), private to initial (magenta), or private 914 

to recurrence (blue). Clinical information including hypermutation status, therapy, and grade 915 

changes. b. Stacked bar plot (n=219) indicating the dominant mutational signature among initial, 916 

recurrent and shared mutation fractions stratified by glioma subtype. c. The proportion of glioma 917 

recurrences with alkylating agent-related hypermutation, grouped by glioma subtype. Fisher’s 918 

exact test was used to compare proportions between subtypes. d. Kaplan-Meier curve depicting 919 

overall survival in hypermutant (red) versus non-hypermutant (blue) alkylating agent treated 920 

patients amongst IDHwt (left, n = 99) and IDHmut-noncodel (right, n = 32) tumors. Log-rank test 921 

P-values are shown. 922 

Fig. 2 | Quantifying selective pressures during glioma evolution. a. Schematic depiction of 923 

cancer cell fraction (CCF) values during tumor evolution indicating clonality and associated 924 

relative timing. b. Comparison of PyClone clusters ranked by CCF in matched initial and recurrent 925 

tumors. c. Left: dN/dS ratio for all variants (i.e. global) in initial and recurrent tumors for each 926 

subtype. Hypermutators were not included (n = 187). Dots represent the global dN/dS ratio with 927 
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associated Wald confidence intervals. Right: global dN/dS ratios for variant fractions per subtype. 928 

d. Cumulative distribution of subclonal mutations by their inverse variant allele frequency. 929 

Mutations were separated by timepoint, variant fraction, and glioma subtype. Deviation from a 930 

linear relationship, significant Kolmogorov-Smirnov P-values and R2 below 0.98 indicate 931 

selection. e. Sankey plot indicating the breakdown of SubClonalSelection evolutionary modes by 932 

subtype and therapy (n = 104). The sizes of the bands reflect sample sizes and band colors 933 

highlight the glioma subtype. Gray coloring reflects instances when treatment information was not 934 

available. f. Kaplan-Meier curve showing survival differences between IDHwt recurrent tumors 935 

demonstrating selection (n = 39) compared with neutrally evolving tumors (n = 44). Log-rank P-936 

value is indicated. 937 

Fig. 3 | Patterns of glioma driver frequencies over time. a. Driver dynamics for SNVs 938 

nominated by the dNdScv and CNVs nominated by GISTIC (n = 222). Each column represents a 939 

single patient at two separate time points stratified by subtype and ordered left-to-right by the 940 

number of driver alterations. The degree of aneuploidy difference (recurrence – initial) offers a 941 

summary metric for increases (> 0) or decreases (< 0) in aneuploidy at recurrence. Variants are 942 

marked and different shapes indicate whether a variant was shared or private. The variant type 943 

is depicted by its color. Stacked bar plots accompanying each gene/arm provide cohort-level 944 

proportions for whether the alteration was shared, lost, or acquired. b. Aneuploidy comparison in 945 

matching initial and recurrent IDHmut-noncodel tumors. c. Within-sample CCF comparison of 946 

CDKN2A homozygous deletion (homdel) to genome-wide CCF as a proxy for aneuploidy. A 947 

relative higher CCF indicates temporal precedence. Wilcoxon signed-rank test P-value is 948 

indicated. d. Kaplan-Meier curve comparing survival in IDHmut-noncodel tumors with an alteration 949 

in the cell cycle, acquired aneuploidy, or both (shades of red) versus unaltered IDHmut-noncodel 950 

tumors (blue). Log-rank P-value is shown. 951 

Fig. 4 | Neoantigen selection during tumor progression. a. Mean proportion of coding 952 

mutations giving rise to neoantigens (neoantigens/nonsynonymous) stratified by glioma subtype 953 

and timepoint (n = 222). Error bars represent standard deviation. b. Boxplot depicting the 954 

distribution of observed to expected neoantigen ratios in the GLASS cohort stratified by glioma 955 

subtype. P-value was calculated using the Wilcoxon rank-sum test. Each box spans quartiles, 956 

with the lines representing the median ratio for each group. Whiskers represent absolute range, 957 

excluding outliers. c. Scatterplot depicting the association between the observed-to-expected 958 

neoantigen ratio in a patient’s initial versus recurrent tumor. Each point represents a single 959 

patient. R represents Pearson correlation coefficient. Panels b and c only include samples with at 960 

least 3 neoantigens in the initial and recurrent tumors (n = 131, 63, and 24 for IDHwt, IDHmut-961 

noncodel, and IDHmut-codel, respectively). d. Ladder plot depicting the difference in observed-962 

to-expected neoantigen ratio between a tumor’s clonal and subclonal neoantigens. Each set of 963 

points connected by a line represents one tumor. Tumors are stratified by whether they were a 964 

patient’s initial or recurrent tumor. Lines are colored by each patient’s glioma subtype. Panel d 965 

only includes samples with at least 3 clonal neoantigens and at least 3 subclonal neoantigens in 966 

both the initial and recurrent tumors (n = 35, 20 and 9 for IDHwt, IDHmut-noncodel, and IDHmut-967 

codel, respectively). P-value was calculated using a paired two-sided t-test. Colors in each panel 968 

represent the glioma subtype and are denoted at the bottom of the figure. 969 
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Extended Data Fig. 1 | Sample Selection. a. Quality control workflow steps identifying all 970 

GLASS samples available as a resource and the identification of the highest quality set of patient 971 

pairs (n = 222) used for the presented mutational and copy number analyses. b. Additional 972 

available datasets. 973 

Extended Data Fig. 2 | Mutation burden by time point and subtype. a. Boxplots and paired 974 

lines depicting coverage adjusted mutation frequencies in initial and matched recurrent samples 975 

across three subtypes. Wilcoxon signed-rank test P-values and sample sizes are indicated. b. 976 

Bee swarm plot depicting coverage adjusted mutation frequencies in fractions by subtype. 977 

Dashed line indicates the mean. One-way ANOVA P-values comparing three subtypes are 978 

indicated. c. Scatter plot showing the relationship between age at diagnosis and coverage 979 

adjusted mutation burdens by subtype and fraction. Linear model P-values are indicated and were 980 

adjusted by subtype. d. Similar to the analysis presented in c, but showing the relationship 981 

between time to recurrence and coverage adjusted mutation burdens. 982 

Extended Data Fig. 3 | Mutational signatures by fraction and subtype. a. Correlation plot 983 

showing the Pearson’s chi-squared (X2) residuals for each signature by fraction and subtype. A 984 

X2 was performed for each subtype and P-values are indicated. Positive residuals (blue) indicate 985 

a positive correlation, whereas negative residuals (red) indicate an anticorrelation. The point size 986 

reflects the contribution to X2 estimate. b. The same ordered of patients as Fig. 1a along with 987 

relevant clinical information is provided alongside the fraction-specific mutational signatures. 988 

PyClone mutational clusters are also presented.  989 

Extended Data Fig. 4 | Hypermutator clonality. a. Bar plots represent counts of recurrence-990 

only mutations per hypermutator tumor that were known to receive alkylating agent therapy and 991 

were successfully run through the PyClone algorithm. Colors indicate mutation clonality and color 992 

intensity indicates whether the mutations resulted in coding changes. b. Kaplan-Meier curve 993 

comparing alkylating agent-treated patients with IDHmut-noncodel hypermutator tumors that were 994 

predominantly clonal (n = 8), predominantly subclonal (n = 7), versus IDHmut-noncodel non-995 

hypermutators known to be treated with alkylating agents and had available PyClone data (n = 996 

17). Log-rank P-value is shown. 997 

Extended Data Fig. 5 | Clonal structure evolution over time. a. The minimum cancer cell 998 

fraction of the most persistent (shared between initial and recurrence) PyClone cluster. b. 999 

Comparison of PyClone clusters ranked by CCF in matched initial and recurrent tumors, as Fig. 1000 

2b but separated by subtype. c-d. Examples of cluster CCF dynamics over time in three separate 1001 

samples, including (c) two multi-timepoint samples (d) and one multi-sector sample. These 1002 

additional data are available in the GLASS resource, but only two time-separated samples were 1003 

used throughput the manuscript to ensure clarity. 1004 

Extended Data Fig. 6 | Variant allele fraction distribution (a) Non-hypermutator variant allele 1005 

fraction distributions for copy neutral variants in coding regions (n = 181 patients). Variants are 1006 

separated by subtype, fraction, and also whether the variant was non-synonymous or 1007 

synonymous mutation in a coding region. R2 goodness-of-fit measure and associated P-values 1008 

are shown for both mutation types. Note that this data considers only the coding portion of genome 1009 

while Fig. 2d presents both coding and non-coding. (b) The cumulative distribution of the 1010 
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subclonal mutations in copy-neutral regions for hypermutators (n = 31 patients). For each variant 1011 

fraction and subtype, the R2 goodness-of-fit measure and P-values are shown.  1012 

Extended Data Fig. 7 | Driver gene nomination. a. Local (gene-wise) dNdScv estimates by 1013 

subtype (rows) and fraction (columns). Genes are sorted by Q-value and P-value. The Q-value is 1014 

shown in color, whereas the P-value is indicated in light gray. The Q-value threshold of 0.05 is 1015 

indicated by a horizontal red line. b. GISTIC significant amplification (red) and deletion (blue) plots 1016 

in initial (left) and recurrent tumors (right). Chromosomal locations are ordered on the y-axis, Q-1017 

values are shown on the x-axis, and selected drivers are indicated by their chromosomal location 1018 

on the right. 1019 

Extended Data Fig. 8 | Driver acquisition over time a. Tabulated numbers of SNV (top) and 1020 

CNV (bottom) driver events that were shared, initial-only, or recurrence-only. P-values were 1021 

obtained using a two-sided Fisher test comparing the initial-only fraction to the recurrence-only 1022 

fraction testing for acquisition. b. One-sided Fisher test comparing the initial-only fraction to the 1023 

recurrence-only fraction amongst previously implicated glioma drivers testing for driver 1024 

acquisition. P-values were adjusted for multiple testing using the FDR (x-axis). Hypermutators 1025 

(red) and non-hypermutators (black) were separately analyzed. 1026 

Extended Data Fig. 9 | Intra-tumor CCF comparison. Ladder plots comparing the CCF of co-1027 

occurring drivers in single tumor samples. The color of the lines and points indicates whether the 1028 

sample shown is an initial (brown) or recurrent (green) tumor. Two-sided Wilcoxon rank-sum test 1029 

P-values are shown for all initial samples, all recurrent samples, as well as all samples (black). 1030 

Extended Data Fig. 10 | Between time point intra-patient CCF comparison. a. Driver-gene 1031 

CCF comparison between initial and matched recurrences. Lines are colored by variant 1032 

classification. Two-sided Wilcoxon rank-sum test P-values are shown. b. TP53 CCF by subtype, 1033 

otherwise as in (a). c. IDH1 CCF by subtype, otherwise as in (a). d. Ladder plot visualizing CCF 1034 

change across all SNVs between initial and recurrent tumors, separated by subtype. Wilcoxon 1035 

rank-sum test was used to test for differences between time points. e. Initial and recurrent 1036 

mutations in each patient were compared using a Wilcoxon rank-sum test. Bar plot with counts of 1037 

patients in each subtype are shown. Patients lacking significant change are shown in yellow, 1038 

those with a significant increase or decrease are shown in dark and light blue, respectively. 1039 

 1040 

Extended Data Fig. 11 | Aneuploidy calculation a. Heatmap displaying the chromosomal arm-1041 

level events (x-axis) with patients represented in each row. Patients are placed in the same order 1042 

for both the initial (left) and recurrence (right). White space was inserted as a break between the 1043 

three subtypes. b. Distribution of total aneuploidy difference. Acquired aneuploidy determination 1044 

(upper-quartile) indicated with a red line. c. Comparison of aneuploidy score between initial and 1045 

recurrent tumors separated by subtype d. As (c), comparing aneuploidy value. 1046 

Extended Data Fig. 12 | Neoantigen evolution and cellular analysis a. Bar plots representing 1047 

the number of shared mutations that give rise to neoantigens (top row, “immunogenic”) and those 1048 

that do not give rise to neoantigens (bottom row, “non-immunogenic”) stratified by longitudinal 1049 
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clonality (“(clonality in initial)-(clonality in recurrence)”) and further separated by subtype. 1050 

Percentage of longitudinal clonality per subtype and mutation immunogenicity are presented 1051 

above the respective bars. b. Left: Ladder plot depicting the difference in observed-to-expected 1052 

neoantigen ratio between the initial and recurrent tumors of patients with hypermutated tumors at 1053 

recurrence. Each set of points connected by a line represents one tumor (n  = 70). Right: Boxplot 1054 

depicting the distribution of observed to expected neoantigen ratios in recurrent tumors stratified 1055 

by hypermutator status (n = 35 and 183 for hypermutators and non-hypermutators, respectively). 1056 

Each box spans quartiles, with the lines representing the median ratio for each group. Whiskers 1057 

represent absolute range, excluding outliers. P-values for panel b were calculated using a paired 1058 

and unpaired two-sided t-test, respectively. c. Stacked bar plots depicting the average relative 1059 

fraction of 11 CIBERSORT cell types in the neoantigen depleted (< 1) and non-depleted (> 1) 1060 

initial and recurrent tumor subgroups. Asterisks to the right of each plot indicate a significant 1061 

difference (P < 0.05, Wilcoxon rank-sum test) between the depleted and non-depleted groups for 1062 

the noted cell type at that time.  1063 

 1064 


